1
|
Cirilo MAS, Santos VBS, Lima NKS, Muzi-Filho H, Paixão ADO, Vieyra A, Vieira LD. Reactive oxygen species impair Na+ transport and renal components of the renin-angiotensin-aldosterone system after paraquat poisoning. AN ACAD BRAS CIENC 2024; 96:e20230971. [PMID: 38597493 DOI: 10.1590/0001-3765202420230971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 04/11/2024] Open
Abstract
Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.
Collapse
Affiliation(s)
- Marry A S Cirilo
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Valéria B S Santos
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Natália K S Lima
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Humberto Muzi-Filho
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ana D O Paixão
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
| | - Adalberto Vieyra
- Federal University of Rio de Janeiro, Center for Research in Precision Medicine, First Floor, Carlos Chagas Filho Institute of Biophysics, Carlos Chagas Filho Ave., University City, 21941-904 Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine-REGENERA, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
- Grande Rio University, 1160 Professor José de Souza Herdy Street, Building C, Second Floor, 25071-202 Duque de Caxias, RJ, Brazil
| | - Leucio D Vieira
- Federal University of Pernambuco, Department of Physiology and Pharmacology, Professor Moraes Rego Ave., University City, 50670-901 Recife, PE, Brazil
- Federal University of Rio de Janeiro, National Center for Structural Biology and Bioimaging/CENABIO, 373 Carlos Chagas Filho Ave., University City, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Liu P, Zhang Q, Yang C, Wang X, Li Y, Li J, Yang Q. Feeding with 4,4'-diaponeurosporene-producing Bacillus subtilis enhances the lactogenic immunity of sow. BMC Vet Res 2023; 19:280. [PMID: 38115003 PMCID: PMC10729370 DOI: 10.1186/s12917-023-03846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Specific antibodies produced sow by oral porcine epidemic diarrhea virus (PEDV) vaccines would transfer to newborn piglets via colostrum, and it is an effective strategy to prevent porcine epidemic diarrhea (PED). However, there is a lag in the development of corresponding vaccines due to the rapid mutation of PEDV, which could increase the difficulty of PED prevention and control in pig farms. Hence, congenital lactogenic immunity was assessed by feeding 4,4'-diaponeurosporene-producing Bacillus subtilis (B.S-Dia) to sow on the 80th day of gestation in order to protect newborn piglets from PEDV infection. Firstly, we found that the quantities of T lymphocytes and monocytes in the blood and colostrum after oral administration of B.S-Dia were significantly increased as observed by flow cytometry, whereas the proliferative activity of T lymphocytes in colostrum was also markedly increased. Furthermore, enzyme-linked immunosorbent assay (ELISA) results revealed that levels of TGF (Transforming growth factor) -β, Interleukin (IL) -6, lysozyme and lactoferrin were significantly increased. Finally, it was found in the piglets' challenge protection test that offspring pigs of the sows feeding B.S-Dia during pregnancy did not develop diarrhea symptoms and intestinal pathological changes at 48 h after infection with PEDV, and PEDV load in the jejunum and ileum was significantly reduced, but offspring pigs of the sows taking orally PBS during pregnancy developed pronounced diarrhea symptoms and extensive PEDV colonization was noted both in the jejunum and ileum. In summary, sow by oral administration of B.S-Dia substantially increased congenital lactogenic immunity, thereby preventing newborn piglets from being infected with PEDV.
Collapse
Affiliation(s)
- Peng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Qi Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Chengjie Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Xiuyu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Jianda Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China.
| |
Collapse
|
3
|
Filluelo O, Ferrando J, Picart P. Metabolic engineering of Bacillus subtilis toward the efficient and stable production of C 30-carotenoids. AMB Express 2023; 13:38. [PMID: 37119332 PMCID: PMC10148934 DOI: 10.1186/s13568-023-01542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023] Open
Abstract
Commercial carotenoid production is dominated by chemical synthesis and plant extraction, both of which are unsustainable and can be detrimental to the environment. A promising alternative for the mass production of carotenoids from both an ecological and commercial perspective is microbial synthesis. To date, C30 carotenoid production in Bacillus subtilis has been achieved using plasmid systems for the overexpression of biosynthetic enzymes. In the present study, we employed a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system to develop an efficient, safe, and stable C30 carotenoid-producing B. subtilis strain, devoid of plasmids and antibiotic selection markers. To this end, the expression levels of crtM (dehydrosqualene synthase) and crtN (dehydrosqualene desaturase) genes from Staphylococcus aureus were upregulated by the insertion of three gene copies into the chromosome of B. subtilis. Subsequently, the supply of the C30 carotenoid precursor farnesyl diphosphate (FPP), which is the substrate for CrtMN enzymes, was enhanced by expressing chromosomally integrated Bacillus megaterium-derived farnesyl diphosphate synthase (FPPS), a key enzyme in the FPP pathway, and abolishing the expression of farnesyl diphosphate phosphatase (YisP), an enzyme responsible for the undesired conversion of FPP to farnesol. The consecutive combination of these features resulted in a stepwise increased production of C30 carotenoids. For the first time, a B. subtilis strain that can endogenously produce C30 carotenoids has been constructed, which we anticipate will serve as a chassis for further metabolic engineering and fermentation optimization aimed at developing a commercial scale bioproduction process.
Collapse
Affiliation(s)
- Oriana Filluelo
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, University of Barcelona, Avinguda Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Jordi Ferrando
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, University of Barcelona, Avinguda Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Pere Picart
- Faculty of Pharmacy and Food Science Technology, Department of Biology, Healthcare and the Environment, Microbiology Section, University of Barcelona, Avinguda Joan XXIII, 27-31, Barcelona, 08028, Spain.
| |
Collapse
|
4
|
Kim M, Jung DH, Hwang CY, Siziya IN, Park YS, Seo MJ. 4,4'-Diaponeurosporene Production as C 30 Carotenoid with Antioxidant Activity in Recombinant Escherichia coli. Appl Biochem Biotechnol 2023; 195:135-151. [PMID: 36066805 DOI: 10.1007/s12010-022-04147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Carotenoids, a group of isoprenoid pigments, are naturally synthesized by various microorganisms and plants, and are industrially used as ingredients in food, cosmetic, and pharmaceutical product formulations. Although several types of carotenoids and diverse microbial carotenoid producers have been reported, studies on lactic acid bacteria (LAB)-derived carotenoids are relatively insufficient. There is a notable lack of research focusing on C30 carotenoids, the functional characterizations of their biosynthetic genes and their mass production by genetically engineered microorganisms. In this study, the biosynthesis of 4,4'-diaponeurosporene in Escherichia coli harboring the core biosynthetic genes, dehydrosqualene synthase (crtM) and dehydrosqualene desaturase (crtN), from Lactiplantibacillus plantarum subsp. plantarum KCCP11226 was constructed to evaluate and enhance 4,4'-diaponeurosporene production and antioxidant activity. The production of 4,4'-diapophytoene, a substrate of 4,4'-diaponeurosporene, was confirmed in E. coli expressing only the crtM gene. In addition, recombinant E. coli carrying both C30 carotenoid biosynthesis genes (crtM and crtN) was confirmed to biosynthesize 4,4'-diaponeurosporene and exhibited a 6.1-fold increase in carotenoid production compared to the wild type and had a significantly higher antioxidant activity compared to synthetic antioxidant, butylated hydroxytoluene. This study presents the discovery of an important novel E. coli platform in consideration of the industrial applicability of carotenoids.
Collapse
Affiliation(s)
- Mibang Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, Korea.,Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.,Research Center for Bio Material & Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Research Center for Bio Material & Process Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
5
|
Siziya IN, Hwang CY, Seo MJ. Antioxidant Potential and Capacity of Microorganism-Sourced C 30 Carotenoids-A Review. Antioxidants (Basel) 2022; 11:antiox11101963. [PMID: 36290686 PMCID: PMC9598406 DOI: 10.3390/antiox11101963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Carotenoids are lipophilic tetraterpenoid pigments produced by plants, algae, arthropods, and certain bacteria and fungi. These biologically active compounds are used in the food, feed, and nutraceutical industries for their coloring and the physiological benefits imparted by their antioxidant properties. The current global carotenoid market is dominated by synthetic carotenoids; however, the rising consumer demand for natural products has led to increasing research and development in the mass production of carotenoids from alternative natural sources, including microbial synthesis and plant extraction, which holds a significant market share. To date, microbial research has focused on C40 carotenoids, but studies have shown that C30 carotenoids contain similar—and in some microbial strains, greater—antioxidant activity in both the physical and chemical quenching of reactive oxygen species. The discovery of carotenoid biosynthetic pathways in different microorganisms and advances in metabolic engineering are driving the discovery of novel C30 carotenoid compounds. This review highlights the C30 carotenoids from microbial sources, showcasing their antioxidant properties and the technologies emerging for their enhanced production. Industrial applications and tactics, as well as biotechnological strategies for their optimized synthesis, are also discussed.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon 22012, Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon 22012, Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
- Correspondence: ; Tel.: +82-32-835-8267
| |
Collapse
|
6
|
Cai G, Yang Y, Gu P, Li K, Adelijiang W, Zhu T, Liu Z, Wang D. The secretion of sIgA and dendritic cells activation in the intestinal of cyclophosphamide-induced immunosuppressed mice are regulated by Alhagi honey polysaccharides. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154232. [PMID: 35675749 DOI: 10.1016/j.phymed.2022.154232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND It remains a huge challenge to recover the intestine immune function for the treatment of intestinal mucosal damage from chemotherapy with cyclophosphamide (CY). Alhagi honey polysaccharide (AH) has immunomodulation pharmacological activity, but the effect and mechanism on the intestinal immune system of CY-mice remain unclear. PURPOSE In this experiment, the immunomodulatory activity of AH on intestinal immune in CY-mice and its mechanism of regulating the intestinal immune system was investigated. STUDY DESIGN AND METHODS The experiment studied the immunomodulatory activity of AH on the intestinal immune system and its mechanism for the first time from in vitro and in vivo experiments. We investigated the immunomodulatory effects of AH on Caco-2 and dendritic cells (DCs) in vitro by using western blot (WB), flow cytometry, quantitative real-time PCR (qPCR), and ELISA methods. In vivo experiment, the immunosuppressive mouse model was established through being given intraperitoneal injection with CY (80 mg/kg) for 3 days. Then, mice oral administration of 800 mg/kg AH and 40 mg/kg levamisole hydrochloride for a week. Immunofluorescence, flow cytometry, ELISA, qPCR and WB were applied to examine the immunomodulatory activity of AH on the intestinal immune function of CY-mice, as well as the function of AH on the concentration of SCFAs in cecum by Gas chromatographic analysis. RESULTS In vitro experiments, AH could significantly stimulate the expression of pIgR protein in Caco-2. It could also induce the DCs maturation and release the cytokines to regulate the immune response. In vivo experiments, AH could remarkably stimulate the DCs maturation and secrete more CCL20 to recruit DCs, then induce the T (CD4+ and CD8+) and B cells proliferation and activation. Moreover, it could further induce T helper cells to differentiate and secrete cytokines to enhance the secretion of sIgA. Furthermore, it also directly activated DCs and released cytokines to increase the content of pIgR, J-chain, and IgA+ cells in intestine, thereby enhancing the secretion of sIgA to protect the intestine. In addition, AH could obviously strengthen the SCFAs production in cecum to regulate the intestinal immune dysfunction induced by CY. CONCLUSION In summary, oral administrated AH exhibits great benefits for treating CY-induced intestinal immunosuppression, and the mechanism of action mainly involves sIgA, DCs, SCFAs.
Collapse
Affiliation(s)
- Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kui Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wusiman Adelijiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830000, China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
7
|
Siziya IN, Yoon DJ, Kim M, Seo MJ. Enhanced Production of C 30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226 T. J Microbiol Biotechnol 2022; 32:892-901. [PMID: 35637169 PMCID: PMC9628921 DOI: 10.4014/jmb.2204.04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25°C incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Deok Jun Yoon
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Mibang Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea,Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Corresponding author Phone: +82-32-835-8267 Fax: +82-32-835-0804 E-mail:
| |
Collapse
|
8
|
Jing Y, Liu H, Xu W, Yang Q. 4,4′‐Diaponeurosporene‐ProducingBacillus subtilisPromotes the Development of the Mucosal Immune System of the Piglet Gut. Anat Rec (Hoboken) 2019; 302:1800-1807. [DOI: 10.1002/ar.24102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Yuchao Jing
- College of Veterinary MedicineNanjing Agricultural University Nanjing Jiangsu 210095 People's Republic of China
| | - Haofei Liu
- College of Veterinary MedicineNanjing Agricultural University Nanjing Jiangsu 210095 People's Republic of China
| | - Wenwen Xu
- College of Veterinary MedicineNanjing Agricultural University Nanjing Jiangsu 210095 People's Republic of China
| | - Qian Yang
- College of Veterinary MedicineNanjing Agricultural University Nanjing Jiangsu 210095 People's Republic of China
| |
Collapse
|
9
|
Prathiba S, Jayaraman G. Evaluation of the anti-oxidant property and cytotoxic potential of the metabolites extracted from the bacterial isolates from mangrove Forest and saltern regions of South India. Prep Biochem Biotechnol 2018; 48:750-758. [PMID: 30303456 DOI: 10.1080/10826068.2018.1508038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objective was to evaluate the anticancer and antioxidant activities of the methanolic extracts of halophilic bacteria, isolated from soil samples of Marakkanam saltern and Pichavaram mangrove forest, India. Radical Scavenging activity, reducing power, and metal ion chelation ability was used to evaluate the antioxidant potential of the metabolic extracts, whereas cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The methanolic extract of Bacillus VITPS7 exhibited significant antioxidant property. Bacillus VITPS14 and Bacillus VITPS16 extracts were cytotoxic against HeLa cell lines but not to A549 cell lines. Colorimetric assays for the presence of specific metabolites including, total flavonoid and β carotene content were performed. The presence of these specific classes of metabolites was confirmed by UV-Visible spectrophotometry, Nuclear Magnetic Resonance (NMR) spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS). Specific NMR signals revealed the presence of aromatic and unsaturated metabolites whereas GC-MS analysis indicated the presence of metabolites such as squalene and methyl hexadeconate. The present study thus reports for the first time the presence of squalene in Bacillus VITPS12 and Planococcus maritimus VITP21, in addition to other metabolites that contribute to the observed antioxidant or/and cytotoxicity, thus revealing the therapeutic potential of these selected halophilic bacterial isolates.
Collapse
Affiliation(s)
- Subramanian Prathiba
- a School of Bio Sciences and Technology , Vellore Institute of Technology , Vellore , Tamil Nadu , India
| | - Gurunathan Jayaraman
- a School of Bio Sciences and Technology , Vellore Institute of Technology , Vellore , Tamil Nadu , India
| |
Collapse
|
10
|
Characterization and engineering of a carotenoid biosynthesis operon from Bacillus megaterium. Metab Eng 2018; 49:47-58. [DOI: 10.1016/j.ymben.2018.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022]
|
11
|
Jing Y, Liu H, Xu W, Yang Q. Amelioration of the DSS-induced colitis in mice by pretreatment with 4,4'-diaponeurosporene-producing Bacillus subtilis. Exp Ther Med 2017; 14:6069-6073. [PMID: 29285159 PMCID: PMC5740520 DOI: 10.3892/etm.2017.5282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronically relapsing inflammatory disorder of the gastrointestinal tract. Current IBD treatments have poor tolerability and insufficient therapeutic efficacy, thus, alternative therapeutic approaches are required. Recently, a number of dietary supplements have emerged as promising interventions. In the present study oral administration of a carotenoid (4,4'-diaponeurosporene)-producing Bacillus subtilis markedly ameliorated dextran sulfate sodium salt-induced mouse colitis, as demonstrated by a reduction in weight loss and the severity of bleeding, which indicated that 4,4'-diaponeurosporene may have beneficial effects on treatments for colitis. This preliminary study indicated that 4,4'-diaponeurosporene may function synergistically with probiotics to provide a novel and effective strategy to prevent colitis.
Collapse
Affiliation(s)
- Yuchao Jing
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Haofei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Wenwen Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
12
|
Liu H, Xu W, Yu Q, Yang Q. 4,4'-Diaponeurosporene-Producing Bacillus subtilis Increased Mouse Resistance against Salmonella typhimurium Infection in a CD36-Dependent Manner. Front Immunol 2017; 8:483. [PMID: 28491061 PMCID: PMC5405070 DOI: 10.3389/fimmu.2017.00483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/07/2017] [Indexed: 01/28/2023] Open
Abstract
Deficient mucosal innate immunity is a hallmark of infectious diarrhea, such as Salmonella typhimurium (S. typhimurium)-induced gastroenteritis. Here, we report that oral administration of a 4,4′-diaponeurosporene-producing Bacillus subtilis (B.s-Dia) could improve mice mucosal immunity, as showed by an increased resistance against S. typhimurium infection. Intragastric administration of B.s-Dia for 7 days could increase the secretion of CCL20 by intestinal epithelial cells (IECs) and then recruit more dendritic cells. Meanwhile, the number of CD8αα+ intraepithelial lymphocytes, which play a critical role in downregulating immune responses, was also reduced, probably as a consequence of the decrease of IEC-derived TGFβ. Further study showed that CD36 played a critical role in B.s-Dia-induced immune enhancement, as blocking CD36 signal with a specific antagonist, sulfo-N-succinimidyl oleate, led to the inability of B.s-Dia to enhance mucosal innate immunity.
Collapse
Affiliation(s)
- Haofei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenwen Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qinghua Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|