1
|
Su M, Chen X, Hui C. Persistent biological invasions alter ecological network topology, impacting disease transmission during community assembly. J Theor Biol 2024; 595:111950. [PMID: 39288889 DOI: 10.1016/j.jtbi.2024.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Ecological networks experiencing persistent biological invasions may exhibit distinct topological properties, complicating the understanding of how network topology affects disease transmission during invasion-driven community assembly. We developed a trait-based network model to assess the impact of network topology on disease transmission, measured as community- and species-level disease prevalence. We found that trait-based feeding interactions between host species determine the frequency distribution of the niche of co-occurring species in steady-state communities, being either bimodal or multimodal. The width of the growth kernel influences the degree-biomass relationship of species, being either weakly positive or strongly negative. When this relationship is weakly positive, species-level disease prevalence is primarily correlated with biomass. However, when the degree-biomass relationship is strongly negative, species-level disease prevalence is determined by the difference between a host species' in-degree and out-degree closeness centrality. At the community level, disease prevalence is generally amplified by increasing host richness, community biomass, and the standard deviation of interaction generality, while it is diluted by higher network connectance. Our framework verifies the amplification effects of host richness during invasion-driven community assembly and offers valuable insights for estimating disease prevalence based on host network topology.
Collapse
Affiliation(s)
- Min Su
- School of Mathematics, Hefei University of Technology, Hefei 230009, China.
| | - Xiaowei Chen
- School of Mathematics, Hefei University of Technology, Hefei 230009, China
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7602, South Africa; Mathematical Biosciences Unit, African Institute for Mathematical Sciences, Cape Town 7945, South Africa; International Initiative for Theoretical Ecology, London N1 2EE, United Kingdom.
| |
Collapse
|
2
|
Nachev M, Hohenadler M, Bröckers N, Grabner D, Sures B. Suitability of invasive gobies as paratenic hosts for acanthocephalans of the genus Pomphorhynchus sp. Parasitology 2024:1-8. [PMID: 39529353 DOI: 10.1017/s0031182024001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ponto-Caspian gobies became highly abundant in many regions outside their native distribution range (e.g. in the Rhine River system). In the newly invaded habitats, the parasite communities of the invasive gobies are characterized by a lower species richness compared to their native range. Interestingly, acanthocephalans of the genus Pomphorhynchus are highly abundant, although they do not become mature and mostly remain encapsulated in the abdominal cavity as preadults. Thus, gobiids could either represent a dead-end host for Pomphorhynchus sp. declining its population (dilution effect) or act as a paratenic host that could increase the infection pressure if the infected gobies are preyed upon by appropriate definitive hosts (spill back). To determine which of the 2 scenarios the gobiids contribute to, we conducted 2 infection experiments using smaller and larger individuals of the definitive host chub (Squalius cephalus), infected with preadults of Pomphorhynchus sp. collected from the abdominal cavity of Neogobius melanostomus. The results showed that preadults were able to complete their development and mature in the definitive host with mean recovery rates of 17.9% in smaller and 27.0% in larger chubs. Successful infections were observed in 62.0% and 80.0% of the smaller and larger chubs, respectively. Our study demonstrated that gobies can theoretically serve as a paratenic host for acanthocephalans of the genus Pomphorhynchus, and that infection might spill back into the local fish community if infected gobies are preyed upon by suitable definitive hosts of Pomphorhynchus sp. such as large barbel or chub.
Collapse
Affiliation(s)
- Milen Nachev
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Michael Hohenadler
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Nicklas Bröckers
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Martins PM, Poulin R. Universal versus taxon-specific drivers of helminth prevalence and intensity of infection. Proc Biol Sci 2024; 291:20241673. [PMID: 39406343 PMCID: PMC11479760 DOI: 10.1098/rspb.2024.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Two key epidemiological parameters, prevalence and mean intensity of infection, together capture the abundance of macroparasite populations, the strength of density-dependent effects they experience, their potential impact on host population dynamics and the selective pressures they exert on their hosts. Yet, the drivers of the extensive variation observed in prevalence and mean intensity of infection, even among related parasite taxa infecting related hosts, remain mostly unknown. We performed phylogenetically grounded Bayesian modelling across hundreds of amphibian populations to test the effects of various predictors of prevalence and intensity of infection by six families of helminth parasites. We focused on the potential effects of key host traits and environmental factors pertinent to focal host populations, i.e. the local diversity of the amphibian community and local climatic variables. Our analyses revealed several important determinants of prevalence or intensity of infection in various parasite families, but none applying to all families. Our study uncovered no universal driver of parasite infection levels, even among parasite taxa from the same phylum, or with similar life cycles and transmission modes. Although local variables not considered here may have effects extending across taxa, our findings suggest the need for a taxon-specific approach in any attempt to predict disease dynamics and impacts in the face of environmental and climatic changes.
Collapse
Affiliation(s)
- Paulo Mateus Martins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Bartolomé C, Dasilva-Martíns D, Valiñas R, Gabín-García LB, Nave A, García-Pérez AL, Monceau K, Thiéry D, Christie A, Choi MB, Sobrino B, Amigo J, Maside X. Prevalence and population genetic analyses of parasites in invasive Vespa velutina and native Hymenoptera. J Invertebr Pathol 2024; 207:108203. [PMID: 39313091 DOI: 10.1016/j.jip.2024.108203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Invasive species pose a threat to the ecological balance of the ecosystems they invade by altering local host-pathogen dynamics. To investigate these relationships and their potential consequences, we examined the prevalence and genetic diversity patterns of Trypanosomatidae, Lipotrophidae, and Nosematidae in a collection of sympatric isolates of the invasive hornet Vespa velutina and local Hymenoptera from two recently colonized areas: Europe and South Korea. Data were gathered through PCR amplification and massive parallel sequencing, and analyses were conducted using population genetics tools. Parasite prevalences showed substantial variation depending on (i) the parasite family (Trypanosomatidae and Nosematidae were the most and less prevalent, respectively), (ii) location (e.g. Galicia displayed the highest pooled values), (iii) the season (highest in spring for Trypanosomatidae and Lipotrophidae), and (iv) the host. V. velutina exhibited significantly lower parasite occurrence than native Hymenoptera across all parasite families (consistent with the enemy release hypothesis), although this difference was less pronounced during the periods of heightened predatory activity, suggestive of trophic transmission. Parasite species displayed significant genetic differentiation between European and South Korean isolates, yet no differentiation was observed across hosts, suggesting that all Hymenoptera are exposed to a common local pathogen population. There was no indication that V. velutina acted as a carrier of foreign parasites to the invaded territories.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain.
| | - Damian Dasilva-Martíns
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain.
| | - Rosa Valiñas
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain
| | - Luís B Gabín-García
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain
| | - Anabela Nave
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; Unidade Estratégica de Sistemas Agrários e Florestais e Sanidade Vegetal (UESAFSV) Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal.
| | - Ana L García-Pérez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain.
| | - Karine Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France.
| | - Denis Thiéry
- INRAE, UMR1065 SAVE, 33140, Villenave d'Ornon, France.
| | - Alastair Christie
- Government of Jersey, Natural Environment, Route de la Trinité, Trinity, JE3 5JP Jersey, Channel Islands.
| | - Moon Bo Choi
- Institute of Agricultural Science and Technology, Kyungpook National University, 41566 Daegu, Republic of Korea.
| | - Beatriz Sobrino
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain; Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), 15706 Santiago de Compostela, Galiza, Spain.
| | - Jorge Amigo
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain; Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), 15706 Santiago de Compostela, Galiza, Spain.
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain.
| |
Collapse
|
5
|
Przywara K, Siemionek J, Jakubowski T, Konczyk-Kmiecik K, Szczerba-Turek A. Prevalence of Aleutian Mink Disease Virus (AMDV) in Free-Ranging American Mink from Biebrza and Narew National Parks (Poland)-An Epidemiological Concern. Animals (Basel) 2024; 14:2584. [PMID: 39272370 PMCID: PMC11393953 DOI: 10.3390/ani14172584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Aleutian Mink Disease Virus (AMDV) is the causative agent of Aleutian disease (AD). This progressive and chronic disorder significantly impacts the mink breeding industry, affecting farmed and free-ranging American and European mink. This study investigated AMDV variants isolated from free-ranging American mink in northeastern Poland. Between 2018 and 2019, 26 spleen samples were collected from mink in Narew National Park (NNP) and Biebrza National Park (BNP). DNA was extracted and subjected to PCR to amplify the NS1 gene, followed by sequencing and phylogenetic analysis. The NS1 gene was detected in 50% of samples from NNP minks and in 30% of samples from BNP minks, with an overall prevalence of 42.31%; these findings align with global data and indicate serious ecological and health concerns. Ten closely related AMDV variants and one distinct variant were identified. The grouped variants exhibited high genetic homogeneity, closely related to strains found in mink from the USA, Germany, Greece, Latvia, and Poland; meanwhile, the distinct variant showed similarities to strains found in mink from Finland, Denmark, China, Poland, and Latvia, suggesting multiple infection sources. These findings, consistent with data from Polish mink farms, indicate significant genetic similarity between farmed and wild mink strains, suggesting potential bidirectional transmission. This underscores the importance of a One Health approach, emphasizing the interconnectedness of human, animal, and environmental health. Continuous surveillance and genetic studies are crucial for understanding AMDV dynamics and mitigating their impacts. Measures to reduce transmission between farmed and wild mink populations are vital for maintaining mink health and ecosystem stability.
Collapse
Affiliation(s)
- Konrad Przywara
- Veterinarian Konrad Przywara, 40A Grudzielskiego St., 63-700 Krotoszyn, Poland
| | - Jan Siemionek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Tadeusz Jakubowski
- Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-797 Warsaw, Poland
- Laboratory of the Polish Society of Breeders and Producers of Fur Animals, Pocztowa St. 5, 62-080 Tarnowo Podgórne, Poland
| | - Klaudia Konczyk-Kmiecik
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Anna Szczerba-Turek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
6
|
Merlo MJ. Ecological consequences of hidden pathology by larval digeneans in South American mollusks. J Invertebr Pathol 2024; 206:108158. [PMID: 38925364 DOI: 10.1016/j.jip.2024.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The study of digeneans and their association with mollusks commenced in Europe and South America during the mid-19th to early 20th centuries. Digenean infestation can severely degrade host tissue, leading to diminished energy resources and eventual host mortality. However, these parasites can also induce various non-lethal effects, including changes in growth rates, survival rates, and reproductive capabilities, alongside physiological and behavioral alterations. While numerous studies have explored the ecological effects of digeneans on hosts in Europe and North America, our understanding of these dynamics in South America, particularly in first intermediate hosts, remains limited. Therefore, this paper aims to provide an overview of ecological investigations into digenean-mollusk systems in South America, emphasizing the importance of robust sampling designs and statistical analyses to address key ecological inquiries. Although fascinating examples exist of parasitism influencing different hierarchical levels of digenean-mollusk systems, particularly at the individual, population, and community levels, documentation of their ecosystem-level impacts is comparatively sparse. As South American studies of digenean-mollusk systems from an ecological perspective are still in their early stages, there is immense potential for uncovering unique ecological patterns in this largely unexplored region, propelling us toward further developmental strides in the parasite ecology.
Collapse
Affiliation(s)
- Matías J Merlo
- Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, (7600) Mar del Plata, Argentina.
| |
Collapse
|
7
|
Cichy A, Stanicka A, Żbikowska E. Each coin has 2 sides: a positive role of alien Potamopyrgus antipodarum (Grey, 1843) snails in reducing the infection of native lymnaeids with trematodes. Curr Zool 2024; 70:262-269. [PMID: 38726247 PMCID: PMC11078042 DOI: 10.1093/cz/zoac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 05/12/2024] Open
Abstract
The change in the distribution of organisms in freshwater ecosystems due to natural or manmade processes raises the question of the impact of alien species on local communities. Although most studies indicate a negative effect, the positive one is more difficult to discern, especially in multispecies systems, including hosts and parasites. The purpose of the study was to check whether the presence of an alien host, Potamopyrgus antipodarum, reduces the intensity of Echinoparyphium aconiatum metacercariae in a native host, Radix spp. We additionally tested the impact of water temperature and the biomass of the alien host on the dilution effect. We experimentally studied (1) the lifespan of echinostome cercariae in different temperatures, (2) the infectivity of cercariae toward the alien host and native host, and (3) the impact of different biomass of the alien host on the intensity of metacercariae in the native host. We found that cercarial survival and infectivity were temperature dependent. However, cercarial survival decreased with increasing temperature, contrary to cercarial infectivity. Echinostome cercariae entered the renal cavity of both the native host and alien host, and successfully transformed into metacercariae. The number of metacercariae in the native host decreased with the increasing biomass of the alien host. Our results indicate that lymnaeids may benefit from the co-occurrence with P. antipodarum, as the presence of additional hosts of different origins may reduce the prevalence of parasites in native communities. However, the scale of the dilution effect depends not only on the increased spectrum of susceptible hosts but also on the other variables of the environment, including water temperature and host density.
Collapse
Affiliation(s)
- Anna Cichy
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Anna Stanicka
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Elżbieta Żbikowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
8
|
Kvach Y, Kutsokon Y, Bakuma A, Chebotar S, Demchenko V, Didenko A, Snigirov S, Yuryshynets V. Parasite and genetic diversity of big-scale sand smelt (Atherina boyeri Risso, 1810) populations in their natural and expansion ranges in Ukraine. Parasitol Res 2024; 123:154. [PMID: 38446231 DOI: 10.1007/s00436-024-08174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The big-scale sand smelt (Atherina boyeri) is an Atlanto-Mediterranean amphidromous fish species found within the Black Sea. Here, we assess differences in the parasite fauna of big-scale sand smelt populations from their natural range in the northwestern Black Sea and from their expansion range in the Lower and Middle River Dnipro. In addition, we undertook a microsatellite analysis to assess the genetic similarity of fish from the different locations. We found that the parasite community of fish in their natural range was wider than that from their expansion range. While the Gulf of Odesa was most distant from all other localities by parasite community composition and the Dnipro Reservoir was characterised by an absence of parasites (newest and most distant expansion locality), only fish from the Danube Delta showed a significant genetic difference. Our results suggest that the parasite community of big-scale sand smelt is primarily influenced by environmental factors, such as habitat type, water salinity and/or prey composition. Both microsatellite analysis and parasite community species composition (e.g. the presence of the marine Telosentis exiguus in the Kakhovka Reservoir and freshwater Raphidascaris sp. in the Gulf of Odesa) confirmed that populations in the River Dnipro reservoirs had, at some time, been connected with native marine populations, thus also confirming the species' amphidromous nature.
Collapse
Affiliation(s)
- Yuriy Kvach
- Institute of Marine Biology, National Academy of Science of Ukraine, Pushkinska St., 37, Odesa, 65048, Ukraine.
- Odesa I. I. Mechnikov National University, Dvoryanska St., 2, Odesa, 65002, Ukraine.
| | - Yuliya Kutsokon
- Schmalhausen Institute of Zoology, National Academy of Science of Ukraine, B. Khmelnytskoho St., 15, Kyiv, 01054, Ukraine
| | - Alla Bakuma
- Institute of Marine Biology, National Academy of Science of Ukraine, Pushkinska St., 37, Odesa, 65048, Ukraine
| | - Sabina Chebotar
- Odesa I. I. Mechnikov National University, Dvoryanska St., 2, Odesa, 65002, Ukraine
| | - Viktor Demchenko
- Institute of Marine Biology, National Academy of Science of Ukraine, Pushkinska St., 37, Odesa, 65048, Ukraine
| | - Alexander Didenko
- Schmalhausen Institute of Zoology, National Academy of Science of Ukraine, B. Khmelnytskoho St., 15, Kyiv, 01054, Ukraine
- Institute of Fisheries, National Academy of Agrarian Science of Ukraine, Obukhivska St., 135, Kyiv, 03164, Ukraine
| | - Sergii Snigirov
- Institute of Marine Biology, National Academy of Science of Ukraine, Pushkinska St., 37, Odesa, 65048, Ukraine
- Odesa I. I. Mechnikov National University, Dvoryanska St., 2, Odesa, 65002, Ukraine
| | - Volodymyr Yuryshynets
- Institute of Hydrobiology, National Academy of Science of Ukraine, Volodymyra Ivasyuka Av., 12, Kyiv, 04210, Ukraine
| |
Collapse
|
9
|
Viozzi G, Rauque C, Flores V, Vega R, Waicheim A. A regional scale study of parasites in Percichthys trucha, an endemic fish of southern South America: insights on diversity and distribution from two decades of field surveys. Parasitol Res 2023; 122:2667-2689. [PMID: 37707608 DOI: 10.1007/s00436-023-07970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
The current conservation status of Percichthys trucha (Creole perch) is Least Concern, although the population trend is considered to be decreasing. We conducted an extensive survey of parasite fauna in this species over two decades in its distribution range in Argentina. Fish were collected using gill and trawl nets. Parasites were collected, identified, and counted to calculate prevalence and mean intensity. The present work reports the parasite species infecting P. trucha, using data from our own survey and from previously published records. This information enables us to evaluate infection and distribution patterns, assess the role of P. trucha as host, determine the specificity of the parasites, and evaluate the threat represented by introduced, invasive parasites. The data set consists of a total of 453 host-parasite-locality records, of which only 15 are exclusively bibliographic. We found 44 parasite taxa: 19 digeneans, 4 monogeneans, 5 cestodes, 8 nematodes, 4 acanthocephalans, 3 crustaceans, and 1 mollusk. The most represented families were Diplostomidae, Heterophyidae, and Dactylogyridae. This study increases the number of parasite species known from 25 to 44. It can be concluded that this parasite fauna is characterized by high diversity, particularly of digeneans, and most of the parasites reproduce within this host, a pattern which is related to the top position of this fish species in the trophic webs. Six parasite species (Allocreadium patagonicum, Homalometron papilliferum, Acanthostomoides apophalliformis, Duplaccessorius andinus, Pseudodelphys limnicola, and Hysterothylacium patagonense) exhibit high host specificity (only matures in Creole perches) and are widely distributed, which could now be considered as "biogeographical core helminth fauna." Some P. trucha populations are affected by the invasion of alien fishes like Cyprinus carpio and pathogenic parasites like Lernaea cyprinacea and Schizocotyle acheilognathi. Our findings emphasize the need for further research.
Collapse
Affiliation(s)
- Gustavo Viozzi
- Laboratorio de Parasitología-INIBIOMA (CONICET-Universidad Nacional del Comahue), Avda. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Carlos Rauque
- Laboratorio de Parasitología-INIBIOMA (CONICET-Universidad Nacional del Comahue), Avda. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Verónica Flores
- Laboratorio de Parasitología-INIBIOMA (CONICET-Universidad Nacional del Comahue), Avda. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina.
| | - Rocío Vega
- Laboratorio de Parasitología-INIBIOMA (CONICET-Universidad Nacional del Comahue), Avda. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Agustina Waicheim
- Laboratorio de Parasitología-INIBIOMA (CONICET-Universidad Nacional del Comahue), Avda. Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
10
|
Geraerts M, Huyse T, Barson M, Bassirou H, Bilong Bilong CF, Bitja Nyom AR, Manda AC, Cruz-Laufer AJ, Kabalika CK, Kasembele GK, Bukinga FM, Njom S, Van Steenberge M, Artois T, Vanhove MPM. Sharing is caring? Barcoding suggests co-introduction of dactylogyrid monogeneans with Nile tilapia and transfer towards native tilapias in sub-Saharan Africa. Int J Parasitol 2023; 53:711-730. [PMID: 37414208 DOI: 10.1016/j.ijpara.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Invasive Nile tilapias negatively impact native tilapia species through hybridisation and competition. However, the co-introduction of parasites with Nile tilapia, and subsequent changes in parasite communities, are scarcely documented. Monogeneans are known pathogens of cultured Nile tilapia, although little is known about their fate once Nile tilapias establish in new ecosystems. We investigate the parasitological consequences of Nile tilapia introduction on native tilapias in basins in Cameroon, the Democratic Republic of the Congo (DRC), and Zimbabwe, focusing on ectoparasitic dactylogyrids (Monogenea). Using the mitochondrial cytochrome oxidase c subunit I (COI) and nuclear 18S-internal transcribed spacer 1 (18S-ITS1) rDNA region of 128 and 166 worms, respectively, we evaluated transmission of several dactylogyrid species. Parasite spillover from Nile tilapia was detected for Cichlidogyrus tilapiae to Coptodon guineensis in Cameroon, Cichlidogyrus thurstonae to Oreochromis macrochir in the DRC, and Cichlidogyrus halli and C. tilapiae to Coptodon rendalli in Zimbabwe. Parasite spillback to Nile tilapia was detected for Cichlidogyrus papernastrema and Scutogyrus gravivaginus from Tilapia sparrmanii and Cichlidogyrus dossoui from C. rendalli or T. sparrmanii in the DRC, and Cichlidogyrus chloeae from Oreochromis cf. mortimeri and S. gravivaginus from O. macrochir in Zimbabwe. 'Hidden' transmissions (i.e. transmission of certain parasite lineages of species that are naturally present on both alien and native hosts) were detected for C. tilapiae and Scutogyrus longicornis between Nile tilapia and Oreochromis aureus and C. tilapiae between Nile tilapia and Oreochromis mweruensis in the DRC, and Cichlidogyrus sclerosus and C. tilapiae between Nile tilapia and O. cf. mortimeri in Zimbabwe. A high density of Nile tilapia occurring together with native tilapias, and the broad host range and/or environmental tolerance of the transmitted parasites, are proposed as factors behind parasite transmission through ecological fitting. However, continuous monitoring and the inclusion of environmental variables are necessary to understand the long-term consequences of these transmissions on native tilapias and to elucidate other underlying factors influencing these transmissions.
Collapse
Affiliation(s)
- Mare Geraerts
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe; Department of Biological Sciences, University of Botswana, Gaborone, Botswana; Lake Kariba Research Station, University of Zimbabwe, Kariba, Zimbabwe
| | - Hassan Bassirou
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Arnold R Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon; Department of Management of Fisheries and Aquatic Ecosystems, Institute of Fisheries, University of Douala, Douala, Cameroon
| | - Auguste Chocha Manda
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Armando J Cruz-Laufer
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Clément Kalombo Kabalika
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Gyrhaiss Kapepula Kasembele
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo
| | - Samuel Njom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Maarten Van Steenberge
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium; Vertebrate Section, OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Tom Artois
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Maarten P M Vanhove
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Grbin D, Geček S, Miljanović A, Pavić D, Hudina S, Žučko J, Rieder J, Pisano SRR, Adrian-Kalchhauser I, Bielen A. Comparison of exoskeleton microbial communities of co-occurring native and invasive crayfish species. J Invertebr Pathol 2023; 201:107996. [PMID: 37783231 DOI: 10.1016/j.jip.2023.107996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Host-associated microbial communities are an important determinant of individual fitness and have recently been highlighted as one of the factors influencing the success of invasive species. Invasive hosts introduce their microbes into the new environment, and then both the host and its associated microbes enter into a series of interactions with the native macroscopic and microscopic biota. As these processes are largely unexplored, we aimed to compare the exoskeletal microbial communities of co-occurring and phylogenetically related crayfish: the native narrow-clawed crayfish Pontastacus leptodactylus and the invasive signal crayfish Pacifastacus leniusculus from the recently invaded Korana River, Croatia. The results of high-throughput 16S rRNA sequencing showed that the exoskeletal microbiome of both species is very diverse, significantly influenced by the local environment and dominated by low abundance bacterial families from the phylum Proteobacteria. Furthermore, the exoskeletal microbiomes of the crayfish species differed significantly in the composition and abundance of Amplicon Sequence Variants (ASVs), suggesting that they are to some extent shaped by species-specific intrinsic factors, despite sharing a common habitat. However, over 95% of the bacterial genera associated with the exoskeleton were detected in the exoskeleton samples of both native and invasive crayfish. We paid particular attention to two known crayfish pathogens, Aphanomyces astaci and Saprolegnia parasitica, and find that both species carry low amounts of both pathogens. On the side, we find that a non-standard ddPCR protocol outperforms standard qPCR test for A. astaci under low concentration conditions. Taken together, our results indicate the possibility of bidirectional mixing and homogenisation of exoskeleton microbiome. As such, they can serve as a baseline in future detangling of the processes that act together to shape the microbiomes of co-occuring native and invasive congeners during biological invasions.
Collapse
Affiliation(s)
- Dorotea Grbin
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Sunčana Geček
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Sandra Hudina
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Jurica Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Jessica Rieder
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland.
| | - Simone R R Pisano
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Irene Adrian-Kalchhauser
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
13
|
Biedrzycka A, Konopiński MK, Popiołek M, Zawiślak M, Bartoszewicz M, Kloch A. Non-MHC immunity genes do not affect parasite load in European invasive populations of common raccoon. Sci Rep 2023; 13:15696. [PMID: 37735177 PMCID: PMC10514260 DOI: 10.1038/s41598-023-41721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Understanding the evolutionary mechanisms behind invasion success enables predicting which alien species and populations are the most predisposed to become invasive. Parasites may mediate the success of biological invasions through their effect on host fitness. The evolution of increased competitive ability (EICA) hypothesis assumes that escape from parasites during the invasion process allows introduced species to decrease investment in immunity and allocate resources to dispersal and reproduction. Consequently, the selective pressure of parasites on host species in the invasive range should be relaxed. We used the case of the raccoon Procyon lotor invasion in Europe to investigate the effect of gastrointestinal pathogen pressure on non-MHC immune genetic diversity of newly established invasive populations. Despite distinct differences in parasite prevalence between analysed populations, we detected only marginal associations between two analysed SNPs and infection intensity. We argue that the differences in parasite prevalence are better explained by detected earlier associations with specific MHC-DRB alleles. While the escape from native parasites seems to allow decreased investment in overall immunity, which relaxes selective pressure imposed on immune genes, a wide range of MHC variants maintained in the invasive range may protect from newly encountered parasites.
Collapse
Affiliation(s)
- Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Maciej K Konopiński
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland
| | - Marcin Popiołek
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wrocław, Poland
| | - Marlena Zawiślak
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wrocław, Poland
| | | | - Agnieszka Kloch
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-089, Warszawa, Poland
| |
Collapse
|
14
|
Furusawa H, Ikezawa H, Tsujimoto SG, Ichikawa-Seki M, Waki T. Introducing the land snail Bradybaena pellucida increased infection risk of the avian parasite Postharmostomum commutatum in the Kanto region of Japan. Parasitol Res 2023; 122:2207-2216. [PMID: 37432462 DOI: 10.1007/s00436-023-07921-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
The trematode Postharmostomum commutatum is a parasite of the chicken Gallus gallus domesticus. Its heavy infection can cause inflammation and hemorrhage in the cecum of host birds. We found a severe infection of metacercariae of P. commutatum, which was identified based on DNA barcodes with morphology, in the introduced land snail Bradybaena pellucida and its related species in the Kanto region of Japan. Our field survey revealed that metacercariae were detected in 14 of 69 sampling locations in this region. B. pellucida was thought to be the major second intermediate host of metacercariae of the trematode because this snail was most frequently found in the study area and the prevalence and infection intensity were higher than those of the other snail species. The observed increase in metacercariae in introduced populations of B. pellucida can enhance the infection risk of chickens and wild host birds, probably owing to the spillback effect. Our seasonal field study showed that the prevalence and infection intensity of metacercaria seemed to be high in populations of B. pellucida during the summer and early autumn. Therefore, chickens should not be bred outdoors during these seasons to prevent severe infection. Our molecular analysis, based on cytochrome c oxidase subunit I sequences, showed a significantly negative value for Tajima's D in P. commutatum, suggesting an increase in its population size. Thus, P. commutatum distributed in the Kanto region may have increased its population size with the introduction of the host snail.
Collapse
Affiliation(s)
- Haruki Furusawa
- Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Hiromi Ikezawa
- Ibaraki Nature Museum, 700, Osaki, Bando, Ibaraki, 306-0622, Japan
| | - Shohei G Tsujimoto
- Centre for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Tsukasa Waki
- Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
15
|
Dragičević P, Bielen A, Žučko J, Hudina S. The mycobiome of a successful crayfish invader and its changes along the environmental gradient. Anim Microbiome 2023; 5:23. [PMID: 37041598 PMCID: PMC10088235 DOI: 10.1186/s42523-023-00245-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The microbiome plays an important role in biological invasions, since it affects various interactions between host and environment. However, most studies focus on the bacteriome, insufficiently addressing other components of the microbiome such as the mycobiome. Microbial fungi are among the most damaging pathogens in freshwater crayfish populations, colonizing and infecting both native and invasive crayfish species. Invading crayfish may transmit novel fungal species to native populations, but also, dispersal process and characteristics of the novel environment may affect the invaders' mycobiome composition, directly and indirectly affecting their fitness and invasion success. This study analyzes the mycobiome of a successful invader in Europe, the signal crayfish, using the ITS rRNA amplicon sequencing approach. We explored the mycobiomes of crayfish samples (exoskeletal biofilm, hemolymph, hepatopancreas, intestine), compared them to environmental samples (water, sediment), and examined the differences in fungal diversity and abundance between upstream and downstream segments of the signal crayfish invasion range in the Korana River, Croatia. RESULTS A low number of ASVs (indicating low abundance and/or diversity of fungal taxa) was obtained in hemolymph and hepatopancreas samples. Thus, only exoskeleton, intestine, sediment and water samples were analyzed further. Significant differences were recorded between their mycobiomes, confirming their uniqueness. Generally, environmental mycobiomes showed higher diversity than crayfish-associated mycobiomes. The intestinal mycobiome showed significantly lower richness compared to other mycobiomes. Significant differences in the diversity of sediment and exoskeletal mycobiomes were recorded between different river segments (but not for water and intestinal mycobiomes). Together with the high observed portion of shared ASVs between sediment and exoskeleton, this indicates that the environment (i.e. sediment mycobiome) at least partly shapes the exoskeletal mycobiome of crayfish. CONCLUSION This study presents the first data on crayfish-associated fungal communities across different tissues, which is valuable given the lack of studies on the crayfish mycobiome. We demonstrate significant differences in the crayfish exoskeletal mycobiome along the invasion range, suggesting that different local environmental conditions may shape the exoskeletal mycobiome during range expansion, while the mycobiome of the internal organ (intestine) remained more stable. Our results provide a basis for assessing how the mycobiome contributes to the overall health of the signal crayfish and its further invasion success.
Collapse
Affiliation(s)
- Paula Dragičević
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia.
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Jurica Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| |
Collapse
|
16
|
Kochmann J, Laier M, Klimpel S, Wick A, Kunkel U, Oehlmann J, Jourdan J. Infection with acanthocephalans increases tolerance of Gammarus roeselii (Crustacea: Amphipoda) to pyrethroid insecticide deltamethrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55582-55595. [PMID: 36897452 PMCID: PMC10121498 DOI: 10.1007/s11356-023-26193-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 06/09/2023]
Abstract
Crustacean amphipods serve as intermediate hosts for parasites and are at the same time sensitive indicators of environmental pollution in aquatic ecosystems. The extent to which interaction with the parasite influences their persistence in polluted ecosystems is poorly understood. Here, we compared infections of Gammarus roeselii with two species of Acanthocephala, Pomphorhynchus laevis, and Polymorphus minutus, along a pollution gradient in the Rhine-Main metropolitan region of Frankfurt am Main, Germany. Prevalence of P. laevis was very low at the unpolluted upstream reaches (P ≤ 3%), while higher prevalence (P ≤ 73%) and intensities of up to 9 individuals were found further downstream-close to an effluent of a large wastewater treatment plant (WWTP). Co-infections of P. minutus and P. laevis occurred in 11 individuals. Highest prevalence of P. minutus was P ≤ 9% and one parasite per amphipod host was the maximum intensity recorded. In order to assess whether the infection affects survival in the polluted habitats, we tested the sensitivity of infected and uninfected amphipods towards the pyrethroide insecticide deltamethrin. We found an infection-dependent difference in sensitivity within the first 72 h, with an effect concentration (24 h EC50) of 49.8 ng/l and 26.6 ng/l for infected and uninfected G. roeselii, respectively. Whereas final host abundance might partially explain the high prevalence of P. laevis in G. roeselii, the results of the acute toxicity test suggest a beneficial effect of acanthocephalan infection for G. roeselii at polluted sites. A strong accumulation of pollutants in the parasite could serve as a sink for pesticide exposure of the host. Due to the lack of a co-evolutionary history between parasite and host and a lack of behavioral manipulation (unlike in co-evolved gammarids), the predation risk by fish remains the same, explaining high local prevalence. Thus, our study exemplifies how organismic interaction can favor the persistence of a species under chemical pollution.
Collapse
Affiliation(s)
- Judith Kochmann
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch Weg 15, 55128 Mainz, Germany
| | - Melanie Laier
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Sven Klimpel
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Uwe Kunkel
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
- Present Address: Bavarian Environment Agency, Specific Analysis for Environmental Monitoring, Bürgermeister-Ulrich-Str. 160, D-86179 Augsburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Ripa A, Díaz-Caballero JA, Palacios-González MJ, Zalba J, Espinosa A, García-Zapata JL, Gómez-Martín A, Tkach V, Fernández-Garcia JL. Non-Invasive Wildlife Disease Surveillance Using Real Time PCR Assays: The Case of the Endangered Galemys pyrenaicus Populations from the Central System Mountains (Extremadura, Spain). Animals (Basel) 2023; 13:ani13071136. [PMID: 37048392 PMCID: PMC10093302 DOI: 10.3390/ani13071136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
The Iberian desman (Galemys pyrenaicus) is a small semi-aquatic mammal that inhabits mountainous areas from the centre to the north of the Iberian Peninsula and the Pyrenees and is listed as endangered because it has suffered a serious decline. Since 1960, only three species of digeneans (Omphalometra flexuosa, Maritrema pyrenaica and Mathovius galemydis) and two nematodes (Aonchotheca galemydis and Paracuaria hispanica) have been reported from the desman, but no further information on health status and no data from Extremadura has been available. The aim of our study was to characterise the diversity and distribution of parasites and microbiomes of desmans in different areas of the Central System of Extremadura. Between 2019 and 2021 we collected 238 fecal samples and one tissue (intestine) sample that was obtained from a dead desman. DNA templates were processed by commercial or customised real-time PCR using TaqMan probes. Representative data were obtained for Cryptosporidium spp., Omphalometra spp., Eimeria spp., Salmonella spp., Staphylococcus spp. and Leptospira spp. Omphalometra spp. was studied using a newly developed PCR test. The screening of the dead desman allowed us to obtain, for the first time, a partial sequence of the 18SrDNA. This study is the most complete study of the desman, allowing us to identify parasites and the microbiome in populations of G. pyrenaicus using non-invasive sampling.
Collapse
Affiliation(s)
- Adriana Ripa
- Genetic and Animal Breeding, Faculty of Veterinary, University of Extremadura, 10071 Cáceres, Spain
| | - José A Díaz-Caballero
- Dirección General Sostenibilidad, Consejería Para la Transición Ecológica y Sostenibilidad, Junta de Extremadura, 06800 Merida, Spain
| | - María Jesús Palacios-González
- Dirección General Sostenibilidad, Consejería Para la Transición Ecológica y Sostenibilidad, Junta de Extremadura, 06800 Merida, Spain
| | - Javier Zalba
- Dirección General Sostenibilidad, Consejería Para la Transición Ecológica y Sostenibilidad, Junta de Extremadura, 06800 Merida, Spain
| | - Antonio Espinosa
- Genetic and Animal Breeding, Faculty of Veterinary, University of Extremadura, 10071 Cáceres, Spain
| | | | - Ana Gómez-Martín
- Genetic and Animal Breeding, Faculty of Veterinary, University of Extremadura, 10071 Cáceres, Spain
| | - Vasyl Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND 58201, USA
| | | |
Collapse
|
18
|
Occurrence of Gastrointestinal Parasites in Synanthropic Neozoan Egyptian Geese (Alopochen aegyptiaca, Linnaeus 1766) in Germany. DIVERSITY 2023. [DOI: 10.3390/d15030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Various studies have shown that the transmission and passage of alien and native pathogens play a critical role in the establishment process of an invasive species and its further spread. Egyptian geese (Alopochen aegyptiaca) are neozotic birds on various continents. They live not only in the countryside near fresh water bodies but also in urban habitats in Central Europe with close contact to humans and their pets. Although their rapid distribution in Europe is widely debated, scientific studies on the anthropozoonotic risks of the population and studies on the present endoparasites in Egyptian geese are rare worldwide. In the present study, 114 shot Egyptian geese and 148 non-invasively collected faecal samples of wild Egyptian geese from 11 different Federal States in Germany were examined. A total of 13 metazoan endoparasite species in 12 different genera were identified. The main endoparasites found were Hystrichis tricolor, Polymorphus minutus, and, in lesser abundance, Cloacotaenia sp. and Echinuria uncinata. Adult stages of Echinostoma revolutum, an anthropozoonotic heteroxenic trematode, were found in 7.9% of the animals examined postmortem. This species was additionally identified by molecular analysis. Although Egyptian geese live in communities with native waterfowl, it appears that they have a lower parasitic load in general. The acquisition of generalistic parasites in an alien species and the associated increased risk of infection for native species is known as “spill-back” and raises the question of impacts on native waterfowl. Differences between animals from rural populations and urban populations were observed. The present study represents the first large-scale survey on gastrointestinal parasites of free-ranging Egyptian geese.
Collapse
|
19
|
van Nouhuys S, Harris DC, Hajek AE. Population level interactions between an invasive woodwasp, an invasive nematode and a community of native parasitoids. NEOBIOTA 2023. [DOI: 10.3897/neobiota.82.96599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Parasitic nematodes and hymenopteran parasitoids have been introduced and used extensively to control invasive Eurasian Sirex noctilio woodwasps in pine plantations in the Southern Hemisphere where no members of this community are native. Sirex noctilio has more recently invaded North America where Sirex-associated communities are native. Sirex noctilio and its parasitic nematode, Deladenus siricidicola, plus six native hymenopteran woodwasp parasitoids in New York and Pennsylvania, were sampled from 204 pines in 2011–2019. Sirex noctilio had become the most common woodwasp in this region and the native parasitoids associated with the native woodwasps had expanded their host ranges to use this invader. We investigated the distributions of these species among occupied trees and the interactions between S. noctilio and natural enemies as well as among the natural enemies. Sirex noctilio were strongly aggregated, with a few of the occupied trees hosting hundreds of woodwasps. Nematode parasitism was positively associated with S. noctilio density, and negatively associated with the density of rhyssine parasitoids. Parasitism by the parasitoid Ibalia leucospoides was positively associated with host (S. noctilio) density, while parasitism by the rhyssine parasitoids was negatively associated with density of S. noctilio. Thus, most S. noctilio come from a few attacked trees in a forest, and S. noctilio from those high-density trees experienced high parasitism by both the invasive nematode and the most abundant native parasitoid, I. l. ensiger. There is little evidence for direct competition between the nematodes and parasitoids. The negative association occurring between rhyssine parasitoids and I. l. ensiger suggests rhyssines may suffer from competition with I. l. ensiger which parasitize the host at an earlier life stage. In addition to direct competition with the native woodwasp Sirex nigricornis for suitable larval habitat within weakened trees, the large S. noctilio population increases the parasitoid and nematode populations, which may increase parasitism of S. nigricornis.
Collapse
|
20
|
Daly EZ, Chabrerie O, Massol F, Facon B, Hess MC, Tasiemski A, Grandjean F, Chauvat M, Viard F, Forey E, Folcher L, Buisson E, Boivin T, Baltora‐Rosset S, Ulmer R, Gibert P, Thiébaut G, Pantel JH, Heger T, Richardson DM, Renault D. A synthesis of biological invasion hypotheses associated with the introduction–naturalisation–invasion continuum. OIKOS 2023. [DOI: 10.1111/oik.09645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ella Z. Daly
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Olivier Chabrerie
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Francois Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Benoit Facon
- CBGP, INRAE, CIRAD, IRD, Montpellier Institut Agro, Univ. Montpellier Montpellier France
| | - Manon C.M. Hess
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
- Inst. de Recherche pour la Conservation des zones Humides Méditerranéennes Tour du Valat, Le Sambuc Arles France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Inst. Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille Lille France
| | - Frédéric Grandjean
- Univ. de Poitiers, UMR CNRS 7267 EBI‐Ecologie et Biologie des Interactions, équipe EES Poitiers Cedex 09 France
| | | | | | - Estelle Forey
- Normandie Univ., UNIROUEN, INRAE, USC ECODIV Rouen France
| | - Laurent Folcher
- ANSES – Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Laboratoire de la Santé des Végétaux – Unité de Nématologie Le Rheu France
| | - Elise Buisson
- Inst. Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR: Aix Marseille Univ., Avignon Université, CNRS, IRD France
| | - Thomas Boivin
- INRAE, UR629 Écologie des Forêts Méditerranéennes, Centre de Recherche Provence‐Alpes‐Côte d'Azur Avignon France
| | | | - Romain Ulmer
- Univ. de Picardie Jules Verne, UMR 7058 CNRS EDYSAN Amiens Cedex 1 France
| | - Patricia Gibert
- UMR 5558 CNRS – Univ. Claude Bernard Lyon 1, Biométrie et Biologie Evolutive, Bât. Gregor Mendel Villeurbanne Cedex France
| | - Gabrielle Thiébaut
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
| | - Jelena H. Pantel
- Ecological Modelling, Faculty of Biology, Univ. of Duisburg‐Essen Essen Germany
| | - Tina Heger
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
- Technical Univ. of Munich, Restoration Ecology Freising Germany
| | - David M. Richardson
- Centre for Invasion Biology, Dept. Botany & Zoology, Stellenbosch University Stellenbosch South Africa
- Inst. of Botany, Czech Academy of Sciences Průhonice Czech Republic
| | - David Renault
- Univ. of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553 Rennes France
- Inst. Universitaire de France Paris Cedex 05 France
| |
Collapse
|
21
|
Guzy JC, Falk BG, Smith BJ, Willson JD, Reed RN, Aumen NG, Avery ML, Bartoszek IA, Campbell E, Cherkiss MS, Claunch NM, Currylow AF, Dean T, Dixon J, Engeman R, Funck S, Gibble R, Hengstebeck KC, Humphrey JS, Hunter ME, Josimovich JM, Ketterlin J, Kirkland M, Mazzotti FJ, McCleery R, Miller MA, McCollister M, Parker MR, Pittman SE, Rochford M, Romagosa C, Roybal A, Snow RW, Spencer MM, Waddle JH, Yackel Adams AA, Hart KM. Burmese pythons in Florida: A synthesis of biology, impacts, and management tools. NEOBIOTA 2023. [DOI: 10.3897/neobiota.80.90439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control.
Collapse
|
22
|
Dobelmann J, Felden A, Lester PJ. An invasive ant increases deformed wing virus loads in honey bees. Biol Lett 2023; 19:20220416. [PMID: 36651030 PMCID: PMC9845979 DOI: 10.1098/rsbl.2022.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The majority of invasive species are best known for their effects as predators. However, many introduced predators may also be substantial reservoirs for pathogens. Honey bee-associated viruses are found in various arthropod species including invasive ants. We examined how the globally invasive Argentine ant (Linepithema humile), which can reach high densities and infest beehives, is associated with pathogen dynamics in honey bees. Viral loads of deformed wing virus (DWV), which has been linked to millions of beehive deaths around the globe, and black queen cell virus significantly increased in bees when invasive ants were present. Microsporidian and trypanosomatid infections, which are more bee-specific, were not affected by ant invasion. The bee virome in autumn revealed that DWV was the predominant virus with the highest infection levels and that no ant-associated viruses were infecting bees. Viral spillback from ants could increase infections in bees. In addition, ant attacks could pose a significant stressor to bee colonies that may affect virus susceptibility. These viral dynamics are a hidden effect of ant pests, which could have a significant impact on disease emergence in this economically important pollinator. Our study highlights a perhaps overlooked effect of species invasions: changes in pathogen dynamics.
Collapse
Affiliation(s)
- Jana Dobelmann
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm 89081, Germany
| | - Antoine Felden
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
23
|
Geraerts M, Huyse T, Vanhove MPM, Artois T. A new species of Cichlidogyrus Paperna, 1960 (Platyhelminthes: Monogenea: Dactylogyridae) infecting tilapias in Lake Kariba (Zimbabwe), with a discussion on its phylogenetic position. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2143594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mare Geraerts
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt – Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, Tervuren, 3080, Belgium
| | - Maarten P. M. Vanhove
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt – Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, 00100, Finland
| | - Tom Artois
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt – Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium
| |
Collapse
|
24
|
Giari L, Castaldelli G, Timi JT. Ecology and effects of metazoan parasites of fish in transitional waters. Parasitology 2022; 149:1829-1841. [PMID: 35946119 PMCID: PMC11010487 DOI: 10.1017/s0031182022001068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
Given the abundance, heterogeneity and ubiquity of parasitic organisms, understanding how they influence biodiversity, evolution, health and ecosystem functionality is crucial, especially currently when anthropogenic pressures are altering host–parasite balances. This review describes the features, roles and impacts of metazoan parasites of fish occurring in transitional waters (TW). These aquatic ecosystems are highly productive and widespread around the globe and represent most favourable theatres for parasitism given the availability of hosts (invertebrates, fishes and birds) and an increased probability of parasite transmission, especially of those having complex life cycles. Fascinating examples of how parasitism can influence different hierarchical levels of biological systems, from host individuals and populations to entire aquatic communities, through effects on food webs come from this kind of ecosystem. Edible fish of commercial value found in TW can harbour some parasite species, significantly reducing host health, marketability and food safety, with possible economic and public health consequences. Many TW are historically exploited by humans as sources of relevant ecosystem services, including fisheries and aquaculture, and they are highly vulnerable ecosystems. Alteration of TW can be revealed through the study of parasite communities, contributing, as bioindicators, for assessing environmental changes, health and restoration. Fish parasites can provide much information about TW, but this potential appears to be not fully exploited. More studies are necessary to quantify the ecological, economic and medical impacts fish parasites can have on these important ecosystems.
Collapse
Affiliation(s)
- Luisa Giari
- Department of Environment and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Environment and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy
| | - Juan Tomás Timi
- Laboratorio de Ictioparasitología, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, 7600 Mar del Plata, Argentina
| |
Collapse
|
25
|
Spillover and spillback risks of ectoparasites by an invasive squirrel Callosciurus erythraeus in Kanto region of Japan. Int J Parasitol Parasites Wildl 2022; 19:1-8. [PMID: 35991948 PMCID: PMC9385448 DOI: 10.1016/j.ijppaw.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
Invasive organisms can alter host-parasite relationships in a given ecosystem by spreading exotic parasites and/or becoming a new reservoir for native ones. Since these problems affect management programs of the invasive host organisms, it is necessary to monitor them individually. The Pallas's squirrel Callosciurus erythraeus is an invasive arboreal mammal introduced into Japan that threatens to exacerbate ecological and public health problems by spreading native and exotic parasites. However, only limited surveys have been available especially for ectoparasites, using the traditional combing method in which the possibility of oversight is inherent. Here, we evaluated the ectoparasite occurrences in Kanto region of Japan, using the whole-shaving method as an alternative approach. As a result of examining 52 hosts from two invaded districts (Yokohama and Yokosuka), chigger mites (Leptotrombidium spp.) and fleas (Ceratophyllus anisus and Ceratophyllus indages indages) were newly recovered in addition to the previously reported tick (Haemaphysalis flava) and exotic lice (Enderleinellus kumadai and Neophaematoponis callosciuri). The parasite burdens were higher in Yokosuka and in male host individuals, affecting infracommunity richness and composition. Our findings on the variety of native and exotic ectoparasites, at higher abundances in some cases than previously known, may suggest that both the spillover and spillback risks need to be adjusted upwards. Ectoparasite infections were examined for Pallas's squirrels invaded in Kanto region of Japan. A variety of native and exotic ectoparasites with high abundance in some cases was found. Infracommunity composition changed depending on the invading environment and host features. Spillover and spillback risks may need to be adjusted upwards in this country.
Collapse
|
26
|
Susceptibility of invasive Asian clams to Chaetogaster limnaei: effect of parasite density and host size on infection dynamics. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Cruciani D, Crotti S, Paoloni D, La Morgia V, Felici A, Papa P, Cosseddu GM, Moscati L, Gobbi P. Health Status of the Eastern Grey Squirrel ( Sciurus carolinensis) Population in Umbria: Results of the LIFE Project 'U-SAVEREDS'. Animals (Basel) 2022; 12:ani12202741. [PMID: 36290127 PMCID: PMC9597752 DOI: 10.3390/ani12202741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Simple Summary Invasive alien species are non-native species introduced deliberately or unintentionally beyond their past or present natural distribution, and their introduction and spread threatens local biological diversity. The Eastern grey squirrel is native to North America and was introduced to the British Islands, Italy, and South Africa. Around the year 2000, a new population of grey squirrels was recorded in Perugia, central Italy, where the species populated an area of approximately 50 km2, both in woodland and urban areas. The Eastern grey squirrel represents a huge threat to the conservation of the native Eurasian red squirrel when the two species coexist. Moreover, given their confident behaviour with humans, the non-native squirrels can negatively impact public health. The U-SAVEREDS Project was set up for Eurasian red squirrel conservation in Umbria through the eradication of the alien species and it also provided information on the health status of the Eastern grey squirrel to identify any infectious agents. The recovery of zoonotic pathogens allowed to assess the Eastern grey squirrel’s impact on human and domestic and wild animals’ health, provide helpful feedback for the management and eradication procedures, and raise public awareness through environmental education. Abstract The introduction of the Eastern grey squirrel (Sciurus carolinensis) in Europe is one of the best-known cases of invasive alien species (IAS) colonisation, that poses a severe risk to the conservation of biodiversity. In 2003, it was released in a private wildlife park near the city of Perugia (Italy), where it is replacing the native Eurasian red squirrel (Sciurus vulgaris). The LIFE13 BIO/IT/000204 Project (U-SAVEREDS) was set up for the Sciurus vulgaris conservation in Umbria through an eradication campaign of grey squirrels. One hundred and fifty-four animals were analysed for bacteriological, mycological, virological, and serological investigations (C4 action). Sanitary screening showed that Sciurus carolinensis is a dermatophyte carrier, and therefore, it could cause public health issues for humans, considering its confident behaviour. Moreover, it has been marginally responsible for the spreading of Candida albicans, Coxiella burnetii, and Borrelia lusitaniae. Health status evaluation conducted on the Sciurus carolinensis population indicated that it is necessary to raise awareness of its impacts on biodiversity and human health. Moreover, the health status and behaviours of the IAS must be considered when control or eradication campaigns are planned.
Collapse
Affiliation(s)
- Deborah Cruciani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
- Correspondence:
| | - Silvia Crotti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | | | - Valentina La Morgia
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Andrea Felici
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Paola Papa
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Gian Mario Cosseddu
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Via Appia Nuova 1411, 00178 Roma, Italy
- Istituto Zooprofilattico Sperimentale Abruzzo e Molise “G. Caporale” (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Livia Moscati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Paola Gobbi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
28
|
Salgado R, Barja I, Hernández MDC, Lucero B, Castro-Arellano I, Bonacic C, Rubio AV. Activity patterns and interactions of rodents in an assemblage composed by native species and the introduced black rat: implications for pathogen transmission. BMC ZOOL 2022; 7:48. [PMID: 36042784 PMCID: PMC9412813 DOI: 10.1186/s40850-022-00152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The degree of temporal overlap between sympatric wild hosts species and their behavioral interactions can be highly relevant to the transmission of pathogens. However, this topic has been scantly addressed. Furthermore, temporal overlap and interactions within an assemblage of wild rodents composed of native and introduced species have been rarely discussed worldwide. We assessed the nocturnal activity patterns and interactions between rodent taxa of an assemblage consisting of native species (Oligoryzomys longicaudatus, Abrothrix hirta, and Abrothrix olivaceus) and the introduced black rat (Rattus rattus) in a temperate forest from southern Chile. All rodent species in this study are known hosts for various zoonotic pathogens.
Results
We found a high nocturnal temporal overlap within the rodent assemblage. However, pairwise comparisons of temporal activity patterns indicated significant differences among all taxa. Rattus rattus showed aggressive behaviors against all native rodents more frequently than against their conspecifics. As for native rodents, agonistic behaviors were the most common interactions between individuals of the same taxon and between individuals of different taxa (O. longicaudatus vs Abrothrix spp.).
Conclusions
Our findings reveal several interactions among rodent taxa that may have implications for pathogens such as hantaviruses, Leptospira spp., and vector-borne pathogens. Furthermore, their transmission may be facilitated by the temporal overlap observed between rodent taxa.
Collapse
|
29
|
Tuerlings T, Buydens L, Smagghe G, Piot N. The impact of mass-flowering crops on bee pathogen dynamics. Int J Parasitol Parasites Wildl 2022; 18:135-147. [PMID: 35586790 PMCID: PMC9108762 DOI: 10.1016/j.ijppaw.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022]
Abstract
Nearly two fifths of the Earth's land area is currently used for agriculture, substantially impacting the environment and ecosystems. Besides the direct impact through land use change, intensive agriculture can also have an indirect impact, for example by changing wildlife epidemiology. We review here the potential effects of mass-flowering crops (MFCs), which are rapidly expanding in global cropping area, on the epidemiology of known pathogens in bee pollinators. We bring together the fifty MFCs with largest global area harvested and give an overview of their pollination dependency as well as their impact on bee pollinators. When in bloom these crops provide an abundance of flowers, which can provide nutrition for bees and increase bee reproduction. After their short bloom peak, however, the fields turn into green deserts. These big changes in floral availability strongly affect the plant-pollinator network, which in turn affects the pathogen transmission network, mediated by shared flowers. We address this dual role of flowers provided by MFCs, serving as nutritional resources as well as pathogen transmission spots, and bring together the current knowledge to assess how MFCs could affect pathogen prevalence in bee pollinator communities.
Collapse
Affiliation(s)
| | | | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, Ghent, Belgium
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Grandón-Ojeda A, Moreno L, Garcés-Tapia C, Figueroa-Sandoval F, Beltrán-Venegas J, Serrano-Reyes J, Bustamante-Garrido B, Lobos-Chávez F, Espinoza-Rojas H, Silva-de la Fuente MC, Henríquez A, Landaeta-Aqueveque C. Patterns of Gastrointestinal Helminth Infections in Rattus rattus, Rattus norvegicus, and Mus musculus in Chile. Front Vet Sci 2022; 9:929208. [PMID: 35847649 PMCID: PMC9277659 DOI: 10.3389/fvets.2022.929208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Few studies have assessed the patterns of parasite populations of rodents over a longitudinal gradient in Chile. In this work, the gastrointestinal helminthic fauna of invasive rodents in Chile was examined to assess the association between their presence/absence and abundance with latitude, host sex, and host body condition, and to assess the coexistence and correlation of the abundance between parasite species. Rodents were obtained from 20 localities between 33 and 43°S. Helminths were extracted from the gastrointestinal tract and identified morphologically. Overall, 13 helminth taxa were obtained. The most frequently identified parasite species was Heterakis spumosa, and the most abundant was Syphacia muris, while Physaloptera sp. was the most widely distributed. No locality presented with a coexistence that was different from that expected by chance, while the abundance of five helminthic species correlated with the abundance of another in at least one locality, most likely due to co-infection rather than interaction. Host sex was associated with parasite presence or abundance, and female sex-biased parasitism was notably observed in all cases. Body condition and latitude presented either a positive or negative association with the presence or abundance of parasites depending on the species. It is notable that the likely native Physaloptera sp. is widely distributed among invasive rodents. Further, gravid females were found, suggesting spillback of this species to the native fauna. The low frequency and abundance of highly zoonotic hymenolepid species suggest that rodents are of low concern regarding gastrointestinal zoonotic helminths.
Collapse
Affiliation(s)
| | - Lucila Moreno
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Carolina Garcés-Tapia
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Fernanda Figueroa-Sandoval
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Jazmín Beltrán-Venegas
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Josselyn Serrano-Reyes
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Bárbara Bustamante-Garrido
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Felipe Lobos-Chávez
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Hellen Espinoza-Rojas
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | | | - AnaLía Henríquez
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile
| | - Carlos Landaeta-Aqueveque
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
31
|
Sarabeev V, Balbuena JA, Desdevises Y, Morand S. Host-parasite relationships in invasive species: macroecological framework. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Catalano S, La Morgia V, Molinar Min AR, Fanelli A, Meneguz PG, Tizzani P. Gastrointestinal Parasite Community and Phenotypic Plasticity in Native and Introduced Alien Lagomorpha. Animals (Basel) 2022; 12:1287. [PMID: 35625133 PMCID: PMC9138120 DOI: 10.3390/ani12101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The Convention on Biological Diversity classifies "Invasive Alien Species" as those whose introduction and spread represents a threat for biodiversity. Introduction of alien pathogens, including parasites, is one of the main consequences of the introduction of invasive alien species. The objective of this work was to assess the parasite community composition in native lagomorphs (Lepus europaeus and Lepus timidus varronis) in sympatric and non-sympatric conditions with an alien lagomorph (Sylvilagus floridanus), and to evaluate the phenotypic traits of exotic parasites in such conditions. We firstly describe the characteristics of the parasite community in the different host species (richness, prevalence, abundance and intensity), and, secondly, the phenotypic traits of the observed parasite species in each host. Nine helminths were reported on: eight nematodes (Obeliscoides cuniculi, Trichostrongylus calcaratus, Trichostrongylus retortaeformis, Trichostrongylus affinis, Trichuris leporis, Trichostrongylus colubriformis, Passalurus ambiguus, and Nematodirus sp.) and one unidentified cestode. In addition, exotic parasites showed significantly different phenotypic plasticity after spillover from S. floridanus to L. europaeus, whereas endemic parasite species were not isolated in the alien S. floridanus. Our results highlight that the community of autochthonous and allochthonous Lagomorpha in northwestern Italy represents an extremely interesting system for modelling ecological and evolutionary interactions between parasites and their hosts.
Collapse
Affiliation(s)
- Stefano Catalano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Valentina La Morgia
- Institute for Environmental Protection and Research (ISPRA), Via Ca’ Fornacetta 9, Ozzano Emilia, 40064 Bologna, Italy;
| | - Anna Rita Molinar Min
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (A.R.M.M.); (P.G.M.)
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, 70010 Bari, Italy;
| | - Pier Giuseppe Meneguz
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (A.R.M.M.); (P.G.M.)
| | - Paolo Tizzani
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy; (A.R.M.M.); (P.G.M.)
| |
Collapse
|
33
|
Chronic Stress Indicators in Canines. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
With a growing number of dogs abandoned, living in shelters, and being rehomed, it is important to distinguish behavioural responses due to stress in our domestic companions. Cortisol is involved in the stress responses in animals which generally enters the individual’s body into a “state of emergency”. Prolonged stress can lead to exhaustion, disease, and death. Chronic stress can be detected by evaluating cortisol concentration in hair. Most domesticated dogs respond well to hair collection, thus avoiding further stressors. The method is simple, relatively inexpensive, and non-invasive. Our experiment focused on assessing multiple parameters using a modified Canine Behavioural Assessment and Research Questionnaire to evaluate their significance with cortisol in hair samples from a diverse range of dogs. Each stress parameter was tested against cortisol concentration using a t-Test, i. e., the Paired Two Sample for Means. The effect of weight on cortisol levels was statistically significant (P = 0.03). This fact revealed that an increase in body weight correlated with an increase in cortisol levels.
Collapse
|
34
|
Cartuyvels E, Adriaens T, Baert K, Huysentruyt F, Van Den Berge K. Prevalence of Fox Tapeworm in Invasive Muskrats in Flanders (North Belgium). Animals (Basel) 2022; 12:879. [PMID: 35405868 PMCID: PMC8997082 DOI: 10.3390/ani12070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
One way in which invasive alien species affect their environment is by acting as pathogen hosts. Pathogens limited by the availability of the native host species can profit from the presence of additional hosts. The muskrat (Ondatra zibethicus) is known to act as an intermediate host for the fox tapeworm (Echinococcus multilocularis). From 2009 to 2017, 15,402 muskrats caught in Flanders and across the border with Wallonia and France were collected and dissected with the aim of understanding the prevalence of this parasite in muskrats. Visual examination of the livers revealed 202 infected animals (1.31%). Out of the 9421 animals caught in Flanders, we found 82 individuals (0.87%) infected with E. multilocularis. No increase in prevalence was observed during this study. All of the infected animals in Flanders were found in municipalities along the Walloon border. We did not observe a northward spread of E. multilocularis infection from Wallonia to Flanders. We hypothesise that the low prevalence is the result of the reduced availability of intermediate hosts and the successful control programme which is keeping muskrat densities in the centre of the region at low levels and is preventing influx from other areas. Our results illustrate that muskrats are good sentinels for E. multilocularis and regular screening can gain valuable insight into the spread of this zoonosis.
Collapse
Affiliation(s)
- Emma Cartuyvels
- Research Institute for Nature and Forest, Wildlife Management and Invasive Species, Havenlaan 88, 1000 Brussels, Belgium; (T.A.); (K.B.); (F.H.); (K.V.D.B.)
| | | | | | | | | |
Collapse
|
35
|
Boyd BM, Nguyen NP, Allen JM, Waterhouse RM, Vo KB, Sweet AD, Clayton DH, Bush SE, Shapiro MD, Johnson KP. Long-distance dispersal of pigeons and doves generated new ecological opportunities for host-switching and adaptive radiation by their parasites. Proc Biol Sci 2022; 289:20220042. [PMID: 35259992 PMCID: PMC8905168 DOI: 10.1098/rspb.2022.0042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites.
Collapse
Affiliation(s)
- Bret M Boyd
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Nam-Phuong Nguyen
- Department of Computer Science, University of Illinois, Champaign, IL, USA
| | - Julie M Allen
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kyle B Vo
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew D Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Dale H Clayton
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Sarah E Bush
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael D Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| |
Collapse
|
36
|
Li YX, Dong XF, Yang AL, Zhang HB. Diversity and pathogenicity of Alternaria species associated with the invasive plant Ageratina adenophora and local plants. PeerJ 2022; 10:e13012. [PMID: 35251785 PMCID: PMC8893028 DOI: 10.7717/peerj.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
Pathogen accumulation after introduction is unavoidable for exotic plants over a long period of time. Therefore, it is important to understand whether plant invasion promotes novel pathogen emergence and increases the risk of pathogen movement among agricultural, horticultural, and wild native plants. In this study, we used multiple gene analysis to characterize the species composition of 104 isolates of Alternaria obtained from the invasive plant Ageratina adenophora and native plants from Yunnan, Hubei, Guizhou, Sichuan, and Guangxi in China. Phylogenetically, these strains were from A. alternata (88.5%), A. gossypina (10.6%) and A. steviae (0.9%). There was a high amount of sharing between strains associated with A. adenophora and with local plants. Pathogenicity tests indicated that most of these Alternaria strains are generalists; the isolates with a wider host range were more virulent to the plant. Woody plants were more resistant to these strains than herbaceous plants and vines. However, the invasive plant A. adenophora was highly sensitive to these strains. Our data are valuable for understanding how A. adenophora invasion impacts the Alternaria species composition of the native plant and whether A. adenophora invasion causes potential disease risks in invaded ecosystems.
Collapse
Affiliation(s)
- Yu-Xuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kuming, Yunnan, China
| | - Xing-Fan Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kuming, Yunnan, China
| | - Ai-Ling Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kuming, Yunnan, China,School of Ecology and Environmental Science, Yunnan University, Kuming, Yunnan, China
| | - Han-Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kuming, Yunnan, China
| |
Collapse
|
37
|
Byrne AW, Marnell F, Barrett D, Reid N, Hanna REB, McElroy MC, Casey M. Rabbit Haemorrhagic Disease Virus 2 (RHDV2; GI.2) in Ireland Focusing on Wild Irish Hares (Lepus timidus hibernicus): An Overview of the First Outbreaks and Contextual Review. Pathogens 2022; 11:pathogens11030288. [PMID: 35335613 PMCID: PMC8953227 DOI: 10.3390/pathogens11030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
Rabbit haemorrhagic disease virus 2 (RHDV2; GI.2) is a pathogenic lagovirus that emerged in 2010, and which now has a global distribution. Outbreaks have been associated with local population declines in several lagomorph species, due to rabbit haemorrhagic disease (RHD)-associated mortality raising concerns for its potential negative impact on threatened or vulnerable wild populations. The Irish hare (Lepus timidus hibernicus) is endemic to Ireland, and is of conservation interest. The first cases of RHDV2 in Ireland were reported in domestic rabbits (Oryctolagus cuniculus) in 2016, soon followed by the first known case in a wild rabbit also in 2016, from a population reported to be experiencing high fatalities. During summer 2019, outbreaks in wild rabbits were confirmed in several locations throughout Ireland. Six cases of RHDV2 in wild hares were confirmed between July and November 2019, at four locations. Overall, 27 cases in wildlife were confirmed in 2019 on the island of Ireland, with a predominantly southern distribution. Passive surveillance suggests that the Irish hare is susceptible to lethal RHDV2 infection, and that spillover infection to hares is geographically widespread in eastern areas of Ireland at least, but there is a paucity of data on epidemiology and population impacts. A literature review on RHD impact in closely related Lepus species suggests that intraspecific transmission, spillover transmission, and variable mortality occur in hares, but there is variability in reported resistance to severe disease and mortality amongst species. Several key questions on the impact of the pathogen in Irish hares remain. Surveillance activities throughout the island of Ireland will be important in understanding the spread of infection in this novel host.
Collapse
Affiliation(s)
- Andrew W. Byrne
- One-Health Scientific Support Unit, Department of Agriculture, Food and the Marine, Agriculture House, D02 WK12 Dublin, Ireland;
- Correspondence: or
| | - Ferdia Marnell
- Department of Housing, Local Government and Heritage, National Parks and Wildlife Service (NPWS), D07 N7CV Dublin, Ireland;
| | - Damien Barrett
- One-Health Scientific Support Unit, Department of Agriculture, Food and the Marine, Agriculture House, D02 WK12 Dublin, Ireland;
| | - Neil Reid
- Institute of Global Food Security (IGFS), School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Robert E. B. Hanna
- Veterinary Science Division (VSD), Agri-Food and Biosciences Institute, Stormont, Belfast BT4 3SD, UK;
| | - Máire C. McElroy
- Bacteriology and Parasitology Division, Department of Agriculture, Food and the Marine, Agriculture House, Backweston, W23 VW2C Dublin, Ireland;
| | - Mícheál Casey
- Regional Veterinary Laboratories (RVL) Division, Department of Agriculture, Food and the Marine, Agriculture House, Backweston, W23 VW2C Dublin, Ireland;
| |
Collapse
|
38
|
Haywood CJ, Jordon AM, Pena M, Nielsen CK, Jiménez FA. Tissue and Gastrointestinal Parasites of Colonizing Nine-Banded Armadillos at the Edge of Their Northern Range. J Parasitol 2022; 108:57-63. [DOI: 10.1645/21-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Carly J. Haywood
- School of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62901-6501
| | - Abigail M. Jordon
- School of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62901-6501
| | - Maria Pena
- U.S. Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana 70809
| | - Clayton K. Nielsen
- School of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62901-6501
| | - F. Agustín Jiménez
- School of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62901-6501
| |
Collapse
|
39
|
Ondračková M, Janáč M, Borcherding J, Grabowska J, Bartáková V, Jurajda P. Non-native gobies share predominantly immature parasites with local fish hosts. JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Markéta Ondračková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail: , , ,
| | - Michal Janáč
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail: , , ,
| | - Jost Borcherding
- General Ecology, Institute for Zoology of the University of Cologne, Ecological Field Station Rees, Cologne, Germany; e-mail:
| | - Joanna Grabowska
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland; e-mail:
| | - Veronika Bartáková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail: , , ,
| | - Pavel Jurajda
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail: , , ,
| |
Collapse
|
40
|
Ortega N, Roznik EA, Surbaugh KL, Cano N, Price W, Campbell T, Rohr JR. Parasite spillover to native hosts from more tolerant, supershedding invasive hosts: Implications for management. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole Ortega
- Department of Biology University of Tampa Tampa FL USA
| | - Elizabeth A. Roznik
- North Carolina Zoo Asheboro NC USA
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Kerri L. Surbaugh
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Natalia Cano
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - Wayne Price
- Department of Biology University of Tampa Tampa FL USA
| | - Todd Campbell
- Department of Biology University of Tampa Tampa FL USA
| | - Jason R. Rohr
- Department of Biological Sciences University of Notre DameNotre Dame IN USA
| |
Collapse
|
41
|
Diagne C, Granjon L, Tatard C, Ribas A, Ndiaye A, Kane M, Niang Y, Brouat C. Same Invasion, Different Routes: Helminth Assemblages May Favor the Invasion Success of the House Mouse in Senegal. Front Vet Sci 2021; 8:740617. [PMID: 34765665 PMCID: PMC8576305 DOI: 10.3389/fvets.2021.740617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Previous field-based studies have evidenced patterns in gastrointestinal helminth (GIH) assemblages of rodent communities that are consistent with "enemy release" and "spill-back" hypotheses, suggesting a role of parasites in the ongoing invasion success of the exotic house mouse (Mus musculus domesticus) in Senegal (West Africa). However, these findings came from a single invasion route, thus preventing to ascertain that they did not result from stochastic and/or selective processes that could differ across invasion pathways. In the present study, we investigated the distribution of rodent communities and their GIH assemblages in three distinct zones of Northern Senegal, which corresponded to independent house mouse invasion fronts. Our findings first showed an unexpectedly rapid spread of the house mouse, which reached even remote areas where native species would have been expected to dominate the rodent communities. They also strengthened previous insights suggesting a role of helminths in the invasion success of the house mouse, such as: (i) low infestation rates of invading mice by the exotic nematode Aspiculuris tetraptera at invasion fronts-except in a single zone where the establishment of the house mouse could be older than initially thought, which was consistent with the "enemy release" hypothesis; and (ii) higher infection rates by the local cestode Mathevotaenia symmetrica in native rodents with long co-existence history with invasive mice, bringing support to the "spill-back" hypothesis. Therefore, "enemy release" and "spill-back" mechanisms should be seriously considered when explaining the invasion success of the house mouse-provided further experimental works demonstrate that involved GIHs affect rodent fitness or exert selective pressures. Next steps should also include evolutionary, immunological, and behavioral perspectives to fully capture the complexity, causes and consequences of GIH variations along these invasion routes.
Collapse
Affiliation(s)
- Christophe Diagne
- CBGP, IRD, CIRAD, INRAE, Montpellier SupAgro, Univ. Montpellier, Montferrier-sur-Lez, France.,Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Laurent Granjon
- CBGP, IRD, CIRAD, INRAE, Montpellier SupAgro, Univ. Montpellier, Montferrier-sur-Lez, France
| | - Caroline Tatard
- CBGP, IRD, CIRAD, INRAE, Montpellier SupAgro, Univ. Montpellier, Montferrier-sur-Lez, France
| | - Alexis Ribas
- Parasitology Section, Department of Biology, Health Care and Environment, Faculty of Pharmacy and Food Science, Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain
| | - Arame Ndiaye
- BIOPASS, CBGP-IRD, ISRA, UCAD, CIRAD, Campus de Bel-Air, Dakar, Senegal
| | - Mamadou Kane
- BIOPASS, CBGP-IRD, ISRA, UCAD, CIRAD, Campus de Bel-Air, Dakar, Senegal
| | - Youssoupha Niang
- BIOPASS, CBGP-IRD, ISRA, UCAD, CIRAD, Campus de Bel-Air, Dakar, Senegal
| | - Carine Brouat
- CBGP, IRD, CIRAD, INRAE, Montpellier SupAgro, Univ. Montpellier, Montferrier-sur-Lez, France
| |
Collapse
|
42
|
Abstract
The round goby (Neogobius melanostomus) is a successful invader of the Great Lakes-St Lawrence River basin that harbours a number of local parasites. The most common are metacercariae of the genus Diplostomum. Species of Diplostomum are morphologically difficult to distinguish but can be separated using molecular techniques. While a few species have been sequenced from invasive round gobies in this study system, their relative abundance has not been documented. The purpose of this study was to determine the species composition of Diplostomum spp. and their relative abundance in round gobies in the St Lawrence River by sequencing the barcode region of cytochrome c oxidase I. In 2007-2011, Diplostomum huronense (=Diplostomum sp. 1) was the most common, followed in order by Diplostomum indistinctum (=Diplostomum sp. 4) and Diplostomum indistinctum sensu Galazzo, Dayanandan, Marcogliese & McLaughlin (2002). In 2012, the most common species infecting the round goby in the St Lawrence River was D. huronense, followed by D. indistinctum and Diplostomum gavium (=Diplostomum sp. 3). The invasion of the round goby in the St Lawrence River was followed by a decline of Diplostomum spp. in native fishes to low levels, leading to the previously published hypothesis that the presence of the round goby has led to a dilution effect. Herein, it is suggested that despite the low infection levels in the round goby, infections still may lead to spillback, helping to maintain Diplostomum spp. in native fishes, albeit at low levels.
Collapse
|
43
|
Santa MA, Musiani M, Ruckstuhl KE, Massolo A. A review on invasions by parasites with complex life cycles: the European strain of Echinococcus multilocularis in North America as a model. Parasitology 2021; 148:1532-1544. [PMID: 35060461 PMCID: PMC8564803 DOI: 10.1017/s0031182021001426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
In a fast-changing and globalized world, parasites are moved across continents at an increasing pace. Co-invasion of parasites and their hosts is leading to the emergence of infectious diseases at a global scale, underlining the need for integration of biological invasions and disease ecology research. In this review, the ecological and evolutionary factors influencing the invasion process of parasites with complex life cycles were analysed, using the invasion of the European strain of Echinococcus multilocularis in North America as a model. The aim was to propose an ecological framework for investigating the invasion of parasites that are trophically transmitted through predator–prey interactions, showing how despite the complexity of the cycles and the interactions among multiple hosts, such parasites can overcome multiple barriers and become invasive. Identifying the key ecological processes affecting the success of parasite invasions is an important step for risk assessment and development of management strategies, particularly for parasites with the potential to infect people (i.e. zoonotic).
Collapse
Affiliation(s)
- Maria A. Santa
- Department of Biology, University of Calgary, AlbertaT2N 1N4, Canada
| | - Marco Musiani
- Department of Biology, University of Calgary, AlbertaT2N 1N4, Canada
| | | | - Alessandro Massolo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, AlbertaT2N 4Z6, Canada
- Ethology Unit, Department of Biology, University of Pisa, Pisa, 56126, Italy
- UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, 25030, France
| |
Collapse
|
44
|
Edwards DD, Gordon NM. HELMINTH DIVERSITY OF GREEN TREEFROGS (HYLA CINEREA) IN THEIR EXPANDED GEOGRAPHICAL RANGE. J Parasitol 2021; 107:923-932. [PMID: 34902862 DOI: 10.1645/20-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There has been a growing interest in characterizing the parasite faunas of species populations as they expand their geographical ranges as a result of climate change. Expanded-range populations often exhibit lower parasite diversity than historical-range populations, and reduced parasitism may, in part, be attributable to expanded-range populations escaping their native range parasites. The present study compares the helminth faunas of green treefrogs (Hyla cinerea) from 4 historical and 4 expanded-range populations to determine whether these latter populations have undergone parasite escape. Results of this study found relatively high degrees of similarity in species composition among helminth assemblages within historical or within range-expansion locations, with marked differences in the composition of helminth faunas between historical and expanded-range populations of these frogs. Because green treefrogs from expanded-range locations exhibited significant decreases in helminth species diversity compared with those from historical sites, they appear to be escaping levels of parasitism typically experienced by these frogs in their native range. Most notably, there was a decrease in the abundance of helminths with direct life cycles and the absence of trematode assemblages with indirect life cycles among expanded-range populations of H. cinerea. The low prevalence of trematode assemblages among historical populations of green treefrogs could limit these parasites' ability to be introduced and propagated in expanded-range locations. However, the lack of trematode assemblages among populations of H. cinerea in its expanded range may also be due to the absence or limited availability of other aquatic hosts that are required to complete the life cycles of these parasites. The reduction in helminth diversity among expanded-range populations of green treefrogs lends some credence to the notion that individuals at the front of a range expansion often invest less energy in reproduction and in doing so allocate more energy to dispersal and other life-history traits, including resistance to parasites. There may, however, be other explanations for differences in parasite species diversity between historical and expanded-range populations of H. cinerea. Because many of the helminths reported from this study are host generalists of amphibians whose recruitment and transmission among intermediate and paratenic hosts are known to be constrained by water and/or soil moisture conditions, we cannot ignore the role of both local amphibian diversity and local abiotic factors in influencing helminth diversity between the 2 population types of green treefrogs. These latter factors would decrease the role of parasite escape or energy trade-offs in driving helminth diversity among populations of H. cinerea and instead would suggest that local conditions play a more prominent role in structuring their helminth communities.
Collapse
Affiliation(s)
- Dale D Edwards
- Department of Biology, University of Evansville, 1800 Lincoln Avenue, Evansville, Indiana 47722
| | - Noah M Gordon
- Department of Biology, University of Evansville, 1800 Lincoln Avenue, Evansville, Indiana 47722
| |
Collapse
|
45
|
Microbiome of the Successful Freshwater Invader, the Signal Crayfish, and Its Changes along the Invasion Range. Microbiol Spectr 2021; 9:e0038921. [PMID: 34494878 PMCID: PMC8557874 DOI: 10.1128/spectrum.00389-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence denotes the role of the microbiome in biological invasions, since it is known that microbes can affect the fitness of the host. Here, we demonstrate differences in the composition of an invader’s microbiome along the invasion range, suggesting that its microbial communities may affect and be affected by range expansion. Using a 16S rRNA gene amplicon sequencing approach, we (i) analyzed the microbiomes of different tissues (exoskeleton, hemolymph, hepatopancreas, and intestine) of a successful freshwater invader, the signal crayfish, (ii) compared them to the surrounding water and sediment, and (iii) explored their changes along the invasion range. Exoskeletal, hepatopancreatic, and intestinal microbiomes varied between invasion core and invasion front populations. This indicates that they may be partly determined by population density, which was higher in the invasion core than in the invasion front. The highly diverse microbiome of exoskeletal biofilm was partly shaped by the environment (due to the similarity with the sediment microbiome) and partly by intrinsic crayfish parameters (due to the high proportion of exoskeleton-unique amplicon sequence variants [ASVs]), including the differences in invasion core and front population structure. Hemolymph had the most distinct microbiome compared to other tissues and differed between upstream (rural) and downstream (urban) river sections, indicating that its microbiome is potentially more driven by the effects of the abiotic environment. Our findings offer an insight into microbiome changes during dispersal of a successful invader and present a baseline for assessment of their contribution to an invader’s overall health and its further invasion success. IMPORTANCE Invasive species are among the major drivers of biodiversity loss and impairment of ecosystem services worldwide, but our understanding of their invasion success and dynamics still has many gaps. For instance, although it is known that host-associated microbial communities may significantly affect an individual’s health and fitness, the current studies on invasive species are mainly focused on pathogenic microbes, while the effects of the remaining majority of microbial communities on the invasion process are almost completely unexplored. We have analyzed the microbiome of one of the most successful crayfish invaders in Europe, the signal crayfish, and explored its changes along the signal crayfish invasion range in the Korana River, Croatia. Our study sets the perspective for future research required to assess the contribution of these changes to an individual’s overall health status and resilience of dispersing populations and their impact on invasion success.
Collapse
|
46
|
Dragičević P, Grbin D, Maguire I, Blažević SA, Abramović L, Tarandek A, Hudina S. Immune Response in Crayfish Is Species-Specific and Exhibits Changes along Invasion Range of a Successful Invader. BIOLOGY 2021; 10:1102. [PMID: 34827095 PMCID: PMC8615248 DOI: 10.3390/biology10111102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/21/2022]
Abstract
Immunity is an important component of invasion success since it enables invaders' adaptation to conditions of the novel environment as they expand their range. Immune response of invaders may vary along the invasion range due to encountered parasites/microbial communities, conditions of the local environment, and ecological processes that arise during the range expansion. Here, we analyzed changes in the immune response along the invasion range of one of the most successful aquatic invaders, the signal crayfish, in the recently invaded Korana River, Croatia. We used several standard immune parameters (encapsulation response, hemocyte count, phenoloxidaze activity, and total prophenoloxidaze) to: i) compare immune response of the signal crayfish along its invasion range, and between species (comparison with co-occurring native narrow-clawed crayfish), and ii) analyze effects of specific predictors (water temperature, crayfish abundance, and body condition) on crayfish immune response changes. Immune response displayed species-specificity, differed significantly along the signal crayfish invasion range, and was mostly affected by water temperature and population abundance. Specific immune parameters showed density-dependent variation corresponding to increased investment in them during range expansion. Obtained results offer baseline insights for elucidating the role of immunocompetence in the invasion success of an invertebrate freshwater invader.
Collapse
Affiliation(s)
- Paula Dragičević
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Dorotea Grbin
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva Ulica 6, 10000 Zagreb, Croatia;
| | - Ivana Maguire
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Sofia Ana Blažević
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Lucija Abramović
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Anita Tarandek
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (P.D.); (I.M.); (S.A.B.); (L.A.); (A.T.)
| |
Collapse
|
47
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota..71358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
48
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.71358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
49
|
Tobias ZJC, Fowler AE, Blakeslee AMH, Darling JA, Torchin ME, Miller AW, Ruiz GM, Tepolt CK. Invasion history shapes host transcriptomic response to a body-snatching parasite. Mol Ecol 2021; 30:4321-4337. [PMID: 34162013 PMCID: PMC10128110 DOI: 10.1111/mec.16038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023]
Abstract
By shuffling biogeographical distributions, biological invasions can both disrupt long-standing associations between hosts and parasites and establish new ones. This creates natural experiments with which to study the ecology and evolution of host-parasite interactions. In estuaries of the Gulf of Mexico, the white-fingered mud crab (Rhithropanopeus harrisii) is infected by a native parasitic barnacle, Loxothylacus panopaei (Rhizocephala), which manipulates host physiology and behaviour. In the 1960s, L. panopaei was introduced to the Chesapeake Bay and has since expanded along the southeastern Atlantic coast, while host populations in the northeast have so far been spared. We use this system to test the host's transcriptomic response to parasitic infection and investigate how this response varies with the parasite's invasion history, comparing populations representing (i) long-term sympatry between host and parasite, (ii) new associations where the parasite has invaded during the last 60 years and (iii) naïve hosts without prior exposure. A comparison of parasitized and control crabs revealed a core response, with widespread downregulation of transcripts involved in immunity and moulting. The transcriptional response differed between hosts from the parasite's native range and where it is absent, consistent with previous observations of increased susceptibility in populations lacking exposure to the parasite. Crabs from the parasite's introduced range, where prevalence is highest, displayed the most dissimilar response, possibly reflecting immune priming. These results provide molecular evidence for parasitic manipulation of host phenotype and the role of gene regulation in mediating host-parasite interactions.
Collapse
Affiliation(s)
- Zachary J. C. Tobias
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy E. Fowler
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | | | - John A. Darling
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mark E. Torchin
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | | | - Gregory M. Ruiz
- Smithsonian Environmental Research, Center, Edgewater, MD, USA
| | - Carolyn K. Tepolt
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Smithsonian Environmental Research, Center, Edgewater, MD, USA
| |
Collapse
|
50
|
McManus A, Holland CV, Henttonen H, Stuart P. The Invasive Bank Vole ( Myodes glareolus): A Model System for Studying Parasites and Ecoimmunology during a Biological Invasion. Animals (Basel) 2021; 11:2529. [PMID: 34573495 PMCID: PMC8464959 DOI: 10.3390/ani11092529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
The primary driver of the observed increase in emerging infectious diseases (EIDs) has been identified as human interaction with wildlife and this increase has emphasized knowledge gaps in wildlife pathogens dynamics. Wild rodent models have proven excellent for studying changes in parasite communities and have been a particular focus of eco-immunological research. Helminth species have been shown to be one of the factors regulating rodent abundance and indirectly affect disease burden through trade-offs between immune pathways. The Myodes glareolus invasion in Ireland is a unique model system to explore the invasion dynamics of helminth species. Studies of the invasive population of M. glareolus in Ireland have revealed a verifiable introduction point and its steady spread. Helminths studies of this invasion have identified enemy release, spillover, spillback and dilution taking place. Longitudinal studies have the potential to demonstrate the interplay between helminth parasite dynamics and both immune adaptation and coinfecting microparasites as M. glareolus become established across Ireland. Using the M. glareolus invasion as a model system and other similar wildlife systems, we can begin to fill the large gap in our knowledge surrounding the area of wildlife pathogen dynamics.
Collapse
Affiliation(s)
- Andrew McManus
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland;
| | - Celia V. Holland
- Department of Zoology, Trinity College Dublin, the University of Dublin, College Green, D02 PN40 Dublin, Ireland;
| | - Heikki Henttonen
- Wildlife Ecology, Natural Resources Institute Finland (Luke), FI 00790 Helsinki, Finland;
| | - Peter Stuart
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland;
| |
Collapse
|