1
|
Vercellino RB, Hernández F, Pandolfo C, Ureta S, Presotto A. Agricultural weeds: the contribution of domesticated species to the origin and evolution of feral weeds. PEST MANAGEMENT SCIENCE 2023; 79:922-934. [PMID: 36507604 DOI: 10.1002/ps.7321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Agricultural weeds descended from domesticated ancestors, directly from crops (endoferality) and/or from crop-wild hybridization (exoferality), may have evolutionary advantages by rapidly acquiring traits pre-adapted to agricultural habitats. Understanding the role of crops on the origin and evolution of agricultural weeds is essential to develop more effective weed management programs, minimize crop losses due to weeds, and accurately assess the risks of cultivated genes escaping. In this review, we first describe relevant traits of weediness: shattering, seed dormancy, branching, early flowering and rapid growth, and their role in the feralization process. Furthermore, we discuss how the design of "super-crops" can affect weed evolution. We then searched for literature documenting cases of agricultural weeds descended from well-domesticated crops, and describe six case studies of feral weeds evolved from major crops: maize, radish, rapeseed, rice, sorghum, and sunflower. Further studies on the origin and evolution of feral weeds can improve our understanding of the physiological and genetic mechanisms underpinning the adaptation to agricultural habitats and may help to develop more effective weed-control practices and breeding better crops. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Román B Vercellino
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Fernando Hernández
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Claudio Pandolfo
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Soledad Ureta
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Alejandro Presotto
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Raybould A. Hypothesis-Led Ecological Risk Assessment of GM Crops to Support Decision-Making About Product Use. GMOS 2020. [DOI: 10.1007/978-3-030-53183-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Harth JE, Ferrari MJ, Helms AM, Tooker JF, Stephenson AG. Zucchini Yellow Mosaic Virus Infection Limits Establishment and Severity of Powdery Mildew in Wild Populations of Cucurbita pepo. FRONTIERS IN PLANT SCIENCE 2018; 9:792. [PMID: 29951077 PMCID: PMC6008421 DOI: 10.3389/fpls.2018.00792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/24/2018] [Indexed: 06/01/2023]
Abstract
Few studies have examined the combined effect of multiple parasites on host fitness. Previous work in the Cucurbita pepo pathosystem indicates that infection with Zucchini yellow mosaic virus (ZYMV) reduces exposure to a second insect-vectored parasite (Erwinia tracheiphila). In this study, we performed two large-scale field experiments employing wild gourds (Cucurbita pepo ssp. texana), including plants with a highly introgressed transgene conferring resistance to ZYMV, to examine the interaction of ZYMV and powdery mildew, a common fungal disease. We found that ZYMV-infected plants are more resistant to powdery mildew (i.e., less likely to experience powdery mildew infection and when infected with powdery mildew, have reduced severity of powdery mildew symptoms). As a consequence, during widespread viral epidemics, proportionally more transgenic plants get powdery mildew than non-transgenic plants, potentially mitigating the benefits of the transgene. A greenhouse study using ZYMV-inoculated and non-inoculated controls (non-transgenic plants) revealed that ZYMV-infected plants were more resistant to powdery mildew than controls, suggesting that the transgene itself had no direct effect on the powdery mildew resistance in our field study. Additionally, we found evidence of elevated levels of salicylic acid, a phytohormone that mediates anti-pathogen defenses, in ZYMV-infected plants, suggesting that viral infection induces a plant immune response (systemic acquired resistance), thereby reducing plant susceptibility to powdery mildew infection.
Collapse
Affiliation(s)
- Jacquelyn E. Harth
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Matthew J. Ferrari
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| | - Anjel M. Helms
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
4
|
Harth JE, Winsor JA, Weakland DR, Nowak KJ, Ferrari MJ, Stephenson AG. Effects of virus infection on pollen production and pollen performance: Implications for the spread of resistance alleles. AMERICAN JOURNAL OF BOTANY 2016; 103:577-83. [PMID: 26905087 DOI: 10.3732/ajb.1500165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/20/2015] [Indexed: 05/12/2023]
Abstract
PREMISE OF STUDY Studies over the past 25 years have shown that environmental stresses adversely affect male function, including pollen production and pollen performance (germination and pollen tube growth rate). Consequently, genetic variation among plants in resistance to a stress has the potential to impact pollen donation to conspecifics and, if deposited onto a stigma, the ability of the pollen to achieve fertilization. We examined the effects of a nonlethal virus epidemic on pollen production and pollen performance in a population of susceptible and resistant (transgenic) wild squash (Cucurbita pepo subsp. texana). METHODS We grew 135 susceptible and 45 virus-resistant wild squash plants in each of two 0.4-ha fields, initiated a zucchini yellow mosaic virus (ZYMV) epidemic, and recorded staminate and pistillate flower production per plant over the field season and the total number of mature fruit. We also assessed pollen production per flower on ZYMV-infected and non-infected plants and the ability of pollen from flowers on infected and non-infected plants to achieve fertilization under competitive conditions. KEY RESULTS ZYMV infection reduced flower and fruit production per plant and pollen production per flower. Pollen from infected plants was also less likely to sire a seed under competitive conditions. CONCLUSIONS ZYMV infection adversely impacts the amount of pollen that can be donated to conspecifics, and pollen competition within the styles increases the probability that the ovules are fertilized by pollen from plants that are thriving when challenged by a viral disease.
Collapse
Affiliation(s)
- Jacquelyn E Harth
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - James A Winsor
- Department of Biology, Pennsylvania State University, Altoona, Pennsylvania 16601 USA
| | - Danelle R Weakland
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Kayla J Nowak
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Matthew J Ferrari
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Andrew G Stephenson
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 USA
| |
Collapse
|
5
|
Cruz-Reyes R, Ávila-Sakar G, Sánchez-Montoya G, Quesada M. Experimental assessment of gene flow between transgenic squash and a wild relative in the center of origin of cucurbits. Ecosphere 2015. [DOI: 10.1890/es15-00304.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Simmons HE, Prendeville HR, Dunham JP, Ferrari MJ, Earnest JD, Pilson D, Munkvold GP, Holmes EC, Stephenson AG. Transgenic Virus Resistance in Crop-Wild Cucurbita pepo Does Not Prevent Vertical Transmission of Zucchini yellow mosaic virus. PLANT DISEASE 2015; 99:1616-1621. [PMID: 30695961 DOI: 10.1094/pdis-10-14-1062-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) is an economically important pathogen of cucurbits that is transmitted both horizontally and vertically. Although ZYMV is seed-transmitted in Cucurbita pepo, the potential for seed transmission in virus-resistant transgenic cultivars is not known. We crossed and backcrossed a transgenic squash cultivar with wild C. pepo, and determined whether seed-to-seedling transmission of ZYMV was possible in seeds harvested from transgenic backcrossed C. pepo. We then compared these transmission rates to those of non-transgenic (backcrossed and wild) C. pepo. The overall seed-to-seedling transmission rate in ZYMV was similar to those found in previous studies (1.37%), with no significant difference between transgenic backcrossed (2.48%) and non-transgenic (1.03%) backcrossed and wild squash. Fewer transgenic backcrossed plants had symptom development (7%) in comparison with all non-transgenic plants (26%) and may be instrumental in preventing yield reduction due to ZYMV. Our study shows that ZYMV is seed transmitted in transgenic backcrossed squash, which may affect the spread of ZYMV via the movement of ZYMV-infected seeds. Deep genome sequencing of the seed-transmitted viral populations revealed that 23% of the variants found in this study were present in other vertically transmitted ZYMV populations, suggesting that these variants may be necessary for seed transmission or are distributed geographically via seeds.
Collapse
Affiliation(s)
- H E Simmons
- Seed Science Center, Iowa State University, Ames, IA 50011; and Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - H R Prendeville
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588; and Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - J P Dunham
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90033
| | - M J Ferrari
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - J D Earnest
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - D Pilson
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588
| | - G P Munkvold
- Seed Science Center, Iowa State University, Ames, IA 50011
| | - E C Holmes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802; and Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Medical School, The University of Sydney, NSW 2006, Australia
| | - A G Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
7
|
Guan ZJ, Zhang PF, Wei W, Mi XC, Kang DM, Liu B. Performance of hybrid progeny formed between genetically modified herbicide-tolerant soybean and its wild ancestor. AOB PLANTS 2015; 7:plv121. [PMID: 26507568 PMCID: PMC4670487 DOI: 10.1093/aobpla/plv121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/11/2015] [Indexed: 05/25/2023]
Abstract
Gene flow from genetically modified (GM) crops to wild relatives might affect the evolutionary dynamics of weedy populations and result in the persistence of escaped genes. To examine the effects of this gene flow, the growth of F1 hybrids that were formed by pollinating wild soybean (Glycine soja) with glyphosate-tolerant GM soybean (G. max) or its non-GM counterpart was examined in a greenhouse. The wild soybean was collected from two geographical populations in China. The performance of the wild soybean and the F2 hybrids was further explored in a field trial. Performance was measured by several vegetative and reproductive growth parameters, including the vegetative growth period, pod number, seed number, above-ground biomass and 100-seed weight. The pod setting percentage was very low in the hybrid plants. Genetically modified hybrid F1 plants had a significantly longer period of vegetative growth, higher biomass and lower 100-seed weight than the non-GM ones. The 100-seed weight of both F1 and F2 hybrids was significantly higher than that of wild soybean in both the greenhouse and the field trial. No difference in plant growth was found between GM and non-GM F2 hybrids in the field trial. The herbicide-resistant gene appeared not to adversely affect the growth of introgressed wild soybeans, suggesting that the escaped transgene could persist in nature in the absence of herbicide use.
Collapse
Affiliation(s)
- Zheng-Jun Guan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China Department of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, China
| | - Peng-Fei Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiang-Cheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ding-Ming Kang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, Jiangsu 210042, China
| |
Collapse
|
8
|
Liu Y, Zhang YX, Song SQ, Li J, Neal Stewart C, Wei W, Zhao Y, Wang WQ. A proteomic analysis of seeds from Bt-transgenic Brassica napus and hybrids with wild B. juncea. Sci Rep 2015; 5:15480. [PMID: 26486652 PMCID: PMC4614387 DOI: 10.1038/srep15480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Transgene insertions might have unintended side effects on the transgenic host, both crop and hybrids with wild relatives that harbor transgenes. We employed proteomic approaches to assess protein abundance changes in seeds from Bt-transgenic oilseed rape (Brassica napus) and its hybrids with wild mustard (B. juncea). A total of 24, 15 and 34 protein spots matching to 23, 13 and 31 unique genes were identified that changed at least 1.5 fold (p < 0.05, Student’s t-test) in abundance between transgenic (tBN) and non-transgenic (BN) oilseed rape, between hybrids of B. juncea (BJ) × tBN (BJtBN) and BJ × BN (BJBN) and between BJBN and BJ, respectively. Eight proteins had higher abundance in tBN than in BN. None of these proteins was toxic or nutritionally harmful to human health, which is not surprising since the seeds are not known to produce toxic proteins. Protein spots varying in abundance between BJtBN and BJBN seeds were the same or homologous to those in the respective parents. None of the differentially-accumulated proteins between BJtBN and BJBN were identical to those between tBN and BN. Results indicated that unintended effects resulted from transgene flow fell within the range of natural variability of hybridization and those found in the native host proteomes.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Ying-Xue Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA
| | - Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yujie Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
9
|
Liu YB, Darmency H, Stewart CN, Wei W, Tang ZX, Ma KP. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea. Transgenic Res 2014; 24:537-47. [PMID: 25487040 DOI: 10.1007/s11248-014-9858-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
This study aims to investigate the relative plant growth and reproduction of insect-resistant and susceptible plants following the introgression of an insect-resistance Bt-transgene from Brassica napus, oilseed rape, to wild Brassica juncea. The second backcrossed generation (BC2) from a single backcross family was grown in pure and mixed stands of Bt-transgenic and non-transgenic siblings under two insect treatments. Various proportions of Bt-transgenic plants were employed in mixed stands to study the interaction between resistant and susceptible plants. In the pure stands, Bt-transgenic BC2 plants performed better than non-transgenic plants with or without insect treatments. In mixed stands, Bt-transgenic BC2 plants produced fewer seeds than their non-Bt counterparts at low proportions of Bt-transgenic BC2 plants in the absence of insects. Reproductive allocation of non-transgenic plants marginally increased with increasing proportions of Bt-transgenic plants under herbivore pressure, which resulted in increased total biomass and seed production per stand. The results showed that the growth of non-transgenic plants was protected by Bt-transgenic plants under herbivore pressure. The Bt-transgene might not be advantageous in mixed stands of backcrossed hybrids; thus transgene introgression would not be facilitated when herbivorous insects are not present. However, a relatively large initial population of Bt-transgenic plants might result in transgene persistence when target herbivores are present.
Collapse
Affiliation(s)
- Yong-Bo Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Beijing, 100093, China
| | | | | | | | | | | |
Collapse
|
10
|
Mercer KL, Emry DJ, Snow AA, Kost MA, Pace BA, Alexander HM. Fitness of crop-wild hybrid sunflower under competitive conditions: implications for crop-to-wild introgression. PLoS One 2014; 9:e109001. [PMID: 25295859 PMCID: PMC4189920 DOI: 10.1371/journal.pone.0109001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/18/2014] [Indexed: 11/20/2022] Open
Abstract
Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus) by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids) under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking a full life cycle perspective. Additionally, due to effects of exogenous selection, a given hybrid generation may be especially well-suited to hastening introgression under particular environmental conditions.
Collapse
Affiliation(s)
- Kristin L. Mercer
- Ohio State University, Department of Horticulture and Crop Science, Columbus, Ohio, United States of America
- * E-mail:
| | - D. Jason Emry
- University of Kansas, Department of Ecology and Evolutionary Biology, Lawrence, Kansas, United States of America
- Washburn University, Topeka, Kansas, United States of America
| | - Allison A. Snow
- Ohio State University, Department of Evolution, Ecology, and Organismal Biology, Columbus, Ohio, United States of America
| | - Matthew A. Kost
- Ohio State University, Department of Horticulture and Crop Science, Columbus, Ohio, United States of America
| | - Brian A. Pace
- Ohio State University, Department of Horticulture and Crop Science, Columbus, Ohio, United States of America
| | - Helen M. Alexander
- University of Kansas, Department of Ecology and Evolutionary Biology, Lawrence, Kansas, United States of America
| |
Collapse
|
11
|
Owart BR, Corbi J, Burke JM, Dechaine JM. Selection on crop-derived traits and QTL in sunflower (Helianthus annuus) crop-wild hybrids under water stress. PLoS One 2014; 9:e102717. [PMID: 25048600 PMCID: PMC4105569 DOI: 10.1371/journal.pone.0102717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/21/2014] [Indexed: 12/02/2022] Open
Abstract
Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.
Collapse
Affiliation(s)
- Birkin R. Owart
- Department of Biological Sciences, Central Washington University, Ellensburg, Washington, United States of America
| | - Jonathan Corbi
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Jennifer M. Dechaine
- Department of Biological Sciences, Central Washington University, Ellensburg, Washington, United States of America
- * E-mail:
| |
Collapse
|
12
|
Prendeville HR, Tenhumberg B, Pilson D. Effects of virus on plant fecundity and population dynamics. THE NEW PHYTOLOGIST 2014; 202:1346-1356. [PMID: 24571200 DOI: 10.1111/nph.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Microorganisms are ubiquitous and thought to regulate host populations. Although microorganisms can be pathogenic and affect components of fitness, few studies have examined their effects on wild plant populations. As individual traits might not contribute equally to changes in population growth rate, it is essential to examine the entire life cycle to determine how microorganisms affect host population dynamics. In this study, we used data from common garden experiments with plants from three Cucurbita pepo populations exposed to three virus treatments. These data were used to parameterize a deterministic matrix model, which allowed us to estimate the effect of virus on components of fitness and population growth rate. Virus did not reduce fruit number, but population growth rates varied among virus treatments and wild C. pepo populations. The effect of virus on population growth rate depended on virus species and wild C. pepo population. Contributions of life-history transitions and life-history traits to population growth rates varied among populations and virus treatments. However, this population-virus interaction was not evident when examining individual components of fitness. Thus, caution must be used when interpreting the effects of changes in individual traits, as single traits do not always predict population-level change accurately.
Collapse
Affiliation(s)
- Holly R Prendeville
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE, 68588-0118, USA
| | - Brigitte Tenhumberg
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE, 68588-0118, USA
| | - Diana Pilson
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE, 68588-0118, USA
| |
Collapse
|
13
|
Lu BR, Snow AA, Yang X, Wang W. Scientific data published by a peer-reviewed journal should be properly interpreted: a reply to the letter by Gressel et al. (2014). THE NEW PHYTOLOGIST 2014; 202:363-366. [PMID: 24645783 DOI: 10.1111/nph.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Bao-Rong Lu
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai, 200433, China
| | - Allison A Snow
- Department of Evolution, Ecology & Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Xiao Yang
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai, 200433, China
| | - Wei Wang
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai, 200433, China
| |
Collapse
|
14
|
Lu BR, Snow AA, Yang X, Wang W. Using a single transgenic event to infer fitness effects in crop-weed hybrids: a reply to the Letter by Grunewald & Bury (2014). THE NEW PHYTOLOGIST 2014; 202:370-372. [PMID: 24645785 DOI: 10.1111/nph.12748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Bao-Rong Lu
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai, 200433, China
| | - Allison A Snow
- Department of Evolution, Ecology & Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Xiao Yang
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai, 200433, China
| | - Wei Wang
- Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, Fudan University, Handan Road 220, Shanghai, 200433, China
| |
Collapse
|
15
|
Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock. Transgenic Res 2013; 22:1073-88. [PMID: 23857556 DOI: 10.1007/s11248-013-9728-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/18/2013] [Indexed: 01/06/2023]
Abstract
A major application of RNA interference (RNAi) is envisaged for the production of virus-resistant transgenic plants. For fruit trees, this remains the most, if not the only, viable option for the control of plant viral disease outbreaks in cultivated orchards, due to the difficulties associated with the use of traditional and conventional disease-control measures. The use of RNAi might provide an additional benefit for woody crops if silenced rootstock can efficiently transmit the silencing signal to non-transformed scions, as has already been demonstrated in herbaceous plants. This would provide a great opportunity to produce non-transgenic fruit from transgenic rootstock. In this review, we scrutinise some of the concerns that might arise with the use of RNAi for engineering virus-resistant plants, and we speculate that this virus resistance has fewer biosafety concerns. This is mainly because RNAi-eliciting constructs only express small RNA molecules rather than proteins, and because this technology can be applied using plant rootstock that can confer virus resistance to the scion, leaving the scion untransformed. We discuss the main biosafety concerns related to the release of new types of virus-resistant plants and the risk assessment approaches in the application of existing regulatory systems (in particular, those of the European Union, the USA, and Canada) for the evaluation and approval of RNAi-mediated virus-resistant plants, either as transgenic varieties or as plant virus resistance induced by transgenic rootstock.
Collapse
|
16
|
Kalinina O, Zeller SL, Schmid B. Competitive performance of transgenic wheat resistant to powdery mildew. PLoS One 2011; 6:e28091. [PMID: 22132219 PMCID: PMC3223217 DOI: 10.1371/journal.pone.0028091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 11/01/2011] [Indexed: 11/26/2022] Open
Abstract
Genetically modified (GM) plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis) or chitinase and glucanase genes from barley (resistance against fungi in general) were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes) or the actin promoter from rice (glucanase gene). Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree of expression of the transgenes.
Collapse
Affiliation(s)
- Olena Kalinina
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
17
|
Yang X, Xia H, Wang W, Wang F, Su J, Snow AA, Lu BR. Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop-weed hybrids of rice. Evol Appl 2011; 4:672-84. [PMID: 25568014 PMCID: PMC3352537 DOI: 10.1111/j.1752-4571.2011.00190.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/18/2011] [Indexed: 01/19/2023] Open
Abstract
Gene flow from transgenic crops allows novel traits to spread to sexually compatible weeds. Traits such as resistance to insects may enhance the fitness of weeds, but few studies have tested for these effects under natural field conditions. We created F2 and F3 crop–weed hybrid lineages of genetically engineered rice (Oryza sativa) using lines with two transgene constructs, cowpea trypsin inhibitor (CpTI) and a Bt transgene linked to CpTI (Bt/CpTI). Experiments conducted in Fuzhou, China, demonstrated that CpTI alone did not significantly affect fecundity, although it reduced herbivory. In contrast, under certain conditions, Bt/CpTI conferred up to 79% less insect damage and 47% greater fecundity relative to nontransgenic controls, and a 44% increase in fecundity relative to the weedy parent. A small fitness cost was detected in F3 progeny with Bt/CpTI when grown under low insect pressure and direct competition with transgene-negative controls. We conclude that Bt/CpTI transgenes may introgress into co-occurring weedy rice populations and contribute to greater seed production when target insects are abundant. However, the net fitness benefits that are associated with Bt/CpTI could be ephemeral if insect pressure is lacking, for example, because of widespread planting of Bt cultivars that suppress target insect populations.
Collapse
Affiliation(s)
- Xiao Yang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| | - Hui Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| | - Wei Wang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| | - Feng Wang
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences Fuzhou, China
| | - Jun Su
- Fujian Province Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences Fuzhou, China
| | - Allison A Snow
- Department of Evolution, Ecology & Organismal Biology, Ohio State University Columbus, OH, USA
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Institute of Biodiversity Science, Fudan University Shanghai, China
| |
Collapse
|
18
|
Vila-Aiub MM, Neve P, Roux F. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity (Edinb) 2011; 107:386-94. [PMID: 21540885 DOI: 10.1038/hdy.2011.29] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plants exhibit a number of adaptive defence traits that endow resistance to past and current abiotic and biotic stresses. It is generally accepted that these adaptations will incur a cost when plants are not challenged by the stress to which they have become adapted--the so-called 'cost of adaptation'. The need to minimise or account for allelic variation at other fitness-related loci (genetic background control) is frequently overlooked when assessing resistance costs associated with plant defence traits. We provide a synthesis of the various experimental protocols that accomplish this essential requirement. We also differentiate those methods that enable the identification of the trait-specific or mechanistic basis of costs (direct methods) from those that provide an estimate of the impact of costs by examining the evolutionary trajectories of resistance allele frequencies at the population level (indirect methods). The advantages and disadvantages for each proposed experimental design are discussed. We conclude that plant resistance systems provide an ideal model to address fundamental questions about the cost of adaptation to stress. We also propose some ways to expand the scope of future studies for further fundamental and applied insight into the significance of adaptation costs.
Collapse
Affiliation(s)
- M M Vila-Aiub
- Department of Ecology, IFEVA (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| | | | | |
Collapse
|
19
|
Kwit C, Moon HS, Warwick SI, Stewart CN. Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends Biotechnol 2011; 29:284-93. [PMID: 21388698 DOI: 10.1016/j.tibtech.2011.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/31/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Incorporation of crop genes into wild and weedy relative populations (i.e. introgression) has long been of interest to ecologists and weed scientists. Potential negative outcomes that result from crop transgene introgression (e.g. extinction of native wild relative populations; invasive spread by wild or weedy hosts) have not been documented, and few examples of transgene introgression exist. However, molecular evidence of introgression from non-transgenic crops to their relatives continues to emerge, even for crops deemed low-risk candidates for transgene introgression. We posit that transgene introgression monitoring and mitigation strategies are warranted in cases in which transgenes are predicted to confer selective advantages and disadvantages to recipient hosts. The utility and consequences of such strategies are examined, and future directions provided.
Collapse
Affiliation(s)
- Charles Kwit
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | |
Collapse
|