1
|
Sun P, Shang Y, Sun R, Tian Y, Heino M. The Effects of Selective Harvest on Japanese Spanish Mackerel (Scomberomorus niphonius) Phenotypic Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Japanese Spanish mackerel (Scomberomorus niphonius) is an important fish species in the China Seas with wide distribution, extensive migration, and high economic value. This species has been yielding high fisheries production despite experiencing continuously high fishing pressure and the conversion from gillnet to trawl harvesting. Meanwhile, changes in life-history traits have been observed, including earlier maturation and smaller size at age. Here, we build an individual-based eco-genetic model parameterized for Japanese Spanish mackerel to investigate the population’s response to different fishing scenarios (fishing by trawl or by gillnet). The model allows evolution of life-history processes including maturation, reproduction and growth. It also incorporates environmental variability, phenotypic plasticity, and density-dependent feedbacks. Our results show that different gear types can result in different responses of life-history traits and altered population dynamics. The population harvested by gillnet shows weaker response to fishing than that by trawl. When fishing ceases, gillnet-harvested population can recover to the pre-harvest level more easily than that harvested by trawl. The different responses of population growth rate and evolution to different fishing gears demonstrated in this study shed light on the sustainable management and utilization of Japanese Spanish mackerel in the over-exploited China Seas.
Collapse
|
2
|
Van de Walle J, Pelletier F, Zedrosser A, Swenson JE, Jenouvrier S, Bischof R. The interplay between hunting rate, hunting selectivity, and reproductive strategies shapes population dynamics of a large carnivore. Evol Appl 2021; 14:2414-2432. [PMID: 34745335 PMCID: PMC8549626 DOI: 10.1111/eva.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
Harvest, through its intensity and regulation, often results in selection on female reproductive traits. Changes in female traits can have demographic consequences, as they are fundamental in shaping population dynamics. It is thus imperative to understand and quantify the demographic consequences of changes in female reproductive traits to better understand and anticipate population trajectories under different harvest intensities and regulations. Here, using a dynamic, frequency-dependent, population model of the intensively hunted brown bear (Ursus arctos) population in Sweden, we quantify and compare population responses to changes in four reproductive traits susceptible to harvest-induced selection: litter size, weaning age, age at first reproduction, and annual probability to reproduce. We did so for different hunting quotas and under four possible hunting regulations: (i) no individuals are protected, (ii) mothers but not dependent offspring are protected, (iii) mothers and dependent offspring of the year (cubs) are protected, and (iv) entire family groups are protected (i.e., mothers and dependent offspring of any age). We found that population growth rate declines sharply with increasing hunting quotas. Increases in litter size and the probability to reproduce have the greatest potential to affect population growth rate. Population growth rate increases the most when mothers are protected. Adding protection on offspring (of any age), however, reduces the availability of bears for hunting, which feeds back to increase hunting pressure on the nonprotected categories of individuals, leading to reduced population growth. Finally, we found that changes in reproductive traits can dampen population declines at very high hunting quotas, but only when protecting mothers. Our results illustrate that changes in female reproductive traits may have context-dependent consequences for demography. Thus, to predict population consequences of harvest-induced selection in wild populations, it is critical to integrate both hunting intensity and regulation, especially if hunting selectivity targets female reproductive strategies.
Collapse
Affiliation(s)
- Joanie Van de Walle
- Département de biologie & Centre for Northern StudiesUniversité de SherbrookeSherbrookeQCCanada
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMAUSA
| | - Fanie Pelletier
- Département de biologie & Centre for Northern StudiesUniversité de SherbrookeSherbrookeQCCanada
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental HealthUniversity of South‐Eastern NorwayBø i TelemarkNorway
- Institute of Wildlife Biology and Game ManagementUniversity of Natural Resources and Life SciencesViennaAustria
| | - Jon E. Swenson
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | | | - Richard Bischof
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
3
|
Bilgmann K, Armansin N, Ferchaud A, Normandeau E, Bernatchez L, Harcourt R, Ahonen H, Lowther A, Goldsworthy S, Stow A. Low effective population size in the genetically bottlenecked Australian sea lion is insufficient to maintain genetic variation. Anim Conserv 2021. [DOI: 10.1111/acv.12688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. Bilgmann
- Department of Biological Sciences Macquarie University Sydney Australia
| | - N. Armansin
- Department of Biological Sciences Macquarie University Sydney Australia
| | - A.L. Ferchaud
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - E. Normandeau
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - L. Bernatchez
- Département de Biologie Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec QC Canada
| | - R. Harcourt
- Department of Biological Sciences Macquarie University Sydney Australia
| | - H. Ahonen
- Department of Biological Sciences Macquarie University Sydney Australia
- Norwegian Polar Institute Tromsø Norway
| | | | - S.D. Goldsworthy
- South Australian Research and Development Institute Adelaide South Australia
| | - A. Stow
- Department of Biological Sciences Macquarie University Sydney Australia
| |
Collapse
|
4
|
Hočevar S, Kuparinen A. Marine food web perspective to fisheries-induced evolution. Evol Appl 2021; 14:2378-2391. [PMID: 34745332 PMCID: PMC8549614 DOI: 10.1111/eva.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
Fisheries exploitation can cause genetic changes in heritable traits of targeted stocks. The direction of selective pressure forced by harvest acts typically in reverse to natural selection and selects for explicit life histories, usually for younger and smaller spawners with deprived spawning potential. While the consequences that such selection might have on the population dynamics of a single species are well emphasized, we are just beginning to perceive the variety and severity of its propagating effects within the entire marine food webs and ecosystems. Here, we highlight the potential pathways in which fisheries-induced evolution, driven by size-selective fishing, might resonate through globally connected systems. We look at: (i) how a size truncation may induce shifts in ecological niches of harvested species, (ii) how a changed maturation schedule might affect the spawning potential and biomass flow, (iii) how changes in life histories can initiate trophic cascades, (iv) how the role of apex predators may be shifting and (v) whether fisheries-induced evolution could codrive species to depletion and biodiversity loss. Globally increasing effective fishing effort and the uncertain reversibility of eco-evolutionary change induced by fisheries necessitate further research, discussion and precautionary action considering the impacts of fisheries-induced evolution within marine food webs.
Collapse
Affiliation(s)
- Sara Hočevar
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
5
|
Wood ZT, Palkovacs EP, Olsen BJ, Kinnison MT. The Importance of Eco-evolutionary Potential in the Anthropocene. Bioscience 2021. [DOI: 10.1093/biosci/biab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Humans are dominant global drivers of ecological and evolutionary change, rearranging ecosystems and natural selection. In the present article, we show increasing evidence that human activity also plays a disproportionate role in shaping the eco-evolutionary potential of systems—the likelihood of ecological change generating evolutionary change and vice versa. We suggest that the net outcome of human influences on trait change, ecology, and the feedback loops that link them will often (but not always) be to increase eco-evolutionary potential, with important consequences for stability and resilience of populations, communities, and ecosystems. We also integrate existing ecological and evolutionary metrics to predict and manage the eco-evolutionary dynamics of human-affected systems. To support this framework, we use a simple eco–evo feedback model to show that factors affecting eco-evolutionary potential are major determinants of eco-evolutionary dynamics. Our framework suggests that proper management of anthropogenic effects requires a science of human effects on eco-evolutionary potential.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Brian J Olsen
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| | - Michael T Kinnison
- School of Biology and Ecology and with the Maine Center for Genetics in the Environment at the University of Maine, Orono, Maine, United States
| |
Collapse
|
6
|
The battle between harvest and natural selection creates small and shy fish. Proc Natl Acad Sci U S A 2021; 118:2009451118. [PMID: 33619086 DOI: 10.1073/pnas.2009451118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Harvest of fish and wildlife, both commercial and recreational, is a selective force that can induce evolutionary changes to life history and behavior. Naturally selective forces may create countering selection pressures. Assessing natural fitness represents a considerable challenge in broadcast spawners. Thus, our understanding about the relative strength of natural and fisheries selection is slim. In the field, we compared the strength and shape of harvest selection to natural selection on body size over four years and behavior over one year in a natural population of a freshwater top predator, the northern pike (Esox lucius). Natural selection was approximated by relative reproductive success via parent-offspring genetic assignments over four years. Harvest selection was measured by comparing individuals susceptible to recreational angling with individuals never captured by this gear type. Individual behavior was measured by high-resolution acoustic telemetry. Harvest and natural size selection operated with equal strength but opposing directions, and harvest size selection was consistently negative in all study years. Harvest selection also had a substantial behavioral component independent of body length, while natural behavioral selection was not documented, suggesting the potential for directional harvest selection favoring inactive, timid fish. Simulations of the outcomes of different fishing regulations showed that traditional minimum size-based harvest limits are unlikely to counteract harvest selection without being completely restrictive. Our study suggests harvest selection may be inevitable and recreational fisheries may thus favor small, inactive, shy, and difficult-to-capture fish. Increasing fractions of shy fish in angling-exploited stocks would have consequences for stock assessment and all fisheries operating with hook and line.
Collapse
|
7
|
Size Selective Harvesting Does Not Result in Reproductive Isolation among Experimental Lines of Zebrafish, Danio rerio: Implications for Managing Harvest-Induced Evolution. BIOLOGY 2021; 10:biology10020113. [PMID: 33557025 PMCID: PMC7913724 DOI: 10.3390/biology10020113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Mortality in fish populations is commonly size-selective. In fisheries, larger fish are preferentially caught while natural predators preferentially consume smaller fish. Removal of certain sized fish from populations and elevated fishing mortality constitute a selection pressure which may change life-history, behaviour and reduce adult body-size. Because behaviour and body-size are related and influence mating preferences and reproductive output, size-selective mortality may favour subpopulations that less readily mate with each other. Our aim is to test this possibility using three experimental lines of zebrafish (Danio rerio) generated in laboratory by removing large-sized, small-sized and random-sized fish for five generations. We tested mating preferences among males and females and tested if they spawned together. We found males and females of all subpopulations to reproduce among themselves. Females generally preferred large-sized males. Females of all lines spawned with males, and males of all lines fertilised eggs of females independent of the subpopulation origin. Our study shows that size-selective mortality typical of fisheries or in populations facing heavy predation does not result in evolution of reproductive barriers. Thus, when populations adapted to fishing pressure come in contact with populations unexposed to such pressures, interbreeding may happen thereby helping exploited populations recover from harvest-induced evolution. Abstract Size-selective mortality is common in fish stocks. Positive size-selection happens in fisheries where larger size classes are preferentially targeted while gape-limited natural predation may cause negative size-selection for smaller size classes. As body size and correlated behavioural traits are sexually selected, harvest-induced trait changes may promote prezygotic reproductive barriers among selection lines experiencing differential size-selective mortality. To investigate this, we used three experimental lines of zebrafish (Danio rerio) exposed to positive (large-harvested), negative (small-harvested) and random (control line) size-selective mortality for five generations. We tested prezygotic preferences through choice tests and spawning trials. In the preference tests without controlling for body size, we found that females of all lines preferred males of the generally larger small-harvested line. When the body size of stimulus fish was statistically controlled, this preference disappeared and a weak evidence of line-assortative preference emerged, but only among large-harvested line fish. In subsequent spawning trials, we did not find evidence for line-assortative reproductive allocation in any of the lines. Our study suggests that size-selection due to fisheries or natural predation does not result in reproductive isolation. Gene flow between wild-populations and populations adapted to size-selected mortality may happen during secondary contact which can speed up trait recovery.
Collapse
|
8
|
Larson WA, Isermann DA, Feiner ZS. Incomplete bioinformatic filtering and inadequate age and growth analysis lead to an incorrect inference of harvested-induced changes. Evol Appl 2021; 14:278-289. [PMID: 33664775 PMCID: PMC7896720 DOI: 10.1111/eva.13122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 01/02/2023] Open
Abstract
Understanding the evolutionary impacts of harvest on fish populations is important for informing fisheries management and conservation and has become a growing research topic over the last decade. However, the dynamics of fish populations are highly complex, and phenotypes can be influenced by many biotic and abiotic factors. Therefore, it is vital to collect robust data and explore multiple alternative hypotheses before concluding that fish populations are influenced by harvest. In their recently published manuscript, Bowles et al, Evolutionary Applications, 13(6):1128 conducted age/growth and genomic analysis of walleye (Sander vitreus) populations sampled 13-15 years (1-2.5 generations) apart and hypothesized that observed phenotypic and genomic changes in this time period were likely due to harvest. Specifically, Bowles et al. (2020) documented differential declines in size-at-age in three exploited walleye populations compared to a separate, but presumably less-exploited, reference population. Additionally, they documented population genetic differentiation in one population pair, homogenization in another, and outlier loci putatively under selection across time points. Based on their phenotypic and genetic results, they hypothesized that selective harvest had led to fisheries-induced evolution (referred to as nascent changes) in the exploited populations in as little as 1-2.5 generations. We re-analyzed their data and found that (a) sizes declined across both exploited and reference populations during the time period studied and (b) observed genomic differentiation in their study was the result of inadequate data filtering, including retaining individuals with high amounts of missing data and retaining potentially undersplit and oversplit loci that created false signals of differentiation between time points. This re-analysis did not provide evidence for phenotypic or genetic changes attributable to harvest in any of the study populations, contrasting the hypotheses presented by Bowles et al. (2020). Our comment highlights the potential pitfalls associated with conducting age/growth analyses with low sample sizes and inadequately filtering genomic datasets.
Collapse
Affiliation(s)
- Wesley A. Larson
- National Oceanographic and Atmospheric AdministrationNational Marine Fisheries ServiceAlaska Fisheries Science CenterAuke Bay LaboratoriesJuneauAKUSA
| | - Daniel A. Isermann
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWIUSA
| | - Zachary S. Feiner
- Wisconsin Department of Natural ResourcesOffice of Applied ScienceScience Operations CenterMadisonWIUSA
| |
Collapse
|
9
|
Bouffet-Halle A, Mériguet J, Carmignac D, Agostini S, Millot A, Perret S, Motard E, Decenciere B, Edeline E. Density-dependent natural selection mediates harvest-induced trait changes. Ecol Lett 2021; 24:648-657. [PMID: 33511789 DOI: 10.1111/ele.13677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 11/28/2022]
Abstract
Rapid life-history changes caused by size-selective harvesting are often interpreted as a response to direct harvest selection against a large body size. However, similar trait changes may result from a harvest-induced relaxation of natural selection for a large body size via density-dependent selection. Here, we show evidence of such density-dependent selection favouring large-bodied individuals at high population densities, in replicated pond populations of medaka fish. Harvesting, in contrast, selected medaka directly against a large body size and, in parallel, decreased medaka population densities. Five years of harvesting were enough for harvested and unharvested medaka populations to inherit the classically predicted trait differences, whereby harvested medaka grew slower and matured earlier than unharvested medaka. We show that this life-history divergence was not driven by direct harvest selection for a smaller body size in harvested populations, but by density-dependent natural selection for a larger body size in unharvested populations.
Collapse
Affiliation(s)
- Alix Bouffet-Halle
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), Paris, F-75252, France
| | - Jacques Mériguet
- CEREEP Ecotron Île-de-France, UMS CNRS/ENS 3194, 78 rue du Château, Saint-Pierre-lès-Nemours, 77140, France.,Institut de Biologie de l'Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, Paris, 75005, France
| | - David Carmignac
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), Paris, F-75252, France
| | - Simon Agostini
- CEREEP Ecotron Île-de-France, UMS CNRS/ENS 3194, 78 rue du Château, Saint-Pierre-lès-Nemours, 77140, France
| | - Alexis Millot
- CEREEP Ecotron Île-de-France, UMS CNRS/ENS 3194, 78 rue du Château, Saint-Pierre-lès-Nemours, 77140, France
| | - Samuel Perret
- CEREEP Ecotron Île-de-France, UMS CNRS/ENS 3194, 78 rue du Château, Saint-Pierre-lès-Nemours, 77140, France.,Centre d'Ecologie Fonctionnelle et Evolutive CEFE, UMR 5175, Campus CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, Cedex 5, France
| | - Eric Motard
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), Paris, F-75252, France
| | - Beatriz Decenciere
- CEREEP Ecotron Île-de-France, UMS CNRS/ENS 3194, 78 rue du Château, Saint-Pierre-lès-Nemours, 77140, France
| | - Eric Edeline
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), Paris, F-75252, France.,ESE, Ecology and Ecosystem Health, INRAE, Agrocampus Ouest, Rennes, France
| |
Collapse
|
10
|
Baltazar-Soares M, de Araújo Lima AR, Silva G. Targeted Sequencing of Mitochondrial Genes Reveals Signatures of Molecular Adaptation in a Nearly Panmictic Small Pelagic Fish Species. Genes (Basel) 2021; 12:genes12010091. [PMID: 33450911 PMCID: PMC7828364 DOI: 10.3390/genes12010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ongoing climatic changes, with predictable impacts on marine environmental conditions, are expected to trigger organismal responses. Recent evidence shows that, in some marine species, variation in mitochondrial genes involved in the aerobic conversion of oxygen into ATP at the cellular level correlate with gradients of sea surface temperature and gradients of dissolved oxygen. Here, we investigated the adaptive potential of the European sardine Sardina pilchardus populations offshore the Iberian Peninsula. We performed a seascape genetics approach that consisted of the high throughput sequencing of mitochondria’s ATP6, COI, CYTB and ND5 and five microsatellite loci on 96 individuals coupled with environmental information on sea surface temperature and dissolved oxygen across five sampling locations. Results show that, despite sardines forming a nearly panmictic population around Iberian Peninsula, haplotype frequency distribution can be explained by gradients of minimum sea surface temperature and dissolved oxygen. We further identified that the frequencies of the most common CYTB and ATP6 haplotypes negatively correlate with minimum sea surface temperature across the sampled area, suggestive of a signature of selection. With signatures of selection superimposed on highly connected populations, sardines may be able to follow environmental optima and shift their distribution northwards as a response to the increasing sea surface temperatures.
Collapse
|
11
|
Stange M, Barrett RDH, Hendry AP. The importance of genomic variation for biodiversity, ecosystems and people. Nat Rev Genet 2020; 22:89-105. [PMID: 33067582 DOI: 10.1038/s41576-020-00288-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/09/2022]
Abstract
The 2019 United Nations Global assessment report on biodiversity and ecosystem services estimated that approximately 1 million species are at risk of extinction. This primarily human-driven loss of biodiversity has unprecedented negative consequences for ecosystems and people. Classic and emerging approaches in genetics and genomics have the potential to dramatically improve these outcomes. In particular, the study of interactions among genetic loci within and between species will play a critical role in understanding the adaptive potential of species and communities, and hence their direct and indirect effects on biodiversity, ecosystems and people. We explore these population and community genomic contexts in the hope of finding solutions for maintaining and improving ecosystem services and nature's contributions to people.
Collapse
Affiliation(s)
- Madlen Stange
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
12
|
Derry AM, Fraser DJ, Brady SP, Astorg L, Lawrence ER, Martin GK, Matte J, Negrín Dastis JO, Paccard A, Barrett RDH, Chapman LJ, Lane JE, Ballas CG, Close M, Crispo E. Conservation through the lens of (mal)adaptation: Concepts and meta-analysis. Evol Appl 2019; 12:1287-1304. [PMID: 31417615 PMCID: PMC6691223 DOI: 10.1111/eva.12791] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
Evolutionary approaches are gaining popularity in conservation science, with diverse strategies applied in efforts to support adaptive population outcomes. Yet conservation strategies differ in the type of adaptive outcomes they promote as conservation goals. For instance, strategies based on genetic or demographic rescue implicitly target adaptive population states whereas strategies utilizing transgenerational plasticity or evolutionary rescue implicitly target adaptive processes. These two goals are somewhat polar: adaptive state strategies optimize current population fitness, which should reduce phenotypic and/or genetic variance, reducing adaptability in changing or uncertain environments; adaptive process strategies increase genetic variance, causing maladaptation in the short term, but increase adaptability over the long term. Maladaptation refers to suboptimal population fitness, adaptation refers to optimal population fitness, and (mal)adaptation refers to the continuum of fitness variation from maladaptation to adaptation. Here, we present a conceptual classification for conservation that implicitly considers (mal)adaptation in the short-term and long-term outcomes of conservation strategies. We describe cases of how (mal)adaptation is implicated in traditional conservation strategies, as well as strategies that have potential as a conservation tool but are relatively underutilized. We use a meta-analysis of a small number of available studies to evaluate whether the different conservation strategies employed are better suited toward increasing population fitness across multiple generations. We found weakly increasing adaptation over time for transgenerational plasticity, genetic rescue, and evolutionary rescue. Demographic rescue was generally maladaptive, both immediately after conservation intervention and after several generations. Interspecific hybridization was adaptive only in the F1 generation, but then rapidly leads to maladaptation. Management decisions that are made to support the process of adaptation must adequately account for (mal)adaptation as a potential outcome and even as a tool to bolster adaptive capacity to changing conditions.
Collapse
Affiliation(s)
- Alison Margaret Derry
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
| | - Dylan J. Fraser
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Biology DepartmentConcordia UniversityMontrealQuebecCanada
| | - Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenConnecticut
| | - Louis Astorg
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | - Gillian K. Martin
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | | | - Antoine Paccard
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rowan D. H. Barrett
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lauren J. Chapman
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Jeffrey E. Lane
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Marissa Close
- Department of BiologyPace UniversityNew YorkNew York
| | - Erika Crispo
- Department of BiologyPace UniversityNew YorkNew York
| |
Collapse
|
13
|
Sbragaglia V, Gliese C, Bierbach D, Honsey AE, Uusi-Heikkilä S, Arlinghaus R. Size-selective harvesting fosters adaptations in mating behaviour and reproductive allocation, affecting sexual selection in fish. J Anim Ecol 2019; 88:1343-1354. [PMID: 31131886 DOI: 10.1111/1365-2656.13032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
The role of sexual selection in the context of harvest-induced evolution is poorly understood. However, elevated and trait-selective harvesting of wild populations may change sexually selected traits, which in turn can affect mate choice and reproduction. We experimentally evaluated the potential for fisheries-induced evolution of mating behaviour and reproductive allocation in fish. We used an experimental system of zebrafish (Danio rerio) lines exposed to large, small or random (i.e. control) size-selective mortality. The large-harvested line represented a treatment simulating the typical case in fisheries where the largest individuals are preferentially harvested. We used a full factorial design of spawning trials with size-matched individuals to control for the systematic impact of body size during reproduction, thereby singling out possible changes in mating behaviour and reproductive allocation. Both small size-selective mortality and large size-selective mortality left a legacy on male mating behaviour by elevating intersexual aggression. However, there was no evidence for line-assortative reproductive allocation. Females of all lines preferentially allocated eggs to the generally less aggressive males of the random-harvested control line. Females of the large-harvested line showed enhanced reproductive performance, and males of the large-harvested line had the highest egg fertilization rate among all males. These findings can be explained as an evolutionary adaptation by which individuals of the large-harvested line display an enhanced reproductive performance early in life to offset the increased probability of adult mortality due to harvest. Our results suggest that the large-harvested line evolved behaviourally mediated reproductive adaptations that could increase the rate of recovery when populations adapted to high fishing pressure come into secondary contact with other populations.
Collapse
Affiliation(s)
- Valerio Sbragaglia
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute for Environmental Protection and Research (ISPRA), Livorno, Italy
| | - Catalina Gliese
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Andrew E Honsey
- Ecology, Evolution, and Behavior Graduate Program, University of Minnesota, Saint Paul, Minnesota
| | - Silva Uusi-Heikkilä
- Department of Biology, University of Turku, Turku, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Gíslason D, Heino M, Robinson BW, McLaughlin RB, Dunlop ES. Reaction norm analysis reveals rapid shifts toward delayed maturation in harvested Lake Erie yellow perch ( Perca flavescens). Evol Appl 2019; 12:888-901. [PMID: 31080503 PMCID: PMC6503831 DOI: 10.1111/eva.12764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 11/28/2022] Open
Abstract
Harvested marine fish stocks often show a rapid and substantial decline in the age and size at maturation. Such changes can arise from multiple processes including fisheries-induced evolution, phenotypic plasticity, and responses to environmental factors other than harvest. The relative importance of these processes could differ systematically between marine and freshwater systems. We tested for temporal shifts in the mean and within-cohort variability of age- and size-based maturation probabilities of female yellow perch (Perca flavescens Mitchill) from four management units (MUs) in Lake Erie. Lake Erie yellow perch have been commercially harvested for more than a century, and age and size at maturation have varied since sampling began in the 1980s. Our analysis compared probabilistic maturation reaction norms (PMRNs) for cohorts when abundance was lower and harvest higher (1993-1998) to cohorts when abundance was higher and harvest lower (2005-2010). PMRNs have been used in previous studies to detect signs of evolutionary change in response to harvest. Maturation size threshold increased between the early and late cohorts, and the increases were statistically significant for the youngest age in the western MU1 and for older ages in the eastern MU3. Maturation envelope widths, a measure of the variability in maturation among individuals in a cohort, also increased between early and late cohorts in the western MUs where harvest was highest. The highest rates of change in size at maturation for a given age were as large or larger than rates reported for harvested marine fishes where declines in age and size at maturation have been observed. Contrary to the general observation of earlier maturation evolving in harvested stocks, female yellow perch in Lake Erie may be rapidly evolving delayed maturation since harvest was relaxed in the late 1990s, providing a rare example of possible evolutionary recovery.
Collapse
Affiliation(s)
- Davíð Gíslason
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
- Matís OhfReykjavíkIceland
| | - Mikko Heino
- Department of BiologyUniversity of BergenBergenNorway
- Institute of Marine ResearchBergenNorway
- Evolution and Ecology ProgramInternational Institute for Applied Systems AnalysisLaxenburgAustria
- Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan
| | - Beren W. Robinson
- Department of Integrative BiologyUniversity of GuelphGuelphOntarioCanada
| | | | - Erin S. Dunlop
- Aquatic Research and Monitoring SectionOntario Ministry of Natural Resources and ForestryPeterboroughOntarioCanada
| |
Collapse
|
15
|
Barrett JH. An environmental (pre)history of European fishing: past and future archaeological contributions to sustainable fisheries. JOURNAL OF FISH BIOLOGY 2019; 94:1033-1044. [PMID: 30746714 DOI: 10.1111/jfb.13929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
This paper explores the past and potential contribution of archaeology to marine historical ecology. The primary focus is European fishing of marine and diadromous taxa, with global comparisons highlighting the wider applicability of archaeological approaches. The review illustrates how study of excavated fish bones, otoliths and shells can inform our understanding of: (a) changes in biogeography, including the previous distribution of lost species; (b) long-term fluctuations in the aquatic environment, including climate change; (c) the intensity of exploitation and other anthropogenic effects; (d) trade, commodification and globalisation. These issues are also relevant to inform fisheries conservation and management targets. Equally important, the long (pre)history of European fishing raises awareness of our ecological heritage debt, owed for centuries of wealth, sustenance and well-being, and for which we share collective responsibility. This debt represents both a loss and a reason for optimism, insofar as it is a reservoir of potential to be filled by careful stewardship of our rivers, lakes, seas and oceans.
Collapse
Affiliation(s)
- James H Barrett
- McDonald Institute for Archaeological Research, Department of Archaeology, University of Cambridge, Cambridge, UK
- Trinity Centre for Environmental Humanities, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Wilson KL, De Gisi J, Cahill CL, Barker OE, Post JR. Life‐history variation along environmental and harvest clines of a northern freshwater fish: Plasticity and adaptation. J Anim Ecol 2019; 88:717-733. [DOI: 10.1111/1365-2656.12965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Kyle L. Wilson
- Department of Biological SciencesUniversity of Calgary Calgary AB Canada
- Earth to Ocean Research GroupSimon Fraser University Burnaby BC Canada
| | - Joe De Gisi
- Fish and Wildlife SectionBritish Columbia Ministry of Forests, Lands, and Natural Resource Operations Smithers BC Canada
| | | | | | - John R. Post
- Department of Biological SciencesUniversity of Calgary Calgary AB Canada
| |
Collapse
|
17
|
Lundström NLP, Loeuille N, Meng X, Bodin M, Brännström Å. Meeting Yield and Conservation Objectives by Harvesting Both Juveniles and Adults. Am Nat 2019; 193:373-390. [PMID: 30794450 DOI: 10.1086/701631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sustainable yields that are at least 80% of the maximum sustainable yield are sometimes referred to as "pretty good yields" (PGY). The range of PGY harvesting strategies is generally broad and thus leaves room to account for additional objectives besides high yield. Here, we analyze stage-dependent harvesting strategies that realize PGY with conservation as a second objective. We show that (1) PGY harvesting strategies can give large conservation benefits and (2) equal harvesting rates of juveniles and adults is often a good strategy. These conclusions are based on trade-off curves between yield and four measures of conservation that form in two established population models, one age-structured model and one stage-structured model, when considering different harvesting rates of juveniles and adults. These conclusions hold for a broad range of parameter settings, although our investigation of robustness also reveals that (3) predictions of the age-structured model are more sensitive to variations in parameter values than those of the stage-structured model. Finally, we find that (4) measures of stability that are often quite difficult to assess in the field (e.g., basic reproduction ratio and resilience) are systematically negatively correlated with impacts on biomass and size structure, so that these later quantities can provide integrative signals to detect possible collapses.
Collapse
|
18
|
Louison MJ, Hage VM, Stein JA, Suski CD. Quick learning, quick capture: largemouth bass that rapidly learn an association task are more likely to be captured by recreational anglers. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Gobin J, Lester NP, Fox MG, Dunlop ES. Ecological change alters the evolutionary response to harvest in a freshwater fish. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:2175-2186. [PMID: 30285303 DOI: 10.1002/eap.1805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/09/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Harvesting can induce rapid evolution in animal populations, yet the role of ecological change in buffering or enhancing that response is poorly understood. Here, we developed an eco-genetic model to examine how ecological changes brought about by two notorious invasive species, zebra and quagga mussels, influence harvest-induced evolution and resilience in a freshwater fish. Our study focused on lake whitefish (Coregonus clupeaformis) in the Laurentian Great Lakes, where the species supports valuable commercial and subsistence fisheries, and where the invasion of dreissenid (zebra and quagga) mussels caused drastic shifts in ecosystem productivity. Using our model system, we predicted faster rates of evolution of maturation reaction norms in lake whitefish under pre-invasion ecosystem conditions when growth and recruitment of young to the population were high. Slower growth rates that occurred under post-invasion conditions delayed when fish became vulnerable to the fishery, thus decreasing selection pressure and lessening the evolutionary response to harvest. Fishing with gill nets and traps nets generally selected for early maturation at small sizes, except when fishing at low levels with small mesh gill nets under pre-invasion conditions; in this latter case, evolution of delayed maturation was predicted. Overall, the invasion of dreissenid mussels lessened the evolutionary response to harvest, while also reducing the productivity and commercial yield potential of the stock. These results demonstrate how ecological conditions shape evolutionary outcomes and how invasive species can have a direct effect on evolutionary responses to harvest and sustainability.
Collapse
Affiliation(s)
- Jenilee Gobin
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, Canada
| | - Nigel P Lester
- Aquatic Research and Monitoring Section, Trent University, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, DNA Bldg., Peterborough, Ontario, K9J 8N8, Canada
| | - Michael G Fox
- Trent School of the Environment and Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, Canada
| | - Erin S Dunlop
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, Canada
- Aquatic Research and Monitoring Section, Trent University, Ontario Ministry of Natural Resources and Forestry, 2140 East Bank Drive, DNA Bldg., Peterborough, Ontario, K9J 8N8, Canada
| |
Collapse
|
20
|
Morbey YE, Mema M. Size-selective fishing and the potential for fisheries-induced evolution in lake whitefish. Evol Appl 2018; 11:1412-1424. [PMID: 30151049 PMCID: PMC6099822 DOI: 10.1111/eva.12635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/21/2018] [Indexed: 12/01/2022] Open
Abstract
The long-term evolutionary effects of fishing on maturation schedules can depend on gear type, the shape of the gear type's size-selectivity function, and the size and age structure of a population. Our goal was to better understand how environmentally induced differences in somatic growth influence the evolutionary effects of size-selective fisheries, using lake whitefish (Coregonus clupeaformis) in Lake Huron as a case study. Using a state-dependent optimization model of energy allocation parameterized for lake whitefish, we show that fishing with gill nets (bell-shaped selectivity) and trap nets (sigmoid-shaped selectivity) can be potent agents of selection on size thresholds for maturity. Compared to trap nets and large mesh (114 mm) gill nets, small mesh (89 mm) gill nets are better able to buffer populations from fishing-induced evolution by safeguarding large, fecund fish, but only when overall fishing mortality is low and growth rates sufficiently fast such that fish can outgrow vulnerable size classes. Regardless of gear type, and all else being equal, high fishing mortality in combination with low growth rates is expected to intensify the long-term evolutionary effects of fishing.
Collapse
Affiliation(s)
| | - Marin Mema
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
21
|
Fidler RY, Carroll J, Rynerson KW, Matthews DF, Turingan RG. Coral reef fishes exhibit beneficial phenotypes inside marine protected areas. PLoS One 2018; 13:e0193426. [PMID: 29470525 PMCID: PMC5823445 DOI: 10.1371/journal.pone.0193426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/09/2018] [Indexed: 11/18/2022] Open
Abstract
Human fishing effort is size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-specific fishing mortality induces directional shifts in phenotypic frequencies towards the predominance of smaller and earlier-maturing individuals, which are among the primary causes of declining fish biomass. Fish that reproduce at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of harvested populations. Marine protected areas (MPAs) are extensively utilized in coral reefs for fisheries management, and are thought to mitigate the impacts of size-selective fishing mortality and supplement fished stocks through larval export. However, empirical evidence of disparities in fitness-relevant phenotypes between MPAs and adjacent fished reefs is necessary to validate this assertion. Here, we compare key life-history traits in three coral-reef fishes (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) between MPAs and fished reefs in the Philippines. Results of our analyses support previous hypotheses regarding the impacts of MPAs on phenotypic traits. Asymptotic length (Linf) and growth rates (K) differed between conspecifics in MPAs and fished reefs, with protected populations exhibiting phenotypes that are known to confer higher fecundity. Additionally, populations demonstrated increases in length at 50% maturity (L50) inside MPAs compared to adjacent areas, although age at 50% maturity (A50) did not appear to be impacted by MPA establishment. Shifts toward advantageous phenotypes were most common in the oldest and largest MPAs, but occurred in all of the MPAs examined. These results suggest that MPAs may provide protection against the impacts of size-selective harvest on life-history traits in coral-reef fishes.
Collapse
Affiliation(s)
- Robert Y. Fidler
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
- * E-mail:
| | - Jessica Carroll
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, United States of America
| | - Kristen W. Rynerson
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, United States of America
| | - Danielle F. Matthews
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - Ralph G. Turingan
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, United States of America
| |
Collapse
|
22
|
|
23
|
Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JMI, Beacham TD, Maes GE, Martinsohn JT, Miller KM, Naish KA, Ovenden JR, Primmer CR, Young Suk H, Therkildsen NO, Withler RE. Harnessing the Power of Genomics to Secure the Future of Seafood. Trends Ecol Evol 2017; 32:665-680. [PMID: 28818341 DOI: 10.1016/j.tree.2017.06.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 11/15/2022]
Abstract
Best use of scientific knowledge is required to maintain the fundamental role of seafood in human nutrition. While it is acknowledged that genomic-based methods allow the collection of powerful data, their value to inform fisheries management, aquaculture, and biosecurity applications remains underestimated. We review genomic applications of relevance to the sustainable management of seafood resources, illustrate the benefits of, and identify barriers to their integration. We conclude that the value of genomic information towards securing the future of seafood does not need to be further demonstrated. Instead, we need immediate efforts to remove structural roadblocks and focus on ways that support integration of genomic-informed methods into management and production practices. We propose solutions to pave the way forward.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
| | - Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Limited, Port Nelson, Nelson 7043, New Zealand; Department of Biology, Lund University, Lund, Sweden
| | - Cristián Araneda
- Universidad de Chile, Facultad de Ciencias Agronómicas Departamento de Producción Animal, Avda. Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
| | - David T Ashton
- The New Zealand Institute for Plant & Food Research Limited, Port Nelson, Nelson 7043, New Zealand
| | - Julia M I Barth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, Comparative Genomics Centre, College of Science and Engineering, James Cook University, Townsville, 4811 QLD, Australia; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven (KU Leuven), B-3000 Leuven, Belgium; Genomics Core, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jann T Martinsohn
- European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, Unit D2 - Water and Marine Resources, Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Jennifer R Ovenden
- Molecular Fisheries Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Craig R Primmer
- Department of Biosciences, Institute of Biotechnology, 00014, University of Helsinki, Finland
| | - Ho Young Suk
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541, South Korea
| | | | - Ruth E Withler
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
24
|
Pigeon G, Ezard THG, Festa-Bianchet M, Coltman DW, Pelletier F. Fluctuating effects of genetic and plastic changes in body mass on population dynamics in a large herbivore. Ecology 2017. [DOI: 10.1002/ecy.1940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gabriel Pigeon
- Département de Biologie; Université de Sherbrooke; Sherbrooke J1K 2R1 Quebec Canada
- Canada Research Chair in Evolutionary Demography and Conservation; Département de Biologie; Université de Sherbrooke; Sherbrooke J1K 2R1 Quebec Canada
| | - Thomas H. G. Ezard
- Biological Sciences; University of Southampton; Southampton SO17 1BJ United Kingdom
- Ocean and Earth Science; National Oceanography Centre Southampton; University of Southampton; Southampton SO14 3ZH United Kingdom
| | - Marco Festa-Bianchet
- Département de Biologie; Université de Sherbrooke; Sherbrooke J1K 2R1 Quebec Canada
| | - David W. Coltman
- Department of Biological Sciences; University of Alberta; Edmonton T6G 2R3 Alberta Canada
| | - Fanie Pelletier
- Département de Biologie; Université de Sherbrooke; Sherbrooke J1K 2R1 Quebec Canada
- Canada Research Chair in Evolutionary Demography and Conservation; Département de Biologie; Université de Sherbrooke; Sherbrooke J1K 2R1 Quebec Canada
| |
Collapse
|
25
|
Uusi-Heikkilä S, Sävilammi T, Leder E, Arlinghaus R, Primmer CR. Rapid, broad-scale gene expression evolution in experimentally harvested fish populations. Mol Ecol 2017; 26:3954-3967. [PMID: 28500794 DOI: 10.1111/mec.14179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 01/19/2023]
Abstract
Gene expression changes potentially play an important role in adaptive evolution under human-induced selection pressures, but this has been challenging to demonstrate in natural populations. Fishing exhibits strong selection pressure against large body size, thus potentially inducing evolutionary changes in life history and other traits that may be slowly reversible once fishing ceases. However, there is a lack of convincing examples regarding the speed and magnitude of fisheries-induced evolution, and thus, the relevant underlying molecular-level effects remain elusive. We use wild-origin zebrafish (Danio rerio) as a model for harvest-induced evolution. We experimentally demonstrate broad-scale gene expression changes induced by just five generations of size-selective harvesting, and limited genetic convergence following the cessation of harvesting. We also demonstrate significant allele frequency changes in genes that were differentially expressed after five generations of size-selective harvesting. We further show that nine generations of captive breeding induced substantial gene expression changes in control stocks likely due to inadvertent selection in the captive environment. The large extent and rapid pace of the gene expression changes caused by both harvest-induced selection and captive breeding emphasizes the need for evolutionary enlightened management towards sustainable fisheries.
Collapse
Affiliation(s)
| | | | - Erica Leder
- Department of Biology, University of Turku, Turku, Finland.,Natural History Museum, University of Oslo, Oslo, Norway.,Department of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
26
|
Apgar TM, Pearse DE, Palkovacs EP. Evolutionary restoration potential evaluated through the use of a trait-linked genetic marker. Evol Appl 2017; 10:485-497. [PMID: 28515781 PMCID: PMC5427673 DOI: 10.1111/eva.12471] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/12/2017] [Indexed: 12/31/2022] Open
Abstract
Human‐driven evolution can impact the ecological role and conservation value of impacted populations. Most evolutionary restoration approaches focus on manipulating gene flow, but an alternative approach is to manipulate the selection regime to restore historical or desired trait values. Here we examined the potential utility of this approach to restore anadromous migratory behavior in coastal California steelhead trout (Oncorhynchus mykiss) populations. We evaluated the effects of natural and anthropogenic environmental variables on the observed frequency of alleles at a genomic marker tightly associated with migratory behavior across 39 steelhead populations from across California, USA. We then modeled the potential for evolutionary restoration at sites that have been impacted by anthropogenic barriers. We found that complete barriers such as dams are associated with major reductions in the frequency of anadromy‐associated alleles. The removal of dams is therefore expected to restore anadromy significantly. Interestingly, accumulations of large numbers of partial barriers (passable under at least some flow conditions) were also associated with significant reductions in migratory allele frequencies. Restoration involving the removal of partial barriers could be evaluated alongside dam removal and fishway construction as a cost‐effective tool to restore anadromous fish migrations. Results encourage broader consideration of in situ evolution during the development of habitat restoration projects.
Collapse
Affiliation(s)
- Travis M Apgar
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | - Devon E Pearse
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA.,Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz CA USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| |
Collapse
|
27
|
Mee JA, Otto SP, Pauly D. Evolution of movement rate increases the effectiveness of marine reserves for the conservation of pelagic fishes. Evol Appl 2017; 10:444-461. [PMID: 28515778 PMCID: PMC5427674 DOI: 10.1111/eva.12460] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/15/2017] [Indexed: 12/27/2022] Open
Abstract
Current debates about the efficacy of no‐take marine reserves (MR) in protecting large pelagic fish such as tuna and sharks have usually not considered the evolutionary dimension of this issue, which emerges because the propensity to swim away from a given place, like any other biological trait, will probably vary in a heritable fashion among individuals. Here, based on spatially explicit simulations, we investigated whether selection to remain in MRs to avoid higher fishing mortality can lead to the evolution of more philopatric fish. Our simulations, which covered a range of life histories among tuna species (skipjack tuna vs. Atlantic bluefin tuna) and shark species (great white sharks vs. spiny dogfish), suggested that MRs were most effective at maintaining viable population sizes when movement distances were lowest. Decreased movement rate evolved following the establishment of marine reserves, and this evolution occurred more rapidly with higher fishing pressure. Evolutionary reductions in movement rate led to increases in within‐reserve population sizes over the course of the 50 years following MR establishment, although this varied among life histories, with skipjack responding fastest and great white sharks slowest. Our results suggest the evolution of decreased movement can augment the efficacy of marine reserves, especially for species, such as skipjack tuna, with relatively short generation times. Even when movement rates did not evolve substantially over 50 years (e.g., given long generation times or little heritable variation), marine reserves were an effective tool for the conservation of fish populations when mean movement rates were low or MRs were large.
Collapse
Affiliation(s)
- Jonathan A Mee
- Department of Biology Mount Royal University Calgary AB Canada
| | - Sarah P Otto
- Biodiversity Research Centre University of British Columbia Vancouver BC Canada
| | - Daniel Pauly
- Sea Around Us, Institute for Oceans and Fisheries University of British Columbia Vancouver BC Canada
| |
Collapse
|
28
|
Roles of density-dependent growth and life history evolution in accounting for fisheries-induced trait changes. Proc Natl Acad Sci U S A 2016; 113:15030-15035. [PMID: 27940913 DOI: 10.1073/pnas.1525749113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide.
Collapse
|
29
|
Nusslé S, Hendry AP, Carlson SM. When Should Harvest Evolution Matter to Population Dynamics? Trends Ecol Evol 2016; 31:500-502. [PMID: 27095380 DOI: 10.1016/j.tree.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/15/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The potential for evolution to influence fishery sustainability remains a controversial topic. We highlight new modeling research from Dunlop et al. that explores when and how fisheries-induced evolution matters for population dynamics, while also emphasizing transient dynamics in population growth and life history-dependent responses that influence population stability and resiliency.
Collapse
Affiliation(s)
- Sébastien Nusslé
- Department of Environmental Science, Policy, and Management, University of California Berkeley, CA 94720-3114, USA.
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Stephanie M Carlson
- Department of Environmental Science, Policy, and Management, University of California Berkeley, CA 94720-3114, USA
| |
Collapse
|