1
|
Michielini JP, Yi X, Brown LM, Gao SM, Orians C, Crone EE. Novel host plant use by a specialist insect depends on geographic variation in both the host and herbivore species. Oecologia 2024; 204:95-105. [PMID: 38123786 PMCID: PMC10830605 DOI: 10.1007/s00442-023-05490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Understanding the circumstances under which insect herbivores will adopt a novel host plant is a longstanding question in basic and applied ecology. While geographic variation in host use can arise through differences in both herbivore preference and plant characteristics, there is a tendency to attribute geographic variation in host use to regional differences in herbivore preference alone. This is especially true for herbivores specialized to one or a few plant species. We compared how geographic variation in herbivore preference and host plant origin shape regional differences in host plant use by the specialized herbivore, Euphydryas phaeton. In parts of its range, E. phaeton uses only a native host, Chelone glabra, while in others, it also uses an introduced host, Plantago lanceolata. We offered female butterflies from each region the non-native host plant sourced from both regions and compared their oviposition behavior. The non-native host was almost universally rejected by butterflies in the region where only the native plant is used. In the region where butterflies use both hosts, females accepted non-native plants from their natal region twice as often as non-native plants from the other region where they are not used. Acceptance differed substantially among individual butterflies within regions but not among plants within regions. Thus, both individual preference and regional differences in both the insect and non-native host contributed to the geographic variation in different ways. These results highlight that, in addition to herbivore preference, regional differences in perceived plant suitability may be an important driver of diet breadth.
Collapse
Affiliation(s)
- James P Michielini
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| | - Xianfeng Yi
- College of Life Science, Qufu Normal University, Qufu, China
| | - Leone M Brown
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Biology Department, James Madison University, Harrisonburg, VA, 22807, USA
| | - Shan Ming Gao
- Biology Department, Pomona College, Claremont, CA, 91711, USA
| | - Colin Orians
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Elizabeth E Crone
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
2
|
Bellec L, Cortesero AM, Marnet N, Faure S, Hervé MR. Age-specific allocation of glucosinolates within plant reproductive tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111690. [PMID: 36965631 DOI: 10.1016/j.plantsci.2023.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The Optimal Defense Theory (ODT) predicts that the distribution of defenses within a plant should mirror the value and vulnerability of each tissue. Although the ODT has received much experimental support, very few studies have examined defense allocation among reproductive tissues and none assessed simultaneously how these defenses evolve with age. We quantified glucosinolates in perianths, anthers and pistils at different bud maturity stages (i.e., intermediate flower buds, old flower buds and flowers) of undamaged and mechanically damaged plants of an annual brassicaceous species. The youngest leaf was used as a reference for vegetative organs, since it is predicted to be one of the most defended. In line with ODT predictions, reproductive tissues were more defended than vegetative tissues constitutively, and within the former, pistils and anthers more defended than perianths. No change in the overall defense level was found between bud maturity stages, but a significant temporal shift was observed between pistils and anthers. Contrary to ODT predictions, mechanical damage did not induce systemic defenses in leaves but only in pistils. Our results show that defense allocation in plant reproductive tissues occurs at fine spatial and temporal scales, extending the application framework of the ODT. They also demonstrate interactions between space and time in fine-scale defense allocation.
Collapse
Affiliation(s)
- Laura Bellec
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France; Innolea, 6 Chemin de Panedautes, 31700 Mondonville, France.
| | | | | | | | - Maxime R Hervé
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France
| |
Collapse
|
3
|
Chrétien LTS, Khalil A, Gershenzon J, Lucas-Barbosa D, Dicke M, Giron D. Plant metabolism and defence strategies in the flowering stage: Time-dependent responses of leaves and flowers under attack. PLANT, CELL & ENVIRONMENT 2022; 45:2841-2855. [PMID: 35611630 DOI: 10.1111/pce.14363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Plants developing into the flowering stage undergo major physiological changes. Because flowers are reproductive tissues and resource sinks, strategies to defend them may differ from those for leaves. Thus, this study investigates the defences of flowering plants by assessing processes that sustain resistance (constitutive and induced) and tolerance to attack. We exposed the annual plant Brassica nigra to three distinct floral attackers (caterpillar, aphid and bacterial pathogen) and measured whole-plant responses at 4, 8 and 12 days after the attack. We simultaneously analysed profiles of primary and secondary metabolites in leaves and inflorescences and measured dry biomass of roots, leaves and inflorescences as proxies of resource allocation and regrowth. Regardless of treatments, inflorescences contained 1.2 to 4 times higher concentrations of primary metabolites than leaves, and up to 7 times higher concentrations of glucosinolates, which highlights the plant's high investment of resources into inflorescences. No induction of glucosinolates was detected in inflorescences, but the attack transiently affected the total concentration of soluble sugars in both leaves and inflorescences. We conclude that B. nigra evolved high constitutive rather than inducible resistance to protect their flowers; plants additionally compensated for damage by attackers via the regrowth of reproductive parts. This strategy may be typical of annual plants.
Collapse
Affiliation(s)
- Lucille T S Chrétien
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/Université de Tours, Tours, France
| | - Alix Khalil
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/Université de Tours, Tours, France
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology (MPI CE), Department of Biochemistry, Jena, Germany
| | - Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/Université de Tours, Tours, France
| |
Collapse
|
4
|
Sobuj N, Nissinen K, Virjamo V, Salonen A, Sivadasan U, Randriamanana T, Ikonen VP, Kilpeläinen A, Julkunen-Tiitto R, Nybakken L, Mehtätalo L, Peltola H. Accumulation of phenolics and growth of dioecious Populus tremula (L.) seedlings over three growing seasons under elevated temperature and UVB radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:114-122. [PMID: 34034157 DOI: 10.1016/j.plaphy.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Accumulation of secondary metabolites may exhibit developmentally regulated variation in different plant organs. Moreover, prevailing environmental conditions may interact with development-related variations in plant traits. In this study, we examined developmentally regulated variation in phenolic accumulation in the twigs of dioecious Populus tremula (L.) and how the effects of elevated temperature and ultraviolet B (UVB) radiation on growth and phenolics accumulation varied as the plants get older. In an open-field experiment, six female and six male genotypes were exposed to single and combined elevated temperature and UVB radiation treatments for three consecutive growing seasons. The concentrations of low molecular weight phenolics and condensed tannins did not show age-dependent variation in the twigs. In temperature-treated plants, diameter growth rate decreased, and concentration of condensed tannins increased as plants aged; there were no cumulative effects of elevated UVB radiation on growth and phenolic accumulation. Females maintained a higher concentration of low molecular weight phenolics throughout the experimental period; however, growth and phenolic concentration did not vary over time in females and males. Our results suggest that phenolic accumulation in perennial plants may not necessarily always exhibit age-dependent variation and the effects of elevated temperature on growth and phenolic may diminish as plants get older.
Collapse
Affiliation(s)
- Norul Sobuj
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland.
| | - Katri Nissinen
- School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Virpi Virjamo
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland; School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Anneli Salonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Unnikrishnan Sivadasan
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Tendry Randriamanana
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Veli-Pekka Ikonen
- School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Antti Kilpeläinen
- School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Lauri Mehtätalo
- School of Computing, University of Eastern Finland, 80101, Joensuu, Finland
| | - Heli Peltola
- School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| |
Collapse
|
5
|
Paul RL, Pearse IS, Ode PJ. Fine‐scale plant defence variability increases top‐down control of an herbivore. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan L. Paul
- Graduate Degree Program in Ecology and Department of Agricultural Biology Colorado State University Fort Collins CO USA
| | - Ian S. Pearse
- U.S. Geological SurveyFort Collins Science Center Fort Collins CO USA
| | - Paul J. Ode
- Graduate Degree Program in Ecology and Department of Agricultural Biology Colorado State University Fort Collins CO USA
| |
Collapse
|
6
|
Glaum P, Vandermeer J. Stage‐structured ontogeny in resource populations generates non‐additive stabilizing and de‐stabilizing forces in populations and communities. OIKOS 2021. [DOI: 10.1111/oik.08099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paul Glaum
- Dept of Environmental Science and Policy, Univ. of California Davis CA USA
| | - John Vandermeer
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| |
Collapse
|
7
|
Preference, performance, and chemical defense in an endangered butterfly using novel and ancestral host plants. Sci Rep 2021; 11:992. [PMID: 33446768 PMCID: PMC7809109 DOI: 10.1038/s41598-020-80413-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
Adoption of novel host plants by herbivorous insects can require new adaptations and may entail loss of adaptation to ancestral hosts. We examined relationships between an endangered subspecies of the butterfly Euphydryas editha (Taylor’s checkerspot) and three host plant species. Two of the hosts (Castilleja hispida, Castilleja levisecta) were used ancestrally while the other, Plantago lanceolata, is exotic and was adopted more recently. We measured oviposition preference, neonate preference, larval growth, and secondary chemical uptake on all three hosts. Adult females readily laid eggs on all hosts but favored Plantago and tended to avoid C. levisecta. Oviposition preference changed over time. Neonates had no preference among host species, but consistently chose bracts over leaves within both Castilleja species. Larvae developed successfully on all species and grew to similar size on all of them unless they ate only Castilleja leaves (rather than bracts) which limited their growth. Diet strongly influenced secondary chemical uptake by larvae. Larvae that ate Plantago or C. hispida leaves contained the highest concentrations of iridoid glycosides, and iridoid glycoside composition varied with host species and tissue type. Despite having largely switched to a novel exotic host and generally performing better on it, this population has retained breadth in preference and ability to use other hosts.
Collapse
|
8
|
Faghihinia M, Zou Y, Bai Y, Marrs R, Staddon PL. Seasonal variation in the response of arbuscular mycorrhizal fungi to grazing intensity. MYCORRHIZA 2020; 30:635-646. [PMID: 32647970 DOI: 10.1007/s00572-020-00974-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Despite existing evidence of pronounced seasonality in arbuscular mycorrhizal (AM) fungal communities, little is known about the ecology of AM fungi in response to grazing intensity in different seasons. Here, we assessed AM fungal abundance, represented by soil hyphal length density (HLD), mycorrhizal root colonization intensity (MI), and arbuscule intensity (AI) throughout three seasons (spring, summer, autumn) in a farm-scale field experiment in typical, grazed steppe vegetation in northern China. Seven levels of field-manipulated, grazing intensities had been maintained for over 13 years within two topographies, flat and slope. We also measured soil nutrients and carbon content throughout the growing season to investigate whether seasonal variation in AM fungal abundance was related to seasonal shifts in soil resource availability along the grazing gradient. We further examined the association between AM fungal metrics in the different grazing treatments through the growing season. Our results showed a pronounced seasonal shift in HLD but there was no clear seasonality in MI and AI. HLD was significantly negatively related to grazing intensity over the course of the growing season from spring to autumn. However, MI and AI were related negatively to grazing intensity only in spring. In addition, differential responses of AM fungal abundance to grazing intensity at the two topographical sites were detected. No strong evidence was found for associations between AM fungal abundance and soil resource availability. Moreover, AM fungal internal and external abundance were correlated positively under the different grazing intensities throughout the growing season. Overall, our study suggests that external AM fungal structures in soil were more responsive to seasonal variation and grazing than internal structures in roots. The findings also suggest that early grazing may be detrimental to AM fungal root colonization of newly emerged plants.
Collapse
Affiliation(s)
- Maede Faghihinia
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Yi Zou
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China.
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rob Marrs
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | - Philip L Staddon
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
- Countryside and Community Research Institute, University of Gloucestershire, Cheltenham, GL50 4AZ, UK
- School for Agriculture, Food and the Environment, Royal Agricultural University, Cheltenham, GL7 6JS, UK
| |
Collapse
|
9
|
Rusman Q, Lucas‐Barbosa D, Hassan K, Poelman EH. Plant ontogeny determines strength and associated plant fitness consequences of plant-mediated interactions between herbivores and flower visitors. THE JOURNAL OF ECOLOGY 2020; 108:1046-1060. [PMID: 32421019 PMCID: PMC7217261 DOI: 10.1111/1365-2745.13370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 05/30/2023]
Abstract
Plants show ontogenetic variation in growth-defence strategies to maximize reproductive output within a community context. Most work on plant ontogenetic variation in growth-defence trade-offs has focussed on interactions with antagonistic insect herbivores. Plants respond to herbivore attack with phenotypic changes. Despite the knowledge that plant responses to herbivory affect plant mutualistic interactions with pollinators required for reproduction, indirect interactions between herbivores and pollinators have not been included in the evaluation of how ontogenetic growth-defence trajectories affect plant fitness.In a common garden experiment with the annual Brassica nigra, we investigated whether exposure to various herbivore species on different plant ontogenetic stages (vegetative, bud or flowering stage) affects plant flowering traits, interactions with flower visitors and results in fitness consequences for the plant.Effects of herbivory on flowering plant traits and interactions with flower visitors depended on plant ontogeny. Plant exposure in the vegetative stage to the caterpillar Pieris brassicae and aphid Brevicoryne brassicae led to reduced flowering time and flower production, and resulted in reduced pollinator attraction, pollen beetle colonization, total seed production and seed weight. When plants had buds, infestation by most herbivore species tested reduced flower production and pollen beetle colonization. Pollinator attraction was either increased or reduced. Plants infested in the flowering stage with P. brassicae or Lipaphis erysimi flowered longer, while infestation by any of the herbivore species tested increased the number of flower visits by pollinators.Our results show that the outcome of herbivore-flower visitor interactions in B. nigra is specific for the combination of herbivore species and plant ontogenetic stage. Consequences of herbivory for flowering traits and reproductive output were strongest when plants were attacked early in life. Such differences in selection pressures imposed by herbivores to specific plant ontogenetic stages may drive the evolution of distinct ontogenetic trajectories in growth-defence-reproduction strategies and include indirect interactions between herbivores and flower visitors. Synthesis. Plant ontogeny can define the direct and indirect consequences of herbivory. Our study shows that the ontogenetic stage of plant individuals determined the effects of herbivory on plant flowering traits, interactions with flower visitors and plant fitness.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Present address:
Bio‐communication & EcologyETH ZürichSchmelzbergstrasse 98092ZürichSwitzerland
| | - Kamrul Hassan
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Present address:
Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
10
|
Critical Phenological Events Affect Chemical Defense of Plant Tissues: Iridoid Glycosides in a Woody Shrub. J Chem Ecol 2020; 46:206-216. [PMID: 31907751 DOI: 10.1007/s10886-019-01135-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/30/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
Plants are chemically-complex organisms; each individual contains diverse tissue-types, has the ability to differentially allocate secondary metabolites to these tissues and can change this allocation through time. The interaction of variation in chemical defense of different tissue types and variation in chemical defense through time, however, is rarely examined and has not been studied for iridoid glycoside-producing woody plants. In this study, we quantified allocation of iridoid glycosides (IGs) to the leaves, flowers, fruits, and seeds of 25 individuals of a long-lived shrub (Lonicera x bella Zabel, Caprifoliaceae), at five important phenological timepoints (leaf-out, flowering, fruit appearance, fruit ripening, and fruit dispersal) throughout a growing season. We found that leaves had 2x higher IG concentrations during flowering and fruiting than earlier in the season (after leaf-out), and later in the season (after fruit dispersal). The individual IG driving this increase in leaves during reproduction, secologanin, was also the most abundant IG in semiripe fruits. Flowers and seeds were composed of different proportions of individual IGs than fruits or leaves, but did not change across time and had overall low concentrations of IGs. In L. x bella, phenological events such as flowering and fruiting lead to an increase in leaf chemical defense that is likely to influence interactions with leaf-feeders. Our results stress the importance of considering phenology when sampling plants for the quantification of chemical defenses.
Collapse
|
11
|
Papazian S, Girdwood T, Wessels BA, Poelman EH, Dicke M, Moritz T, Albrectsen BR. Leaf metabolic signatures induced by real and simulated herbivory in black mustard (Brassica nigra). Metabolomics 2019; 15:130. [PMID: 31563978 PMCID: PMC6765471 DOI: 10.1007/s11306-019-1592-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The oxylipin methyl jasmonate (MeJA) is a plant hormone active in response signalling and defence against herbivores. Although MeJA is applied experimentally to mimic herbivory and induce plant defences, its downstream effects on the plant metabolome are largely uncharacterized, especially in the context of primary growth and tissue-specificity of the response. OBJECTIVES We investigated the effects of MeJA-simulated and real caterpillar herbivory on the foliar metabolome of the wild plant Brassica nigra and monitored the herbivore-induced responses in relation to leaf ontogeny. METHODS As single or multiple herbivory treatments, MeJA- and mock-sprayed plants were consecutively exposed to caterpillars or left untreated. Gas chromatography (GC) and liquid chromatography (LC) time-of-flight mass-spectrometry (TOF-MS) were combined to analyse foliar compounds, including central primary and specialized defensive plant metabolites. RESULTS Plant responses were stronger in young leaves, which simultaneously induced higher chlorophyll levels. Both MeJA and caterpillar herbivory induced similar, but not identical, accumulation of tricarboxylic acids (TCAs), glucosinolates (GSLs) and phenylpropanoids (PPs), but only caterpillar feeding led to depletion of amino acids. MeJA followed by caterpillars caused higher induction of defence compounds, including a three-fold increase in the major defence compound allyl-GSL (sinigrin). When feeding on MeJA-treated plants, caterpillars gained less weight indicative of the reduced host-plant quality and enhanced resistance. CONCLUSIONS The metabolomics approach showed that plant responses induced by herbivory extend beyond the regulation of defence metabolism and are tightly modulated throughout leaf development. This leads to a new understanding of the plant metabolic potential that can be exploited for future plant protection strategies.
Collapse
Affiliation(s)
- Stefano Papazian
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Tristan Girdwood
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Bernard A. Wessels
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Erik H. Poelman
- 0000 0001 0791 5666grid.4818.5Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- 0000 0001 0791 5666grid.4818.5Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Thomas Moritz
- 0000 0000 8578 2742grid.6341.0Department of Forest Genetic and Plant Physiology, Swedish University of Agricultural Sciences (Umeå Plant Science Centre), 90187 Umeå, Sweden
| | - Benedicte R. Albrectsen
- 0000 0001 1034 3451grid.12650.30Department of Plant Physiology, Umeå University (Umeå Plant Science Centre), 90187 Umeå, Sweden
| |
Collapse
|
12
|
Orians CM, Schweiger R, Dukes JS, Scott ER, Müller C. Combined impacts of prolonged drought and warming on plant size and foliar chemistry. ANNALS OF BOTANY 2019; 124:41-52. [PMID: 30698658 PMCID: PMC6676383 DOI: 10.1093/aob/mcz004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Future shifts in precipitation regimes and temperature are expected to affect plant traits dramatically. To date, many studies have explored the effects of acute stresses, but few have investigated the consequences of prolonged shifts in climatic conditions on plant growth and chemistry. METHODS Plant size and metabolite profiles were assessed on naturally occurring Plantago lanceolata plants growing under different precipitation (ambient, 50 % less than ambient = drought) and temperature (ambient, +0.8, +2.4 and +4.0 °C above ambient) treatments at the Boston Area Climate Experiment (constructed in 2007). KEY RESULTS The analysis of primary and secondary metabolites revealed pronounced effects of drought, and a precipitation × temperature interaction. Strikingly, the effects of precipitation were minimal at the two lower temperatures but marked at the two higher temperatures. Compared with the ambient condition, plants in the drought plots had lower concentrations of foliar nitrogen, amino acids and most sugars, and higher concentrations of sorbitol, citrate and malate, common stress-induced metabolites. This pattern was especially evident at high temperatures. Moreover, drought-exposed plants showed lower concentrations of catalpol, an iridoid glycoside. CONCLUSIONS While the effect of warming on the metabolite profiles was less pronounced, differences were marked when combined with drought. Given the interactive effect of environmental variables on leaf chemistry, and the fact that woody and herbaceous plants seem to differ in their responses to temperature and precipitation, future studies should account for the direct and indirect effects of the community response to multifactorial field conditions.
Collapse
Affiliation(s)
- Colin M Orians
- Department of Biology, Tufts University, Medford, MA, USA
| | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Jeffrey S Dukes
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Eric R Scott
- Department of Biology, Tufts University, Medford, MA, USA
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Carper AL, Enger M, Bowers MD. Host Plant Effects on Immune Response Across Development of a Specialist Caterpillar. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Boege K, Agrawal AA, Thaler JS. Ontogenetic strategies in insect herbivores and their impact on tri-trophic interactions. CURRENT OPINION IN INSECT SCIENCE 2019; 32:61-67. [PMID: 31113633 DOI: 10.1016/j.cois.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Insect herbivores express tremendous ontogenetic variation in traits related to growth and maturation, but also as an evolutionary consequence of ecological interactions with plants and predators. These selective pressures can either reinforce or restrict expression of particular ontogenetic strategies, allowing herbivores to simultaneously cope with plant resistance and risk of predation through ontogenetic change. For example, whereas an increase in defense-sabotaging behavior, aposematism and sequestration along herbivore ontogeny seems to be reinforced by both bottom-up and top-down forces, some ontogenetic trends in anti-predator behavior can be limited by plant resistance. Communication among plants, herbivores and their natural enemies is also influenced by insect ontogenies. The study of ontogenetic strategies of herbivores requires the assessment of the genetic variation, heritability and adaptive value across herbivore development, considering the variation in plant quality and predation risk.
Collapse
Affiliation(s)
- Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, Coyoacán, C.P. 04510, Ciudad de México, Mexico.
| | - Anurag A Agrawal
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, 14853, NY, USA; Department of Entomology, Cornell University, Ithaca, 14853, NY, USA
| | - Jennifer S Thaler
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, 14853, NY, USA; Department of Entomology, Cornell University, Ithaca, 14853, NY, USA
| |
Collapse
|
15
|
Slinn HL, Richards LA, Dyer LA, Hurtado PJ, Smilanich AM. Across Multiple Species, Phytochemical Diversity and Herbivore Diet Breadth Have Cascading Effects on Herbivore Immunity and Parasitism in a Tropical Model System. FRONTIERS IN PLANT SCIENCE 2018; 9:656. [PMID: 29942320 PMCID: PMC6004389 DOI: 10.3389/fpls.2018.00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/27/2018] [Indexed: 05/28/2023]
Abstract
Terrestrial tri-trophic interactions account for a large part of biodiversity, with approximately 75% represented in plant-insect-parasitoid interactions. Herbivore diet breadth is an important factor mediating these tri-trophic interactions, as specialisation can influence how herbivore fitness is affected by plant traits. We investigated how phytochemistry, herbivore immunity, and herbivore diet breadth mediate plant-caterpillar-parasitoid interactions on the tropical plant genus Piper (Piperaceae) at La Selva Biological station in Costa Rica and at Yanayacu Biological Station in Ecuador. We collected larval stages of one Piper generalist species, Quadrus cerealis, (Lepidoptera: Hesperiidae) and 4 specialist species in the genus Eois (Lepidoptera: Geometridae) from 15 different species of Piper, reared them on host leaf material, and assayed phenoloxidase activity as a measure of potential larval immunity. We combined these data with parasitism and caterpillar species diet breadth calculated from a 19-year database, as well as established values of phytochemical diversity calculated for each plant species, in order to test specific hypotheses about how these variables are related. We found that phytochemical diversity was an important predictor for herbivore immunity, herbivore parasitism, and diet breadth for specialist caterpillars, but that the direction and magnitude of these relationships differed between sites. In Costa Rica, specialist herbivore immune function was negatively associated with the phytochemical diversity of the Piper host plants, and rates of parasitism decreased with higher immune function. The same was true for Ecuador with the exception that there was a positive association between immune function and phytochemical diversity. Furthermore, phytochemical diversity did not affect herbivore immunity and parasitism for the more generalised herbivore. Results also indicated that small differences in herbivore diet breadth are an important factor mediating herbivore immunity and parasitism success for Eois at both sites. These patterns contribute to a growing body of literature that demonstrate strong cascading effects of phytochemistry on higher trophic levels that are dependent on herbivore specialisation and that can vary in space and time. Investigating the interface between herbivore immunity, plant chemical defence, and parasitoids is an important facet of tri-trophic interactions that can help to explain the enormous amount of biodiversity found in the tropics.
Collapse
Affiliation(s)
- Heather L. Slinn
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | | | | | | | | |
Collapse
|
16
|
Pearse IS, Paul R, Ode PJ. Variation in Plant Defense Suppresses Herbivore Performance. Curr Biol 2018; 28:1981-1986.e2. [DOI: 10.1016/j.cub.2018.04.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 10/14/2022]
|
17
|
Chrétien LTS, David A, Daikou E, Boland W, Gershenzon J, Giron D, Dicke M, Lucas‐Barbosa D. Caterpillars induce jasmonates in flowers and alter plant responses to a second attacker. THE NEW PHYTOLOGIST 2018; 217:1279-1291. [PMID: 29207438 PMCID: PMC5814890 DOI: 10.1111/nph.14904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/19/2017] [Indexed: 05/22/2023]
Abstract
In nature, herbivorous insects and plant pathogens are generally abundant when plants are flowering. Thus, plants face a diversity of attackers during their reproductive phase. Plant responses to one attacker can interfere with responses to a second attacker, and phytohormones that orchestrate plant reproduction are also involved in resistance to insect and pathogen attack. We quantified phytohormonal responses of flowering plants exposed to single or dual attack and studied resistance mechanisms of plants in the flowering stage. Flowering Brassica nigra were exposed to either a chewing caterpillar, a phloem-feeding aphid or a bacterial pathogen, and plant hormonal responses were compared with dual attack situations. We quantified phytohormones in inflorescences and leaves, and determined the consequences of hormonal changes for components of direct and indirect plant resistance. Caterpillars were the main inducers of jasmonates in inflorescences, and the phytohormonal profile of leaves was not affected by either insect or pathogen attack. Dual attack increased plant resistance to caterpillars, but compromised resistance to aphids. Parasitoid performance was negatively correlated with the performance of their hosts. We conclude that plants prioritize resistance of reproductive tissues over vegetative tissues, and that a chewing herbivore species is the main driver of responses in flowering B. nigra.
Collapse
Affiliation(s)
- Lucille T. S. Chrétien
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 1, Radix building6708PBWageningenthe Netherlands
- Institut de Recherche sur la Biologie de l'Insecte (IRBI)UMR 7261CNRS/Université François‐Rabelais de ToursAvenue Monge, Parc Grandmont37200ToursFrance
- Department of BiologyÉcole Normale Supérieure de Lyon (ENS L)46 Allée d'Italie69007LyonFrance
| | - Anja David
- Department of Bioorganic ChemistryMax Planck Institute for Chemical Ecology (MPI CE)Beutenberg Campus, Hans‐Knoell‐Strasse 8D‐07745JenaGermany
| | - Eirini Daikou
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 1, Radix building6708PBWageningenthe Netherlands
| | - Wilhelm Boland
- Department of Bioorganic ChemistryMax Planck Institute for Chemical Ecology (MPI CE)Beutenberg Campus, Hans‐Knoell‐Strasse 8D‐07745JenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical Ecology (MPI CE)Beutenberg Campus, Hans‐Knoell‐Strasse 8D‐07745JenaGermany
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte (IRBI)UMR 7261CNRS/Université François‐Rabelais de ToursAvenue Monge, Parc Grandmont37200ToursFrance
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 1, Radix building6708PBWageningenthe Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen UniversityDroevendaalsesteeg 1, Radix building6708PBWageningenthe Netherlands
| |
Collapse
|
18
|
Quintero C, Bowers MD. Plant and herbivore ontogeny interact to shape the preference, performance and chemical defense of a specialist herbivore. Oecologia 2018; 187:401-412. [DOI: 10.1007/s00442-018-4068-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|
19
|
Damián X, Fornoni J, Domínguez CA, Boege K. Ontogenetic changes in the phenotypic integration and modularity of leaf functional traits. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12971] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xóchitl Damián
- Instituto de EcologíaUniversidad Nacional Autónoma de México Ciudad de México Mexico
| | - Juan Fornoni
- Instituto de EcologíaUniversidad Nacional Autónoma de México Ciudad de México Mexico
| | - César A. Domínguez
- Instituto de EcologíaUniversidad Nacional Autónoma de México Ciudad de México Mexico
| | - Karina Boege
- Instituto de EcologíaUniversidad Nacional Autónoma de México Ciudad de México Mexico
| |
Collapse
|
20
|
Fei M, Harvey JA, Yin Y, Gols R. Oviposition Preference for Young Plants by the Large Cabbage Butterfly (Pieris brassicae ) Does not Strongly Correlate with Caterpillar Performance. J Chem Ecol 2017; 43:617-629. [PMID: 28620771 PMCID: PMC5501907 DOI: 10.1007/s10886-017-0853-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/08/2017] [Accepted: 05/28/2017] [Indexed: 11/27/2022]
Abstract
The effects of temporal variation in the quality of short-lived annual plants on oviposition preference and larval performance of insect herbivores has thus far received little attention. This study examines the effects of plant age on female oviposition preference and offspring performance in the large cabbage white butterfly Pieris brassicae. Adult female butterflies lay variable clusters of eggs on the underside of short-lived annual species in the family Brassicaceae, including the short-lived annuals Brassica nigra and Sinapis arvensis, which are important food plants for P. brassicae in The Netherlands. Here, we compared oviposition preference and larval performance of P. brassicae on three age classes (young, mature, and pre-senescing) of B. nigra and S. arvensis plants. Oviposition preference of P. brassicae declined with plant age in both plant species. Whereas larvae performed similarly on all three age classes in B. nigra, preference and performance were weakly correlated in S. arvensis. Analysis of primary (sugars and amino acids) and secondary (glucosinolates) chemistry in the plant shoots revealed that differences in their quality and quantity were more pronounced with respect to tissue type (leaves vs. flowers) than among different developmental stages of both plant species. Butterflies of P. brassicae may prefer younger and smaller plants for oviposition anticipating that future plant growth and size is optimally synchronized with the final larval instar, which contributes >80% of larval growth before pupation.
Collapse
Affiliation(s)
- Minghui Fei
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Yi Yin
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
21
|
Hogg BN, Moran PJ, Smith L. Impacts of the Psyllid Arytinnis hakani (Homoptera: Psyllidae) on Invasive French Broom in Relation to Plant Size and Psyllid Density. ENVIRONMENTAL ENTOMOLOGY 2017; 46:552-558. [PMID: 28402389 DOI: 10.1093/ee/nvx074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 06/07/2023]
Abstract
The impacts of weed biological control agents may vary with plant ontogeny. As plants grow, structural and chemical changes can alter plant resistance, which may reduce herbivory via chemical or structural defenses, and plant tolerance, which may enable plants to maintain fitness despite attack. Resistance and tolerance generally increase as plants grow. Nonetheless, prerelease tests of agent efficacy often overlook plant ontogeny. Here, we assess the performance and impacts of a candidate biocontrol agent, the psyllid Arytinnis hakani (Loginova), in relation to the age of its host plant, the invasive shrub French broom, Genista monspessulana. We also examined whether the psyllid can consistently kill plants when its densities are sufficiently high. Survival of psyllids to adulthood and the timing of adult emergence did not differ between plant sizes, indicating that performance of nymphs was not influenced by plant size. However, adult psyllid survival was reduced on small plants, suggesting that nymphs and adults responded differently to ontogenetic changes in plant quality. Psyllids affected the growth of small and large plants similarly; all measured plant growth parameters were lower in the presence of psyllids regardless of plant size. In a separate experiment, effects on plant survival depended on psyllid density, as higher realized densities of ∼9 psyllids per cm stem length were necessary to consistently kill plants. Thus, results suggest that the psyllid would be equally effective on a range of plant sizes, particularly at high densities, and show the potential of the psyllid to help control French broom in California.
Collapse
Affiliation(s)
- Brian N Hogg
- USDA-ARS, Exotic and Invasive Weeds Research Unit, 800 Buchanan St., Albany, CA (; ; )
| | - Patrick J Moran
- USDA-ARS, Exotic and Invasive Weeds Research Unit, 800 Buchanan St., Albany, CA (; ; )
| | - Lincoln Smith
- USDA-ARS, Exotic and Invasive Weeds Research Unit, 800 Buchanan St., Albany, CA (; ; )
| |
Collapse
|
22
|
Tomczak VV, Müller C. Influence of arbuscular mycorrhizal stage and plant age on the performance of a generalist aphid. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:258-266. [PMID: 28159616 DOI: 10.1016/j.jinsphys.2017.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/28/2017] [Accepted: 01/29/2017] [Indexed: 05/26/2023]
Abstract
Host plant quality for herbivores is modulated by different factors including symbiosis with soil organisms, such as arbuscular mycorrhiza (AM), as well as plant age. However, the role of the developmental stage of the AM in such plant-microbe-herbivore interactions has been neglected. To investigate the effects of AM stage and plant age on aphid performance, individuals of the generalist Myzus persicae were reared on leaves of non-mycorrhized (NM) or mycorrhized (AM) Plantago lanceolata plants at two time points, on young plants (with a minor established AM) and on older plants (with a well-established AM), respectively. Various performance traits were measured in the first aphid generation. Additionally, the body mass of the offspring was recorded to determine effects of previous infestation on the next generation. At the end of the herbivore experiments, plant carbon (C), nitrogen (N) and phosphorus (P) as well as leaf mass per area (LMA) were analyzed as measures of plant quality. Developmental performance traits of the aphids were either affected by AM and time point (nymph body mass at day 6) or by the interaction of both (relative growth rate). However, body mass at day 10 and reproductive performance traits were lower on older plants, independent of AM treatment. In line with these results, host plant quality changed little due to AM but strongly with age, with decreases in leaf N and P, but increases in C and LMA. Furthermore, nymphs gained a higher body mass when feeding on previously infested plants compared to their parents that started to feed on non-infested hosts, likely due to an aphid-induced modification in host traits. In summary, our results indicate that effects of both the developmental stage of AM and the plant age on aphid performance change throughout aphid development and between generations, attributable to shifts in plant quality.
Collapse
Affiliation(s)
- Viktoria V Tomczak
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
23
|
Barton KE, Boege K. Future directions in the ontogeny of plant defence: understanding the evolutionary causes and consequences. Ecol Lett 2017; 20:403-411. [DOI: 10.1111/ele.12744] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Kasey E. Barton
- Department of Botany University of Hawai'i at Mānoa 3190 Maile Way Room 101 Honolulu Hawai'i 96822 USA
| | - Karina Boege
- Instituto de Ecología Universidad Nacional Autónoma de México. A.P. 20‐275. Ciudad Universitaria C.P. 04510 Ciudad De México México
| |
Collapse
|
24
|
Waterton J, Cleland EE. Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community. Ecol Evol 2016; 6:8942-8953. [PMID: 28035282 PMCID: PMC5192797 DOI: 10.1002/ece3.2610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/13/2016] [Accepted: 10/22/2016] [Indexed: 11/24/2022] Open
Abstract
Ecological trade‐offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life‐history strategies. Invasions by exotic species can provide insights into the importance of trade‐offs in community assembly, because the ecological strategies of invading species often differ from those present in the native species pool. Exotic annual species have invaded many Mediterranean‐climate areas around the globe, and often germinate and emerge earlier in the growing season than native species. Early‐season growth can enable exotic annual species to preempt space and resources, competitively suppressing later‐emerging native species; however, early‐emerging individuals may also be more apparent to herbivores. This suggests a potential trade‐off between seasonal phenology and susceptibility to herbivory. To evaluate this hypothesis, we monitored the emergence and growth of 12 focal species (six each native and exotic) in monoculture and polyculture, while experimentally excluding generalist herbivores both early and later in the growing season. Consistent with past studies, the exotic species emerged earlier than native species. Regardless of species origin, earlier‐emerging species achieved greater biomass by the end of the experiment, but were more negatively impacted by herbivory, particularly in the early part of the growing season. This greater impact of early‐season herbivory on early‐active species led to a reduction in the competitive advantage of exotic species growing in polyculture, and improved the performance of later‐emerging natives. Such a trade‐off between early growth and susceptibility to herbivores could be an important force in community assembly in seasonal herbaceous‐dominated ecosystems. These results also show how herbivore exclusion favors early‐active exotic species in this system, with important implications for management in many areas invaded by early‐active exotic species.
Collapse
Affiliation(s)
- Joseph Waterton
- Ecology, Behavior and Evolution Section University of California San Diego La Jolla CA USA
| | - Elsa E Cleland
- Ecology, Behavior and Evolution Section University of California San Diego La Jolla CA USA
| |
Collapse
|
25
|
Zhang B, Segraves KA, Xue HJ, Nie RE, Li WZ, Yang XK. Adaptation to different host plant ages facilitates insect divergence without a host shift. Proc Biol Sci 2016; 282:rspb.2015.1649. [PMID: 26378220 DOI: 10.1098/rspb.2015.1649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Huai-Jun Xue
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Rui-E Nie
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Wen-Zhu Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xing-Ke Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
26
|
De Sibio PR, Rossi MN. Interaction Effect Between Herbivory and Plant Fertilization on Extrafloral Nectar Production and on Seed Traits: An Experimental Study With Ricinus communis (Euphorbiaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1612-1618. [PMID: 27247300 DOI: 10.1093/jee/tow115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
It is known that the release of volatile chemicals by many plants can attract the natural enemies of herbivorous insects. Such indirect interactions are likely when plants produce nectar from their extrafloral nectaries, and particularly when the production of extrafloral nectar (EFN) is induced by herbivory. In the present study, we conducted experiments to test whether foliar herbivory inflicted by Spodoptera frugiperda Smith (Noctuidae) increases nectar production by extrafloral nectaries on one of its host plants, Ricinus communis L. (Euphorbiaceae). Due to the current economic importance of R. communis, we also investigated whether the following seed traits-water content, dry mass, and essential oil production-are negatively affected by herbivory. Finally, we tested whether or not nectar production and seed traits are influenced by plant fertilization (plant quality). We found that nectar production was increased after herbivory, but it was not affected by the type of fertilization. Seed dry mass was higher in plants that were subjected to full fertilization, without herbivory; plants maintained in low fertilization conditions, however, had higher seed mass when subjected to herbivory. The same inverted pattern was observed for oil production. Therefore, our results suggest that EFN production in R. communis may act as an indirect defense strategy against herbivores, and that there is a trade-off between reproduction and plant growth when low-fertilized plants are subjected to herbivory.
Collapse
Affiliation(s)
- P R De Sibio
- Department of Botany, IB, São Paulo State University (Unesp), Botucatu, SP 18618-000, Brazil
| | - M N Rossi
- Department of Biological Sciences, Federal University of São Paulo (Unifesp), Diadema, SP 09941-510, Brazil
| |
Collapse
|
27
|
Wang XF, Liu JF, Gao WQ, Deng YP, Ni YY, Xiao YH, Kang FF, Wang Q, Lei JP, Jiang ZP. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients. Sci Rep 2016; 6:27269. [PMID: 27252112 PMCID: PMC4890039 DOI: 10.1038/srep27269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/09/2016] [Indexed: 11/09/2022] Open
Abstract
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jian-Feng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wen-Qiang Gao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yun-Peng Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yan-Yan Ni
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yi-Hua Xiao
- The Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Feng-Feng Kang
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Qi Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
| | - Jing-Pin Lei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ze-Ping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
28
|
Petschenka G, Agrawal AA. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. CURRENT OPINION IN INSECT SCIENCE 2016; 14:17-24. [PMID: 27436642 DOI: 10.1016/j.cois.2015.12.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/10/2015] [Accepted: 12/20/2015] [Indexed: 05/10/2023]
Abstract
We review progress in understanding sequestration by herbivorous insects, the use of plant chemical defenses for their own defense. We incorporate sequestration into the framework of plant-insect coevolution by integrating three hierarchical issues: (1) the relationship between dietary specialization and sequestration of plant defenses, (2) the physiological mechanisms involved in sequestration, and (3) how sequestration evolves via interactions between trophic levels. Sequestration is often associated with specialization, but even specialized sequestration is not an evolutionary dead-end. Despite considerable progress in understanding physiological mechanisms, detailed knowledge of how plant toxins cross the insect gut epithelium is still largely lacking. Sequestration is likely a major vehicle for coevolutionary escalation in speciose plant-insect-predator interactions, suggesting that a strictly bitrophic view is untenable.
Collapse
Affiliation(s)
- Georg Petschenka
- Institut für Insektenbiotechnologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Anurag A Agrawal
- Ecology and Evolutionary Biology, Cornell University, E425 Corson Hall, Ithaca, NY 14853 USA
| |
Collapse
|
29
|
Kaplan I, Carrillo J, Garvey M, Ode PJ. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. CURRENT OPINION IN INSECT SCIENCE 2016; 14:112-119. [PMID: 27436656 DOI: 10.1016/j.cois.2016.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023]
Abstract
In occupying an intermediate trophic position, herbivorous insects serve a vital link between plants at the base of the food chain and parasitoids at the top. Although these herbivore-mediated indirect plant-parasitoid interactions are well-documented, new studies have uncovered previously undescribed mechanisms that are fundamentally changing how we view tri-trophic relationships. In this review we highlight recent advances in this field focusing on both plant-driven and parasitoid-driven outcomes that flow up and down the trophic web, respectively. From the bottom-up, plant metabolites can impact parasitoid success by altering host immune function; however, few have considered the potential effects of other plant defense strategies such as tolerance on parasitoid ecology and behavior. From the top-down, parasitoids have long been considered plant bodyguards, but in reality the consequences of parasitism for herbivory rates and induction of plant defensive chemistry are far more complicated with cascading effects on community-level interactions.
Collapse
Affiliation(s)
- Ian Kaplan
- Department of Entomology, Purdue University, United States.
| | - Juli Carrillo
- Department of Entomology, Purdue University, United States
| | - Michael Garvey
- Department of Entomology, Purdue University, United States
| | - Paul J Ode
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, United States
| |
Collapse
|
30
|
Ochoa-López S, Villamil N, Zedillo-Avelleyra P, Boege K. Plant defence as a complex and changing phenotype throughout ontogeny. ANNALS OF BOTANY 2015; 116:797-806. [PMID: 26220657 PMCID: PMC4590325 DOI: 10.1093/aob/mcv113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/21/2015] [Accepted: 06/15/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Ontogenetic changes in anti-herbivore defences are common and result from variation in resource availability and herbivore damage throughout plant development. However, little is known about the simultaneous changes of multiple defences across the entire development of plants, and how such changes affect plant damage in the field. The aim of this study was to assess if changes in the major types of plant resistance and tolerance can explain natural herbivore damage throughout plant ontogeny. METHODS An assessment was made of how six defensive traits, including physical, chemical and biotic resistance, simultaneously change across the major transitions of plant development, from seedlings to reproductive stages of Turnera velutina growing in the greenhouse. In addition, an experiment was performed to assess how plant tolerance to artificial damage to leaves changed throughout ontogeny. Finally, leaf damage by herbivores was evaluated in a natural population. KEY RESULTS The observed ontogenetic trajectories of all defences were significantly different, sometimes showing opposite directions of change. Whereas trichome density, leaf toughness, extrafloral nectary abundance and nectar production increased, hydrogen cyanide and compensatory responses decreased throughout plant development, from seedlings to reproductive plants. Only water content was higher at the intermediate juvenile ontogenetic stages. Surveys in a natural population over 3 years showed that herbivores consumed more tissue from juvenile plants than from younger seedlings or older reproductive plants. This is consistent with the fact that juvenile plants were the least defended stage. CONCLUSIONS The results suggest that defensive trajectories are a mixed result of predictions by the Optimal Defence Theory and the Growth-Differentiation Balance Hypothesis. The study emphasizes the importance of incorporating multiple defences and plant ontogeny into further studies for a more comprehensive understanding of plant defence evolution.
Collapse
Affiliation(s)
- Sofía Ochoa-López
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Mexico DF, Mexico
| | - Nora Villamil
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Mexico DF, Mexico
| | - Paulina Zedillo-Avelleyra
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Mexico DF, Mexico
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, CP 04510, Mexico DF, Mexico
| |
Collapse
|
31
|
Pankoke H, Höpfner I, Matuszak A, Beyschlag W, Müller C. The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata. PHYTOCHEMISTRY 2015; 118:149-161. [PMID: 26296746 DOI: 10.1016/j.phytochem.2015.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
Plants are sessile organisms that suffer from a multitude of challenges such as abiotic stress or the interactions with competitors, antagonists and symbionts, which influence their performance as well as their eco-physiological and biochemical responses in complex ways. In particular, the combination of different stressors and their impact on plant biomass production and the plant's ability to metabolically adjust to these challenges are less well understood. To study the effects of mineral nitrogen (N) availability, interspecific competition and the association with arbuscular mycorrhizal fungi (AMF) on biomass production, biomass allocation patterns (root/shoot ratio, specific leaf area) and metabolic responses, we chose the model organism Plantago lanceolata L. (Plantaginaceae). Plants were grown in a full factorial experiment. Biomass production and its allocation patterns were assessed at harvest, and the influence of the different treatments and their interactions on the plant metabolome were analysed using a metabolic fingerprinting approach with ultra-high performance liquid chromatography coupled with time-of-flight-mass spectrometry. Limited supply of mineral N caused the most pronounced changes with respect to plant biomass and biomass allocation patterns, and altered the concentrations of more than one third of the polar plant metabolome. Competition also impaired plant biomass production, yet affected the plant metabolome to a much lesser extent than limited mineral N supply. The interaction of competition and limited mineral N supply often caused additive changes on several traits. The association with AMF did not enhance biomass production, but altered biomass allocation patterns such as the root/shoot ratio and the specific leaf area. Interestingly, we did not find significant changes in the plant metabolome caused by AMF. A targeted analysis revealed that only limited mineral N supply reduced the concentrations of one of the main target defence compounds of P. lanceolata, the iridoid glycoside catalpol. In general, the interaction of competition and limited mineral N supply led to additive changes, while the association with AMF in any case alleviated the observed stress responses. Our results show that the joint analysis of biomass/allocation patterns and metabolic traits allows a more comprehensive interpretation of plant responses to different biotic and abiotic challenges; specifically, when multiple stresses interact.
Collapse
Affiliation(s)
- Helga Pankoke
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Ingo Höpfner
- Department of Experimental and Systems Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Agnieszka Matuszak
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany; Department of Experimental and Systems Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Wolfram Beyschlag
- Department of Experimental and Systems Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
32
|
Meiners T. Chemical ecology and evolution of plant-insect interactions: a multitrophic perspective. CURRENT OPINION IN INSECT SCIENCE 2015; 8:22-28. [PMID: 32846665 DOI: 10.1016/j.cois.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 06/11/2023]
Abstract
Gaining a better understanding of infochemical-mediated host plant/host location behaviour of herbivores and their natural enemies in complex and heterogeneous chemical environments provides a multitrophic perspective on the chemical ecology and evolution of plant-insect interactions. Here I focus on the sources of chemical complexity formed primarily by both host and non-host plants in their interaction with higher trophic levels and on the effect of this complexity on herbivores and their natural enemies. Future research should define the patterns and processes involved in these interactions, which are often complex, dynamic and intricately unique. Studying multitrophic interactions under more realistic conditions will help to identify mechanisms with evolutionary potential and patterns that can be used in biological control practice.
Collapse
Affiliation(s)
- Torsten Meiners
- Freie Universitaet Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Haderslebener Straße 9, 12163 Berlin, Germany.
| |
Collapse
|
33
|
van Veen FF. Plant-modified trophic interactions. CURRENT OPINION IN INSECT SCIENCE 2015; 8:29-33. [PMID: 32846667 DOI: 10.1016/j.cois.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 06/11/2023]
Abstract
Plants can modify the interactions between herbivorous insects and their natural enemies in various ways. Chemical defences from the plants against herbivores may in fact harm the latter's natural enemies, thereby weakening the trophic interaction. On the other hand, volatile chemicals produced by the plant in response to herbivory may attract natural enemies, thereby strengthening the interaction. Recent research shows that effects of plants on insect interactions are not curious phenomena confined to a few specialist species but rather that they are ubiquitous in terrestrial ecosystems and often involve complex interactions among many species. The major challenge now is to study how the commonly reported short-term effects of plants affect long term dynamics of insect interactions in the context of complex natural communities.
Collapse
Affiliation(s)
- Fj Frank van Veen
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK.
| |
Collapse
|
34
|
Lampert EC, Bowers MD. Incompatibility Between Plant-Derived Defensive Chemistry and Immune Response of Two Sphingid Herbivores. J Chem Ecol 2014; 41:85-92. [DOI: 10.1007/s10886-014-0532-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|