1
|
Galvão GF, Trefilio LM, Salvio AL, da Silva EV, Alves-Leon SV, Fontes-Dantas FL, de Souza JM. Genetic variants in FCGR2A, PTPN2, VDR as predictive signatures of aggressive phenotypes in cerebral cavernous malformation. Gene 2024; 933:148918. [PMID: 39236970 DOI: 10.1016/j.gene.2024.148918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE The biological behavior of Cerebral Cavernous Malformation (CCM) is still controversial, lacking a clear-cut signature for a mechanistic explanation of lesion aggressiveness. In this study, we evaluated the predictive capacity of genetic variants concerning the aggressive behavior of CCM and their implications in biological processes. METHODS We genotyped the variants in VDRrs7975232, VDRrs731236, VDRrs11568820, PTPN2rs72872125 and FCGR2Ars1801274 genes using TaqMan Genotyping Assays in a cohort study with 103 patients, 42 of whom had close follow-up visits for 4 years, focusing on 2 main aspects of the disease: (1) symptomatic events, which included both intracranial bleeding or epilepsy, and (2) the onset of symptoms. The genotypes were correlated with the levels of several cytokines quantified in peripheral blood, measured using the x-MAP method. RESULTS We report a novel observation that the PTPN2rs72872125 CT and the VDRrs7975232 CC genotype were independently associated with an asymptomatic phenotype. Additionally, PTPN2rs72872125 CC genotype and serum level of GM-CSF could predict a diagnostic association with symptomatic phenotype in CCM patients, while the FCGR2Ars1801274 GG genotype could predict a symptomatic event during follow-up. The study also found a correlation between VDRrs731236 AA and VDRrs11568820 CC genotype to the time to the first symptomatic event. CONCLUSIONS These genetic markers could pave the way for precision medicine strategies for CCM, enhancing patient outcomes by enabling customized therapeutic approaches.
Collapse
Affiliation(s)
- Gustavo F Galvão
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Departamento de Neurocirurgia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 3938-2480, Brazil
| | - Luisa M Trefilio
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Laboratório de Neurofarmacogenetica, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Andreza L Salvio
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil
| | - Elielson V da Silva
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil
| | - Soniza V Alves-Leon
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Departamento de Neurologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 3938-2480, Brazil
| | - Fabrícia L Fontes-Dantas
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Laboratório de Neurofarmacogenetica, Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil.
| | - Jorge M de Souza
- Laboratório de Neurociências Translacional, Programa de Pós-Graduação em Neurologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-030, Brazil; Departamento de Neurocirurgia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 3938-2480, Brazil.
| |
Collapse
|
2
|
Hussein S, Bandarian F, Salehi N, Mosadegh Khah A, Motevaseli E, Azizi Z. The Effect of Vitamin D Deficiency on Immune-Related Hub Genes: A Network Analysis Associated With Type 1 Diabetes. Cureus 2024; 16:e68611. [PMID: 39371824 PMCID: PMC11452324 DOI: 10.7759/cureus.68611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Background Type 1 diabetes (T1D) is an autoimmune disorder that results in the destruction of pancreatic beta cells, causing a shortage of insulin secretion. The development of T1D is influenced by both genetic predisposition and environmental factors, such as vitamin D. This vitamin is known for its ability to regulate the immune system and has been associated with a decreased risk of T1D. However, the specific ways in which vitamin D affects immune regulation and the preservation of beta cells in T1D are not yet fully understood. Gaining a better understanding of these interactions is essential for identifying potential targets for preventing and treating T1D. Methods The analysis focused on two Gene Expression Omnibus (GEO) datasets, namely, GSE55098 and GSE50012, to detect differentially expressed genes (DEGs). Enrichr (Ma'ayan Laboratory, New York, NY) was used to perform enrichment analysis for the Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The Search Tool for the Retrieval of Interacting Genes 12.0 (STRING) database was used to generate a protein-protein interaction (PPI) network. The Cytoscape 3.10.1 (Cytoscape Team, San Diego, CA) was used to analyze the PPI network and discover the hub genes. Results The DEGs in both datasets were identified using the GEO2R tool, with a particular focus on genes exhibiting contrasting regulations. Enrichment analysis unveiled the participation of these oppositely regulated DEGs in processes relevant to the immune system. Cytoscape analysis of the PPI network revealed five hub genes, MNDA, LILRB2, FPR2, HCK, and FCGR2A, suggesting their potential role in the pathogenesis of T1D and the response to vitamin D. Conclusion The study elucidates the complex interaction between vitamin D metabolism and immune regulation in T1D. The identified hub genes provide important knowledge on the molecular pathways that underlie T1D and have the potential to be targeted for therapeutic intervention. This research underscores the importance of vitamin D in the immune system's modulation and its impact on T1D development.
Collapse
Affiliation(s)
- Safin Hussein
- Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IRN
- Biology, College of Science, University of Raparin, Ranya, IRQ
| | - Fatemeh Bandarian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, IRN
| | - Najmeh Salehi
- School of Biology, College of Science, University of Tehran, Tehran, IRN
| | | | - Elahe Motevaseli
- Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IRN
| | - Zahra Azizi
- Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IRN
| |
Collapse
|
3
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
4
|
Valei Lopes de Oliveira E, Tremeschin de Almeida Vieira F, de Souza Pinhel MA, Gripp AC, Marzocchi-Machado CM, Donadi EA, Roselino AM. Differential FCGR2A and FCGR3A Alleles/Genotypes in Pemphigus Vulgaris and Pemphigus Foliaceus in Southeastern Brazil. J Invest Dermatol 2024; 144:702-705.e1. [PMID: 37806444 DOI: 10.1016/j.jid.2023.09.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Ederson Valei Lopes de Oliveira
- University Hospital, Division of Dermatology, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes Ribeirão Preto, Brazil; Biology Molecular Laboratory, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, Brazil
| | - Flavia Tremeschin de Almeida Vieira
- Biology Molecular Laboratory, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, Brazil
| | - Marcela Augusta de Souza Pinhel
- Laboratory of Studies in Nutrigenomic, Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, Brazil
| | - Alexandre Carlos Gripp
- Dermatologia, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleni Mara Marzocchi-Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, Brazil
| | - Eduardo Antonio Donadi
- Biology Molecular Laboratory, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, Brazil; Division of Clinical Immunology, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, Brazil
| | - Ana Maria Roselino
- University Hospital, Division of Dermatology, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes Ribeirão Preto, Brazil; Biology Molecular Laboratory, Department of Medical Clinics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Saint-André V, Charbit B, Biton A, Rouilly V, Possémé C, Bertrand A, Rotival M, Bergstedt J, Patin E, Albert ML, Quintana-Murci L, Duffy D. Smoking changes adaptive immunity with persistent effects. Nature 2024; 626:827-835. [PMID: 38355791 PMCID: PMC10881394 DOI: 10.1038/s41586-023-06968-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/13/2023] [Indexed: 02/16/2024]
Abstract
Individuals differ widely in their immune responses, with age, sex and genetic factors having major roles in this inherent variability1-6. However, the variables that drive such differences in cytokine secretion-a crucial component of the host response to immune challenges-remain poorly defined. Here we investigated 136 variables and identified smoking, cytomegalovirus latent infection and body mass index as major contributors to variability in cytokine response, with effects of comparable magnitudes with age, sex and genetics. We find that smoking influences both innate and adaptive immune responses. Notably, its effect on innate responses is quickly lost after smoking cessation and is specifically associated with plasma levels of CEACAM6, whereas its effect on adaptive responses persists long after individuals quit smoking and is associated with epigenetic memory. This is supported by the association of the past smoking effect on cytokine responses with DNA methylation at specific signal trans-activators and regulators of metabolism. Our findings identify three novel variables associated with cytokine secretion variability and reveal roles for smoking in the short- and long-term regulation of immune responses. These results have potential clinical implications for the risk of developing infections, cancers or autoimmune diseases.
Collapse
Affiliation(s)
- Violaine Saint-André
- Translational Immunology Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, Paris, France.
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France.
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, Center for Translational Research, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anne Biton
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | | | - Céline Possémé
- Translational Immunology Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anthony Bertrand
- Translational Immunology Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, Paris, France
- Frontiers of Innovation in Research and Education PhD Program, LPI Doctoral School, Université Paris Cité, Paris, France
| | - Maxime Rotival
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Jacob Bergstedt
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | | | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Chair Human Genomics and Evolution, Collège de France, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, Paris, France.
- Cytometry and Biomarkers UTechS, Center for Translational Research, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
6
|
Kozak K, Pavlyshyn H, Kamyshnyi O, Shevchuk O, Korda M, Vari SG. The Relationship between COVID-19 Severity in Children and Immunoregulatory Gene Polymorphism. Viruses 2023; 15:2093. [PMID: 37896870 PMCID: PMC10612096 DOI: 10.3390/v15102093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Coronavirus disease (COVID-19) and its outcomes remain one of the most challenging problems today. COVID-19 in children could be asymptomatic, but can result in a fatal outcome; therefore, predictions of the disease severity are important. The goal was to investigate the human genetic factors that could be associated with COVID-19 severity in children. Single-nucleotide polymorphisms of the following genes were studied: ACE2 (rs2074192), IFNAR2 (rs2236757), TYK2 (rs2304256), OAS1 (rs10774671), OAS3 (rs10735079), CD40 (rs4813003), FCGR2A (rs1801274) and CASP3 (rs113420705). In the case-control study were 30 children with mild or moderate course of the disease; 30 with severe COVID-19 symptoms and multisystem inflammatory syndrome in children (MIS-C) and 15 who were healthy, and who did not have SARS-CoV-2 (PCR negative, Ig G negative). The study revealed that ACE2 rs2074192 (allele T), IFNAR2 rs2236757 (allele A), OAS1 rs10774671 (allele A), CD40 rs4813003 (allele C), CASP3 rs113420705 (allele C) and male sex contribute to severe COVID-19 course and MIS-C in 85.6% of cases. The World Health Organization reported that new SARS-CoV-2 variants may cause previously unseen symptoms in children. Although the study has limitations due to cohort size, the findings can help provide a better understanding of SARS-CoV-2 infection and proactive pediatric patient management.
Collapse
Affiliation(s)
- Kateryna Kozak
- Department of Pediatrics No. 2, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Halyna Pavlyshyn
- Department of Pediatrics No. 2, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Oksana Shevchuk
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Mykhaylo Korda
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars–Sinai Medical Center, Los Angeles, CA 90048, USA;
| |
Collapse
|
7
|
Sîrbe C, Badii M, Crişan TO, Bența G, Grama A, Joosten LAB, Rednic S, Pop TL. Detection of Novel Biomarkers in Pediatric Autoimmune Hepatitis by Proteomic Profiling. Int J Mol Sci 2023; 24:ijms24087479. [PMID: 37108648 PMCID: PMC10141667 DOI: 10.3390/ijms24087479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Autoimmune hepatitis (AIH) is characterized by immune-mediated hepatocyte injury resulting in the destruction of liver cells, causing inflammation, liver failure, and fibrosis. Pediatric (AIH) is an autoimmune inflammatory disease that usually requires immunosuppression for an extended period. Frequent relapses after treatment discontinuation demonstrate that current therapies do not control intrahepatic immune processes. This study describes targeted proteomic profiling data in patients with AIH and controls. A total of 92 inflammatory and 92 cardiometabolic plasma markers were assessed for (i) pediatric AIH versus controls, (ii) AIH type 1 versus type 2, (iii) AIH and AIH-autoimmune sclerosing cholangitis overlapping syndrome and (iv) correlations with circulating vitamin D levels in AIH. A total of 16 proteins showed a nominally significant differential abundance in pediatric patients with AIH compared to controls. No clustering of AIH subphenotypes based on all protein data was observed, and no significant correlation of vitamin D levels was observed for the identified proteins. The proteins that showed variable expression include CA1, CA3, GAS6, FCGR2A, 4E-BP1 and CCL19, which may serve as potential biomarkers for patients with AIH. CX3CL1, CXCL10, CCL23, CSF1 and CCL19 showed homology to one another and may be coexpressed in AIH. CXCL10 seems to be the central intermediary link for the listed proteins. These proteins were involved in relevant mechanistic pathways for liver diseases and immune processes in AIH pathogenesis. This is the first report on the proteomic profile of pediatric AIH. The identified markers could potentially lead to new diagnostic and therapeutic tools. Nevertheless, considering the complex pathogenesis of AIH, more extensive studies are warranted to replicate and validate the present study's findings.
Collapse
Affiliation(s)
- Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Medeea Badii
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud University Medical Centre, 6525 XZ Nijmegen, The Netherlands
| | - Tania O Crişan
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud University Medical Centre, 6525 XZ Nijmegen, The Netherlands
| | - Gabriel Bența
- 2nd Pediatric Discipline, Department of Mother and Child, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Centre, 6525 XZ Nijmegen, The Netherlands
| | - Simona Rednic
- Rheumatology Department, Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania
- Rheumatology Discipline, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Fu T, Zhang L, Zuo M, Li F, Shi C, Chen H. FCGR2A as one novel potential target for poor survival prognosis of clear cell renal cell carcinoma. Medicine (Baltimore) 2023; 102:e33324. [PMID: 36930102 PMCID: PMC10019103 DOI: 10.1097/md.0000000000033324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma. Immunoglobulin FcγRIIa receptor (FCGR2A) has been implicated in various cancers, however, its role on ccRCC is not well studied. A total of 151 patients with ccRCC were recruited for the study. Cox proportional hazards regression analysis was performed to calculate the hazard radios of FCGR2A expression and tumor characteristics. Pathological changes associated with ccRCC in tumor tissue sections were analyzed by hematoxylin-eosin staining. Immunohistochemical and immunofluorescence staining were used to detect the protein expression of FCGR2A in the tissue sections. Correlation between the expression of FCGR2A and the overall survival (OS) of ccRCC patients was analyzed by biological process neural network and support vector machine. The expression of FCGR2A was significantly correlated with the TNM of tumor, family history of ccRCC and Fuhrman stage of ccRCC. Patients with high FCGR2A expression in the tumor tissue, had poorer OS than the patients with low and moderate FCGR2A expression. The Receiver operating characteristic curve showed that FCGR2A can be used as a sensitive and specific biomarker for the diagnosis of ccRCC. Western blotting revealed that the FCGR2A was expressed at higher levels in the ccRCC tissues. Biological process neural network and support vector machine fitting showed that the R2 between FCGR2A and survival time of ccRCC patients was 0.8429 and 0.7669, respectively. FCGR2A is highly expressed in ccRCC, higher expression of FCGR2A is associated with poorer OS of ccRCC.
Collapse
Affiliation(s)
- Taozhu Fu
- Department of Urology, China Aerospace Science & Industry Corporation 731 Hospital, Feng Tai District, Beijing, China
| | - Lianfeng Zhang
- Department of Urology, China Aerospace Science & Industry Corporation 731 Hospital, Feng Tai District, Beijing, China
| | - Meini Zuo
- Department of Urology, China Aerospace Science & Industry Corporation 731 Hospital, Feng Tai District, Beijing, China
| | - Feng Li
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Changjin Shi
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Hongrun Chen
- Department of Urology, China Aerospace Science & Industry Corporation 731 Hospital, Feng Tai District, Beijing, China
| |
Collapse
|
9
|
Association of Cytokine Gene Polymorphisms with Prostate Cancer Risk from a Study in Central China. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1259009. [PMID: 36034203 PMCID: PMC9392598 DOI: 10.1155/2022/1259009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Our study intended to investigate five cytokine gene single nucleotide polymorphisms (SNPs) and their associations with prostate cancer risk. Genotypes of five cytokine gene SNPs were detected by MassARRAY for blood samples from a group of patients with prostate cancer (n = 90) and a control group (n = 140) in central China. The differences in tumor clinical stages, Gleason scores, and PSA values in patients with prostate cancer were also investigated. The frequencies of the five cytokine gene SNPs (L-1β rs16944, IL-4 rs2070874, IL-4rs2227284, IL-16 rs7175701, and IL-16 rs11556218) genotypes were not found to be significantly mutated in prostate cancer patients compared with the control group. In addition, for five cytokine gene SNPs genotypic comparisons, patients with different Gleason scores, clinical stages, and PSA values were grouped into two subgroups. There was also no statistically significant association in all these subgroups. Our study suggests that cytokine gene polymorphisms may not be a risk factor for prostate cancer in a central Chinese population. Nevertheless, more large-scale studies on the Chinese population are necessary to examine our conclusions. The discovery of cytokine gene polymorphisms related to prostate cancer could update our understanding of the etiology and improve our knowledge of the early detection, diagnosis, and treatment of prostate cancer.
Collapse
|
10
|
Bugaj B, Wielińska J, Bogunia-Kubik K, Świerkot J. Searching for New Genetic Biomarkers of Axial Spondyloarthritis. J Clin Med 2022; 11:jcm11102912. [PMID: 35629038 PMCID: PMC9148009 DOI: 10.3390/jcm11102912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Axial spondyloarthritis (axSpA) is a chronic inflammatory condition of the spine. In addition to musculoskeletal symptoms, there are also extra-articular manifestations. The aim of this study was to search for new biomarkers associated with the clinical presentation and treatment response in axSpA patients. Methods: In this study, 106 axSpA patients and 110 healthy controls were enrolled. Six single-nucleotide polymorphisms (SNPs) were selected for genotyping: ERAP1 rs2287987, ERAP2 rs2549782, TNF rs1800629, TNFRSF1A rs767455, TNFRSF1B rs1061622, and FCGR2A rs1801274. Participants were examined at baseline and after 12 and 24 weeks of anti-TNF therapy. Results: SNPs associated with high axSpA initial activity were TNFRSF1A rs767455 and TNFRSF1B rs1061622 (p < 0.008). The ERAP1 rs2287987 AA genotype was more frequently observed in patients with enthesitis (AA vs. G+, p = 0.049), while the TNFRSF1B rs1061622 GG genotype was more common in participants with uveitis (GG vs. TT, p = 0.042). Potential in predicting anti-TNF treatment response was demonstrated by ERAP1 rs2287987, ERAP2 rs2549782, TNFRSF1B rs1061622, and FCGR2A rs1801274. Conclusions: SNPs can be used to identify patients at risk of severe disease to initiate treatment earlier. Genetic testing will allow clinicians to choose the right drug for the patient.
Collapse
Affiliation(s)
- Bartosz Bugaj
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Correspondence:
| | - Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (J.W.); (K.B.-K.)
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (J.W.); (K.B.-K.)
| | - Jerzy Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
11
|
Hubbard JJ, Pyzik M, Rath T, Kozicky LK, Sand KMK, Gandhi AK, Grevys A, Foss S, Menzies SC, Glickman JN, Fiebiger E, Roopenian DC, Sandlie I, Andersen JT, Sly LM, Baker K, Blumberg RS. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex-driven autoimmunity. J Exp Med 2021; 217:151942. [PMID: 32658257 PMCID: PMC7537387 DOI: 10.1084/jem.20200359] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
IgG immune complexes (ICs) promote autoimmunity through binding fragment crystallizable (Fc) γ-receptors (FcγRs). Of these, the highly prevalent FcγRIIa (CD32a) histidine (H)-131 variant (CD32aH) is strongly linked to human autoimmune diseases through unclear mechanisms. We show that, relative to the CD32a arginine (R)-131 (CD32aR) variant, CD32aH more avidly bound human (h) IgG1 IC and formed a ternary complex with the neonatal Fc receptor (FcRn) under acidic conditions. In primary human and mouse cells, both CD32a variants required FcRn to induce innate and adaptive immune responses to hIgG1 ICs, which were augmented in the setting of CD32aH. Conversely, FcRn induced responses to IgG IC independently of classical FcγR, but optimal responses required FcRn and FcγR. Finally, FcRn blockade decreased inflammation in a rheumatoid arthritis model without reducing circulating autoantibody levels, providing support for FcRn’s direct role in IgG IC-associated inflammation. Thus, CD32a and FcRn coregulate IgG IC-mediated immunity in a manner favoring the CD32aH variant, providing a novel mechanism for its disease association.
Collapse
Affiliation(s)
- Jonathan J Hubbard
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michal Pyzik
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Timo Rath
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lisa K Kozicky
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kine M K Sand
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Amit K Gandhi
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Algirdas Grevys
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stian Foss
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Susan C Menzies
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Edda Fiebiger
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Inger Sandlie
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Department of Immunology, Centre for Immune Regulation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristi Baker
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Harvard Digestive Diseases Center, Boston, MA
| |
Collapse
|
12
|
Makaro A, Fichna J, Włodarczyk M. Single Nucleotide Polymorphisms in Colitis-Associated Colorectal Cancer: A Current Overview with Emphasis on the Role of the Associated Genes Products. Curr Drug Targets 2020; 21:1456-1462. [PMID: 32718287 DOI: 10.2174/1389450121666200727105218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
Colitis-Associated Colorectal Cancer (CA-CRC) is one of the most severe complications of Inflammatory Bowel Disease (IBD) and constitutes the cause of death in 10-15% of patients. The risk ratio for carcinogenesis depends on numerous factors, such as the extent of intestinal inflammatory lesions and the duration of the disease. CA-CRC is a major problem of today's gastroenterology and colorectal surgery due to the fact that the incidence and prevalence of IBD are increasing. In this review, we discussed the current state of knowledge regarding genetic differences between sporadic CRC and CA-CRC, especially pertaining to the chromosomal instability mechanism (CIN). In order to explain CA-CRC molecular basis, we have analyzed the data from studies regarding the correlations between CA-CRC and the presence of Single Nucleotide Polymorphisms (SNPs). Further focus on the role of associated proteins has emphasized the role of NF-κB signaling as the main link between inflammation and carcinogenesis during the course of IBD.
Collapse
Affiliation(s)
- Adam Makaro
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Marcin Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland,Department of General and Colorectal Surgery, Medical University of Lodz, Haller Square 1, 90-624 Lodz, Poland
| |
Collapse
|
13
|
Xu Y, Wei H, Zou J, Ma Y. Association of FcγRIIA‐R/H131 polymorphism and systemic lupus erythematosus lupus nephritis risk: A meta‐analysis. Int J Rheum Dis 2020; 23:853-867. [DOI: 10.1111/1756-185x.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/04/2020] [Accepted: 02/08/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Yuan Xu
- School of Basic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Hui‐Ting Wei
- School of Basic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jun‐Ju Zou
- School of Basic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yue‐Rong Ma
- School of Basic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
14
|
Wang Z, Geng PL. CD32a polymorphism rs1801274 affects the risk of Kawasaki disease. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:620-626. [PMID: 32072832 DOI: 10.1080/21691401.2019.1645156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aim: To analyze the impact of CD32a polymorphism rs1801274 on the occurrence of Kawasaki disease (KD) through the meta-analysis.Methods: The correlation between CD32a polymorphism rs1801274 and the susceptibility to KD was appraised using summarized odds ratios (ORs) with their 95% confidence intervals (95% CIs). Besides, stratification analyses were further implemented on the basis of ethnicity and control source, respectively. Between-study heterogeneity was checked adopting chi-square-based Q test, with p < .05 as significant level. And results from Q test determined which model would be employed for OR calculation, fixed- or random-effects. Sensitivity analysis was accomplished to test the stability of final results. Potential publication bias among included studies was investigated using Begg's funnel plot and Egger's test. If publication bias was significant, its influence on overall estimates would be measured adopting the trim-and-fill method.Results: CD32a polymorphism rs1801274 significantly increased KD risk in total analysis under the comparisons of AA vs. GG, AA + AG vs. GG, AA vs. GG + AG, A vs. G and AG vs. GG (OR = 2.69, 95% CI = 1.39-5.20; OR = 2.00, 95% CI = 1.23-3.26; OR = 1.90, 95% CI = 1.23-2.94; OR = 1.77, 95% CI = 1.34-2.34; OR = 1.53, 95% CI = 1.07-2.19). After stratification analysis by ethnicity, similar tendency was also observed in Caucasian and Asian subgroups under corresponding genetic models. And parallel results were replicated in population-based and other-source subgroups after stratified analysis by control source, under some contrasts.Conclusion: CD32a polymorphism rs1801274 has strong relation to KD onset, and the presence of its A allele could elevate the disease incidence.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Pediatrics, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Pei-Liang Geng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Paul P, Pedini P, Lyonnet L, Di Cristofaro J, Loundou A, Pelardy M, Basire A, Dignat-George F, Chiaroni J, Thomas P, Reynaud-Gaubert M, Picard C. FCGR3A and FCGR2A Genotypes Differentially Impact Allograft Rejection and Patients' Survival After Lung Transplant. Front Immunol 2019; 10:1208. [PMID: 31249568 PMCID: PMC6582937 DOI: 10.3389/fimmu.2019.01208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Fc gamma receptors (FcγRs) play a major role in the regulation of humoral immune responses. Single-nucleotide polymorphisms (SNPs) of FCGR2A and FCGR3A can impact the expression level, IgG affinity and function of the CD32 and CD16 FcγRs in response to their engagement by the Fc fragment of IgG. The CD16 isoform encoded by FCGR3A [158V/V] controls the intensity of antibody-dependent cytotoxic alloimmune responses of natural killer cells (NK) and has been identified as a susceptibility marker predisposing patients to cardiac allograft vasculopathy after heart transplant. This study aimed to investigate whether FCGR2A and FCGR3A polymorphisms can also be associated with the clinical outcome of lung transplant recipients (LTRs). The SNPs of FCGR2A ([131R/H], rs1801274) and FCGR3A ([158V/F], rs396991) were identified in 158 LTRs and 184 Controls (CTL). The corresponding distribution of genotypic and allelic combinations was analyzed for potential links with the development of circulating donor-specific anti-HLA alloantibodies (DSA) detected at months 1 and 3 after lung transplant (LTx), the occurrence of acute rejection (AR) and chronic lung allograft dysfunction (CLAD), and the overall survival of LTRs. The FCGR3A [158V/V] genotype was identified as an independent susceptibility factor associated with higher rates of AR during the first trimester after LTx (HR 4.8, p < 0.0001, 95% CI 2.37-9.61), but it could not be associated with the level of CD16- mediated NK cell activation in response to the LTR's DSA, whatever the MFI intensity and C1q binding profiles of the DSA evaluated. The FCGR2A [131R/R] genotype was associated with lower CLAD-free survival of LTRs, independently of the presence of DSA at 3 months (HR 1.8, p = 0.024, 95% CI 1.08-3.03). Our data indicate that FCGR SNPs differentially affect the clinical outcome of LTRs and may be of use to stratify patients at higher risk of experiencing graft rejection. Furthermore, these data suggest that in the LTx setting, specific mechanisms of humoral alloreactivity, which cannot be solely explained by the complement and CD16-mediated pathogenic effects of DSA, may be involved in the development of acute and chronic lung allograft rejection.
Collapse
Affiliation(s)
- Pascale Paul
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France.,INSERM 1263, INRA, C2VN, Aix-Marseille Université (AMU), INSERM, Marseille, France
| | - Pascal Pedini
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Luc Lyonnet
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France
| | - Julie Di Cristofaro
- "Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| | - Anderson Loundou
- Département de santé Publique - EA 3279, Assistance Publique-Hôpitaux Marseille (AP-HM), Aix-Marseille Université, Marseille, France
| | - Mathieu Pelardy
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Agnes Basire
- Établissement Français du Sang PACA-Corse 13005, Marseille, France
| | - Françoise Dignat-George
- Department of Hematology, Hopital de la Conception, INSERM CIC-1409, Assistance Publique-Hôpitaux Marseille (AP-HM), Marseille, France.,INSERM 1263, INRA, C2VN, Aix-Marseille Université (AMU), INSERM, Marseille, France
| | - Jacques Chiaroni
- Établissement Français du Sang PACA-Corse 13005, Marseille, France.,"Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| | - Pascal Thomas
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, CHU Nord Assistance Publique-Hôpitaux Marseille (AP-HM), Aix-Marseille Université, Marseille, France
| | - Martine Reynaud-Gaubert
- Service de Pneumologie et Transplantation Pulmonaire, CHU Nord Assistance Publique-Hôpitaux Marseille (AP-HM) - IHU Méditerranée Infection Aix-Marseille-Université, Marseille, France
| | - Christophe Picard
- Établissement Français du Sang PACA-Corse 13005, Marseille, France.,"Biologie des Groupes Sanguins", UMR 7268 ADÉS Aix-Marseille Université/EFS/CNRS, Marseille, France
| |
Collapse
|
16
|
p27-V109G Polymorphism Is Not Associated with the Risk of Prostate Cancer: A Case-Control Study of Han Chinese Men in Central China. DISEASE MARKERS 2018; 2018:1418609. [PMID: 29750086 PMCID: PMC5884233 DOI: 10.1155/2018/1418609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/28/2018] [Indexed: 12/16/2022]
Abstract
Objective We conducted an update meta-analysis aiming to verify the association between p27-V109G polymorphism and cancer risk, particular for prostate cancer (PCa). Then, we conducted a case-control study of Han Chinese in central China to verify the evidence-based results. Methods Relevant studies were collected from diverse databases up to March 2017. In addition, a hospital-based (H-B) case-control study enrolling 90 PCa patients and 140 healthy controls was included to verify these evidence-based findings. Genetic risk was calculated by odds ratio (OR) with its corresponding 95% confidence interval (CI). The p27-V109G polymorphism was determined by MassARRAY genotyping method. Results Finally, twenty-four published studies comprising 9627 cases and 12,102 controls were enrolled for the current meta-analysis. Overall analysis suggested that p27-V109G polymorphism decreased overall cancer risk in allelic contrast, heterozygote, and dominant models. When stratified analysis was conducted by ethnicity, data revealed that p27-V109G polymorphism was associated with a decreased cancer risk in Caucasians. Highlighted in the subgroup analysis by cancer type, we uncovered a significantly decreased risk of PCa in allelic contrast, dominant, homogeneous, and recessive models. However, in the validation case-control study, we failed to uncover a positive association between p27-V109G polymorphism and PCa risk. In addition, negative results were also identified when subgroup analyses were stratified by age, tumor grade, tumor stage, PSA levels, and other measurements. Conclusion Although evidence-based results suggest that p27-V109G polymorphism plays a protective role in overall cancer risk, particularly for PCa, our case-control study failed to validate any association between this particular polymorphism and PCa risk.
Collapse
|
17
|
Veenhuis RT, Freeman ZT, Korleski J, Cohen LK, Massaccesi G, Tomasi A, Boesch AW, Ackerman ME, Margolick JB, Blankson JN, Chattergoon MA, Cox AL. HIV-antibody complexes enhance production of type I interferon by plasmacytoid dendritic cells. J Clin Invest 2017; 127:4352-4364. [PMID: 29083319 DOI: 10.1172/jci95375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/21/2017] [Indexed: 01/16/2023] Open
Abstract
Type I IFN production is essential for innate control of acute viral infection; however, prolonged high-level IFN production is associated with chronic immune activation in HIV-infected individuals. Although plasmacytoid DCs (pDCs) are a primary source of IFN, the mechanisms that regulate IFN levels following the acute phase are unknown. We hypothesized that HIV-specific Ab responses regulate late IFN production. We evaluated the mechanism through which HIV-activated pDCs produce IFN as well as how both monoclonal HIV-specific Abs and Abs produced in natural HIV infection modulated normal pDC sensing of HIV. We found that HIV-induced IFN production required TLR7 signaling, receptor-mediated entry, fusion, and viral uncoating, but not endocytosis or HIV life cycle stages after uncoating. Abs directed against the HIV envelope that do not interfere with CD4 binding markedly enhanced the IFN response, irrespective of their ability to neutralize CD4+ T cell infection. Ab-mediated enhancement of IFN production required Fc γ receptor engagement, bypassed fusion, and initiated signaling through both TLR7 and TLR9, which was not utilized in the absence of Ab. Polyclonal Abs isolated from HIV-infected subjects also enhanced pDC production of IFN in response to HIV. Our data provide an explanation for high levels of IFN production and immune activation in chronic HIV infection.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zachary T Freeman
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jack Korleski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura K Cohen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alessandra Tomasi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Joseph B Margolick
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joel N Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Chattergoon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Peng LL, Wang Y, Zhu FL, Xu WD, Ji XL, Ni J. IL-23R mutation is associated with ulcerative colitis: A systemic review and meta-analysis. Oncotarget 2017; 8:4849-4863. [PMID: 27902482 PMCID: PMC5354875 DOI: 10.18632/oncotarget.13607] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/12/2016] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Since a genome-wide association study revealed that Interleukin-23 receptor (IL-23R) gene is a candidate gene for Ulcerative Colitis (UC), many studies have investigated the association between the IL-23R polymorphisms and UC. However, the results were controversial. The aim of the study was to determine whether the IL-23R polymorphisms confer susceptibility to UC. METHODS A systematic literature search was carried out to identify all potentially relevant studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to estimate the strength of association. RESULTS A total of 33 studies in 32 articles, including 10,527 UC cases and 15,142 healthy controls, were finally involved in the meta-analysis. Overall, a significant association was found between all UC cases and the rs11209026A allele (OR = 0.665, 95% CI = 0.604~0.733, P < 0.001). Similarly, meta-analyses of the rs7517847, rs1004819, rs10889677, rs2201841, rs11209032, rs1495965, rs1343151 and rs11465804 polymorphisms also indicated significant association with all UC (all P < 0.05). Stratification by ethnicity revealed that the rs11209026, rs7517847, rs10889677, rs2201841 andrs11465804 polymorphisms were associated with UC in the Caucasian group, but not in Asians, while the rs1004819 and rs11209032 polymorphisms were found to be related to UC for both Caucasian and Asian groups. However, subgroup analysis failed to unveil any association between the rs1495965 and rs1343151 polymorphisms and UC in Caucasians or Asians. CONCLUSIONS The meta-analysis suggests significant association between IL-23R polymorphisms and UC, especially in Caucasians.
Collapse
Affiliation(s)
- Ling-Long Peng
- Department of Science and Education, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Ying Wang
- Department of Environmental Health, Suzhou Municipal Center for Disease Prevention and Control, Suzhou, Jiangsu 215004, China
| | - Feng-Ling Zhu
- Department of Science and Education, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Wang-Dong Xu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xue-Lei Ji
- Department of Science and Education, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Jing Ni
- The Teaching Centre for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|