1
|
Poyraz FS, Ugraskan V, Mansuroglu B, Yazici O. Investigation of cytotoxic antiproliferative and antiapoptotic effects of nanosized boron phosphate filled sodium alginate composite on glioblastoma cancer cells. Mol Biol Rep 2023; 50:10257-10270. [PMID: 37934369 DOI: 10.1007/s11033-023-08862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The effects of nanosized boron phosphate-filled sodium alginate composite gel (SA/BP) on the biological characteristics of three types of glioblastoma multiforme (GBM) cells (C6, U87MG and T98G) were examined in this study. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay was used to determine the cytotoxicity of the composite gel on GBM, which was then compared to L929 healthy cells. Furthermore, wound healing, apoptosis, and colony formation capacities were evaluated. The investigation revealed that the SA/BP composite gel was successful in all GBM cells and could be used as a treatment agent for GBM and/or other invasive cancer types. METHODS AND RESULTS According to the results, the SA/BP composite gel had no effect on healthy fibroblast cells but had a lethal effect on all glioblastoma cells. Additionally, the wound healing method was used to examine the effect of the SA/BP composite gel on cell migration. It was discovered that the wound closed in 24 h in untreated control group cells, while the SA/BP composite gel closed up to 29.62%, 26.77% and 11.31% of the wound for C6, U87MG and T98G cell lines respectively. SA/BP significantly reduced cell migration in cancer cells. The effect of the generated SA/BP composite gel on cell colony development was assessed using a colony formation assay, and the cells reduced colony formation for all GBMs. It was roughly 45% for 24 h and 30% for 48 h when compared to the control group for C6 cells, 33%(24 h) and 40%(48 h) for U87MG cells, 40%(24 h) and 43%(48 h) for T98G cells. DAPI(4',6-Diamidino-2-phenylindole) and JC-1(5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide) staining to evaluate apoptosis revealed that the SA/BP composite gel dramatically enhanced the frequency of all GBMs undergoing apoptosis. CONCLUSIONS In line with experimental findings, it was observed that the SA/BP composite gel system did not affect healthy fibroblast cells but had a cytotoxic effect on glioblastoma cells, significantly reduced cell migration and colony-forming capacity of cells, and significantly increased apoptosis and depolarization of cell membranes. Based on all these findings, it can be said that SA/BP composite gel has cytotoxic, antiproliferative and antiapoptotic effects on different glioblastoma cells.
Collapse
Affiliation(s)
- Fatma Sayan Poyraz
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye.
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye
| | - Ozlem Yazici
- Department of Chemistry, Faculty of Arts & Science, Yildiz Technical University, Esenler/İstanbul, Türkiye
| |
Collapse
|
2
|
Attik N, Garric X, Bethry A, Subra G, Chevalier C, Bouzouma B, Verdié P, Grosgogeat B, Gritsch K. Amelogenin-Derived Peptide (ADP-5) Hydrogel for Periodontal Regeneration: An In Vitro Study on Periodontal Cells Cytocompatibility, Remineralization and Inflammatory Profile. J Funct Biomater 2023; 14:jfb14020053. [PMID: 36826852 PMCID: PMC9966511 DOI: 10.3390/jfb14020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
A relevant alternative to enamel matrix derivatives from animal origin could be the use of synthetic amelogenin-derived peptides. This study aimed to assess the effect of a synthetic amelogenin-derived peptide (ADP-5), alone or included in an experimental gellan-xanthan hydrogel, on periodontal cell behavior (gingival fibroblasts, periodontal ligament cells, osteoblasts and cementoblasts). The effect of ADP-5 (50, 100, and 200 µg/mL) on cell metabolic activity was examined using Alamar blue assay, and cell morphology was assessed by confocal imaging. An experimental gellan-xanthan hydrogel was then designed as carrier for ADP-5 and compared to the commercial gel Emdogain®. Alizarin Red was used to determine the periodontal ligament and cementoblasts cell mineralization. The inflammatory profile of these two cells was also quantified using ELISA (vascular endothelial growth factor A, tumor necrosis factor α, and interleukin 11) mediators. ADP-5 enhanced cell proliferation and remineralization; the 100 µg/mL concentration was more efficient than 50 and 200 µg/mL. The ADP-5 experimental hydrogel exhibited equivalent good biological behavior compared to Emdogain® in terms of cell colonization, mineralization, and inflammatory profile. These findings revealed relevant insights regarding the ADP-5 biological behavior. From a clinical perspective, these outcomes could instigate the development of novel functionalized scaffold for periodontal regeneration.
Collapse
Affiliation(s)
- Nina Attik
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Correspondence:
| | - Xavier Garric
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
- Departement of Pharmacy, Nîmes University Hospital, 30900 Nîmes, France
| | - Audrey Bethry
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Charlène Chevalier
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Brahim Bouzouma
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Pascal Verdié
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Service d’Odontologie (UF Recherche Clinique), Hospices Civils de Lyon, 69007 Lyon, France
| | - Kerstin Gritsch
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Service d’Odontologie (UF Parodontologie), Hospices Civils de Lyon, 69007 Lyon, France
| |
Collapse
|
3
|
Kumar N, Maher N, Amin F, Ghabbani H, Zafar MS, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Biomimetic Approaches in Clinical Endodontics. Biomimetics (Basel) 2022; 7:biomimetics7040229. [PMID: 36546929 PMCID: PMC9775094 DOI: 10.3390/biomimetics7040229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, biomimetic concepts have been widely adopted in various biomedical fields, including clinical dentistry. Endodontics is an important sub-branch of dentistry which deals with the different conditions of pulp to prevent tooth loss. Traditionally, common procedures, namely pulp capping, root canal treatment, apexification, and apexigonesis, have been considered for the treatment of different pulp conditions using selected materials. However, clinically to regenerate dental pulp, tissue engineering has been advocated as a feasible approach. Currently, new trends are emerging in terms of regenerative endodontics which have led to the replacement of diseased and non-vital teeth into the functional and healthy dentine-pulp complex. Root- canal therapy is the standard management option when dental pulp is damaged irreversibly. This treatment modality involves soft-tissue removal and then filling that gap through the obturation technique with a synthetic material. The formation of tubular dentine and pulp-like tissue formation occurs when stem cells are transplanted into the root canal with an appropriate scaffold material. To sum up tissue engineering approach includes three components: (1) scaffold, (2) differentiation, growth, and factors, and (3) the recruitment of stem cells within the pulp or from the periapical region. The aim of this paper is to thoroughly review and discuss various pulp-regenerative approaches and materials used in regenerative endodontics which may highlight the current trends and future research prospects in this particular area.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
- Correspondence: ; Tel.: +92-333-2818500
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | | | - Ricardo E. Oñate-Sánchez
- Department of Special Care in Dentistry, Hospital Morales Meseguer, IMIB-Arrixaca, University of Murcia, 30008 Murcia, Spain
| |
Collapse
|
4
|
Tavelli L, Chen CYJ, Barootchi S, Kim DM. Efficacy of biologics for the treatment of periodontal infrabony defects: An American Academy of Periodontology best evidence systematic review and network meta-analysis. J Periodontol 2022; 93:1803-1826. [PMID: 36279121 DOI: 10.1002/jper.22-0120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND A large variety of biomaterials, biologics and membranes have been utilized in the past 40 years for the regenerative treatment of periodontal infrabony defects. Biologic agents have progressively gained popularity among clinicians and are routinely used for periodontal regeneration. In alignment with the goals of the American Academy of Periodontology (AAP) Best Evidence Consensus (BEC) on the use of biologic mediators in contemporary clinical practice, the aim of this sytematic review was to evaluate the effect of biologic agents, specifically autogenous blood-dervied products (ABPs), enamel matrix derivative (EMD) and recombinant human platelet-derived growth factor-BB (rhPDGF-BB), on the regenerative outcomes of infrabony defects. METHODS A detailed systematic search was conducted to identify eligible randomized control trials (RCTs) reporting the outcomes of periodontal regenerative therapy using biologics for the treatment of infrabony defects. A frequentist mixed-modeling approach to network meta-analysis (NMA), characterized by the assessment of three individual components for the treatment of an infrabony defect (the bone graft material [BG], the biologic agent, the application of a barrier membrane) was performed to evaluate and compare the relative efficacy of the different components, on the outcomes of different therapeutic modalities of periodontal regeneration. RESULTS A total of 153 eligible RCTs were included, with 150 studies contributing to the NMA. The quantitative analysis showed that the addition of biologic agents to bone graft significantly improves the clinical and radiographic outcomes, as compared to BG and flap procedures alone. Barrier membranes enhanced the regenerative outcomes of BG but did not provide further benefits in combination with biologics. The type of BG (autogenous, allogeneic, xenogeneic or alloplastic) and the biologic agent (EMD, platelet-rich fibrin [PRF], platelet-rich plasma [PRP] or rhPDGF-BB) played a significant role on the final outcomes of infrabony defects. Allogeneic and xenogeneic BGs exhibited statistically significantly superior clinical gain than synthetic and autogenous BGs (p < 0.05 in all the comparisons), while rhPDGF-BB and PRF demonstrated significantly higher stability of the gingival margin (p < 0.01) and radiographic bone fill/gain (p < 0.05), together with greater, although not statistically significant, clinical attachment level gain and pocket depth reduction, than EMD and PRP. Overall, rhPDGF-BB exhibited the largest effect size for most parameters, including clinical attachment level gain, pocket depth reduction, less gingival recession and radiographic linear bone gain. Considering the relatively high number of trials presenting an unclear or high risk of bias, the strength of recommendation supporting the use of PRP was judged weak, while the recommendation for EMD, PRF and rhPDGF-BB was deemed in favor. CONCLUSIONS Biologics enhance the outcomes of periodontal regenerative therapy. Combination therapies involving BGs + biologics or BGs + barrier membrane demonstrated to be superior to monotherapies. The choice of the type of BG and biologic agent seems to have significant impact on the clinical and radiographic outcomes of infrabony defects.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Chia-Yu Jennifer Chen
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shayan Barootchi
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - David M Kim
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Pagni G, Tavelli L, Rasperini G. The Evolution of Surgical Techniques and Biomaterials for Periodontal Regeneration. Dent Clin North Am 2021; 66:75-85. [PMID: 34794555 DOI: 10.1016/j.cden.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The understanding of biological concepts in wound healing together with the evolution in biomaterials applied in periodontal regeneration allowed for improved, minimally invasive surgical techniques with a wider range of application and adapted to achieve multiple goals at the same time. Regenerating attachment was never the sole end point, but maintaining the patient's own natural dentition in health and esthetics is becoming a feasible goal even in cases considered challenging just a few years ago. In this article we report on the evolution of techniques and biomaterials and their application in esthetic and challenging cases.
Collapse
Affiliation(s)
- Giorgio Pagni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS Ca' Granda Policlinic, Via della Commenda 12, Milan 20122, Italy
| | - Lorenzo Tavelli
- Department of Periodontics, University of Michigan School of Dentistry, 1011 N University Avenue, Ann Arbor, MI 48109, USA; Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Giulio Rasperini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS Ca' Granda Policlinic, Via della Commenda 12, Milan 20122, Italy.
| |
Collapse
|
6
|
Cardoso MV, do Vale Placa R, Sant'Ana ACP, Greghi SLA, Zangrando MSR, de Rezende MLR, Oliveira RC, Damante CA. Laser and LED photobiomodulation effects in osteogenic or regular medium on rat calvaria osteoblasts obtained by newly forming bone technique. Lasers Med Sci 2020; 36:541-553. [PMID: 32514865 DOI: 10.1007/s10103-020-03056-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
The purposes of this study are to evaluate the effects of photobiomodulation (PBM) with laser and LED on rat calvaria osteoblasts (rGO lineage), cultured in osteogenic (OST) or regular (REG) medium, after induction of a quiescent state and to test if PBM is capable of osteogenic induction and if there is a sum of effects when combining OST medium with PBM. Before irradiation, the cells were put in a quiescent state (1% FBS) 24 h, when red (AlGaInP-660 nm) and infrared laser (GaAlAs-808 nm) and LED (637 ± 15 nm) were applied. The groups were as follows: red laser (RL3-5 J/cm2, 3 s and RL5-8.3 J/cm2, 5 s, 1.66 W/cm2); infrared laser (IrL3-5 J/cm2, 3 s and IrL5-8.3 J/cm2, 5 s); LED (LED3-3 s and LED5-5 s, 0.02 J/cm2, 0.885 W/cm2); positive (C+, 10% FBS) and negative control (C-, 1% FBS). For alkaline phosphatase (ALP) and mineralization assays, the cells were cultured in REG (DMEM 10% FBS) and OST medium (DMEM 10% FBS, 50 μg/mL ascorbic acid, 10 mM β-glycerophosphate). Statistical analysis was performed using ANOVA and Tukey's tests (p < 0.05). RL5 and LED5 increased proliferation, in vitro wound closure, ALP, and mineralization in rGO cells (p < 0.05). PBM with red laser and LED induced mineralization by itself, without osteogenic medium, not observed for infrared laser (p < 0.05). A sum of effects was observed in osteogenic medium and PBM by infrared, red laser, and LED (5 s). Red laser and LED increased proliferation, migration, and secretory phases in rGO cells in a dose-dependent manner. PBM with red laser and LED promotes osteogenic induction by itself. PBM with infrared laser and osteogenic medium potentializes mineralization.
Collapse
Affiliation(s)
- Matheus Völz Cardoso
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil.
| | - Rebeca do Vale Placa
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | | | - Sebastião Luiz Aguiar Greghi
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | | | - Maria Lucia Rubo de Rezende
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | - Rodrigo Cardoso Oliveira
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| | - Carla Andreotti Damante
- Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
| |
Collapse
|
7
|
Wu SY, Chen G. A long-term treatment outcome of intentional replantation in Taiwanese population. J Formos Med Assoc 2020; 120:346-353. [PMID: 32499206 DOI: 10.1016/j.jfma.2020.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND/PURPOSE Intentional replantation was a conventional treatment option in surgical endodontics but usually be seen as a last resort. Therefore, the purpose of this study was to evaluate the long-term treatment outcome of intentional replantation in Taiwanese population, including the survival rates and the related prognostic factors. METHODS Subjects included 215 teeth from 199 patients who had received intentional replantation in a Taiwan medical center. Patients at age under 20 years and those follow-up periods less than 6 months were excluded. The replanted teeth were followed up for a period of 6 months-120 months. Post-treatment assessments, including tooth survival and functional status, were evaluated using both clinical and radiographic examinations. RESULTS Kaplan-Meier survival analysis revealed the overall tooth survival rate at 4 years was 82.8%. In bivariate analysis, both root-end filling material and enamel matrix derivative (EMD) applications were found to be significant (P < 0.05). The multivariate analysis revealed that age and the presence of a sinus tract or abscess might be the predictors of treatment outcome in intentional replantation. CONCLUSION Intentional replantation, operated with improved modern technique, is a reliable and viable treatment with a high long-term survival rate (82.8%). If replanted teeth are diagnosed as acute or chronic apical abscess at the pre-operative examination, the risk of failure is measured 2.7 times higher than those diagnosed with other conditions. Application of EMD on the root surface of a replanted tooth may promote the formation and regeneration of periodontal apparatus, therefore increasing the functioning rate and improving the treatment outcome.
Collapse
Affiliation(s)
- Shao-Ying Wu
- Division of Endodontics and Periodontics, Department of Stomatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Gin Chen
- Division of Endodontics and Periodontics, Department of Stomatology, Taichung Veterans General Hospital, Taichung, Taiwan; College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Dentistry, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
8
|
Tavelli L, McGuire MK, Zucchelli G, Rasperini G, Feinberg SE, Wang HL, Giannobile WV. Biologics-based regenerative technologies for periodontal soft tissue engineering. J Periodontol 2019; 91:147-154. [PMID: 31479158 DOI: 10.1002/jper.19-0352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/28/2019] [Accepted: 08/10/2019] [Indexed: 01/05/2023]
Abstract
This manuscript provides a state-of-the-art review on the efficacy of biologics in root coverage procedures, including enamel matrix derivative, platelet-derived growth factor, platelet concentrates, and fibroblast-growth factor-2. The mechanism of action and the rationale for using biologics in periodontal plastic surgery, as well as their anticipated benefits when compared with conventional approaches are discussed. Although the clinical significance is still under investigation, preclinical data and histologic evidence demonstrate that biologic-based techniques are able to promote periodontal regeneration coupled with the provision of tooth root coverage.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Michael K McGuire
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Private practice, Houston, TX, USA.,Department of Periodontics, Dental Branch Houston and Health Science Center at San Antonio, University of Texas, San Antonio, TX, USA
| | - Giovanni Zucchelli
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulio Rasperini
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Biomedical, Surgical and Dental Sciences, Foundation IRCCS Ca' Granda Policlinic, University of Milan, Milan, Italy
| | - Stephen E Feinberg
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hom-Lay Wang
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - William V Giannobile
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Biomedical Engineering & Biointerfaces Institute, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Ramenzoni LL, Hirsiger C, Weber FE, Attin T, Schmidlin PR. Similar inductive effects of enamel and dentin matrix derivatives on osteoblast-like cell response over SLA titanium surface. Arch Oral Biol 2019; 109:104552. [PMID: 31541843 DOI: 10.1016/j.archoralbio.2019.104552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this in vitro study was to investigate the behavior of osteoblasts on titanium discs under different concentrations of enamel matrix derivatives (EMD) and dentin matrix derivative (DMD). MATERIALS AND METHODS MC3T3-E1 osteoblast-like cells were cultivated on coated titanium SLA discs with EMD or DMD at 100 μg/ml, 1 mg/ml, 10 mg/ml and 30 mg/ml or left uncoated. Cell viability, proliferation, adhesion and migration were assessed respectively with MTT, BrdU, DAPI and scratch wound healing assays. Messenger ribonucleic acid of different genes related to osteoblastic differentiation was quantified by means of real-time quantitative PCR. Data were analyzed using student t-test for adhesion and migration assay and ANOVA for proliferation assay (p < 0.05). RESULTS BrdU incorporation was found in proliferative osteoblasts for both test solutions at all concentrations. Osteoblast migrated and covered approximately 70% of the wound area observed at time zero when exposed to EMD and DMD to all concentrations. The increase of gene expression was dependent on the concentration enhancement of EMD and DMD. Higher concentrations showed proliferation augmentation if compared to lower concentrations. CONCLUSIONS Roughness surface of Ti SLA can limit cell adhesion independent of the presence EMD or DMD. DMD enhances cell migration of osteoblasts on SLA titanium implants in a concentration-dependent manner.
Collapse
Affiliation(s)
- L L Ramenzoni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| | - C Hirsiger
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - F E Weber
- Oral Biotechnology and Bioengineering, Division of Cranio-Maxilo-Facial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - T Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - P R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Effect of enamel matrix derivative on wound healing following gingival recession coverage using the modified coronally advanced tunnel and subepithelial connective tissue graft: a randomised, controlled, clinical study. Clin Oral Investig 2019; 24:1043-1051. [PMID: 31290017 DOI: 10.1007/s00784-019-03008-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The potential effect of enamel matrix derivative (EMD) on wound healing following recession coverage surgery is still controversially discussed in the literature. The aim of this randomised, controlled, single blinded clinical study was, therefore, to investigate clinically and immunologically the potential effects of EMD on early wound healing and clinical results following treatment of single and multiple gingival recessions by the modified coronally advanced tunnel technique (MCAT) and subepithelial connective tissue graft (sCTG). MATERIALS AND METHODS A total of 40 systemically healthy patients with Miller class I, II or III single or multiple gingival recessions were treated with MCAT + sCTG with or without EMD. Patients were consecutively enrolled and randomly assigned to test or control treatment. Inflammatory markers (interleukin (IL)-1β, IL-8, IL-10 and matrix metalloprotease (MMP)-8) were measured at baseline, 2 days and 1 week postoperatively. The following clinical parameters were assessed at baseline and at 6 months postoperatively: Recession Depth (RD), Recession Width (RW), Width of Keratinized Tissue (KT) and Probing Depth (PD). Patient-reported outcomes were analysed by means of a visual analogue scale. RESULTS No statistically significant differences were detected between the 2 groups in terms of inflammatory markers and patient-reported outcomes during early wound healing. In the test group, RD was reduced from 4.0 ± 1.2 mm at baseline to 0.9 ± 1.3 mm at 6 months (p < 0.001), while the corresponding values in the control group were 4.5 ± 2.0 mm at baseline and 1.0 ± 1.0 mm at 6 months, respectively. At 6 months, mean root coverage measured 78 ± 26% in the test group and 77 ± 18% in the control group, respectively. CONCLUSION Within their limits, the present data have failed to show an influence of EMD on the clinical and immunological parameters related to wound healing following recession coverage surgery using MCAT and sCTG. CLINICAL RELEVANCE Early wound healing following recession coverage by means of MCAT and sCTG does not seem to be influenced by the additional application of EMD.
Collapse
|
11
|
Wang HH, Sarmast ND, Shadmehr E, Angelov N, Shabahang S, Torabinejad M. Application of Enamel Matrix Derivative (Emdogain) in Endodontic Therapy: A Comprehensive Literature Review. J Endod 2018; 44:1066-1079. [DOI: 10.1016/j.joen.2018.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/25/2018] [Accepted: 02/10/2018] [Indexed: 01/28/2023]
|
12
|
Yu SJ, Lee YS, Choung HW, Park YH, Kim BO, Park JC. Effect of preameloblast-conditioned medium and CPNE7 on root surfaces in dogs: a histologic and histomorphometric evaluation. J Mol Histol 2018; 49:265-276. [PMID: 29525888 DOI: 10.1007/s10735-018-9766-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
Abstract
Preameloblast-conditioned medium (PACM) has been reported as a potent dentin regenerative material, but its effects as a mixture on periodontal regeneration and the role of CPNE7 in PACM are not known. The purpose of this study is to evaluate the histologic and histomorphometric effects of preameloblast-conditioned medium (PACM) and CPNE7 on periodontal tissue healing in dogs. Seventy-two mandibular premolar roots from ten dogs were extracted and randomly divided into six groups (n = 12 each): (1) positive control group; (2) negative control group; (3) cementum-removed and PACM-treated group; (4) cementum-preserved and PACM-treated group; (5) CPNE7-inactivated PACM-treated group; and (6) recombinant CPNE7-treated group. The extracted roots were replanted into extraction sockets for 4 and 8 weeks and analyzed histologically. Most of the root surfaces in the negative control group showed ankylosis; and those in the experimental groups showed newly formed PDL-like and cementum-like tissues. Histomorphometric analysis of horizontal sections showed that the mean length of the PDL on the roots of the positive controls was similar to those in cementum-removed or -preserved and PACM-treated group at 8 weeks (p = 1.08). Sagittal sections showed that the mean length of the new cementum on the roots in cementum-removed and PACM-treated group was significantly greater than that in CPNE7-inactivated PACM-treated group (p = 0.037). The mean length of the newly formed PDL on the roots in CPNE7- inactivated PACM-treated and rCPNE7-treated groups was significantly greater than that in the negative controls at 8 weeks (p = 0.037, p = 0.036). The use of PACM and CPNE7 in tooth replantation resulted in increased PDL and cementum formation, suggesting the beneficial role of PACM and CPNE7 in periodontal tissue healing.
Collapse
Affiliation(s)
- Sang-Joun Yu
- Department of Periodontology, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Yoon Seon Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Han-Wool Choung
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Yeongeon-dong, Seoul, 03080, Republic of Korea
| | - Yeoung-Hyun Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byung-Ock Kim
- Department of Periodontology, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Memmert S, Nokhbehsaim M, Damanaki A, Nogueira AVB, Papadopoulou AK, Piperi C, Basdra EK, Rath-Deschner B, Götz W, Cirelli JA, Jäger A, Deschner J. Role of cathepsin S In periodontal wound healing-an in vitro study on human PDL cells. BMC Oral Health 2018; 18:60. [PMID: 29622023 PMCID: PMC5887187 DOI: 10.1186/s12903-018-0518-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background Cathepsin S is a cysteine protease, which is expressed in human periodontal ligament (PDL) cells under inflammatory and infectious conditions. This in vitro study was established to investigate the effect of cathepsin S on PDL cell wound closure. Methods An in vitro wound healing assay was used to monitor wound closure in wounded PDL cell monolayers for 72 h in the presence and absence of cathepsin S. In addition, the effects of cathepsin S on specific markers for apoptosis and proliferation were studied at transcriptional level. Changes in the proliferation rate due to cathepsin S stimulation were analyzed by an XTT assay, and the actions of cathepsin S on cell migration were investigated via live cell tracking. Additionally, PDL cell monolayers were treated with a toll-like receptor 2 agonist in the presence and absence of a cathepsin inhibitor to examine if periodontal bacteria can alter wound closure via cathepsins. Results Cathepsin S enhanced significantly the in vitro wound healing rate by inducing proliferation and by increasing the speed of cell migration, but had no effect on apoptosis. Moreover, the toll-like receptor 2 agonist enhanced significantly the wound closure and this stimulatory effect was dependent on cathepsins. Conclusions Our findings provide original evidence that cathepsin S stimulates PDL cell proliferation and migration and, thereby, wound closure, suggesting that this cysteine protease might play a critical role in periodontal remodeling and healing. In addition, cathepsins might be exploited by periodontal bacteria to regulate critical PDL cell functions.
Collapse
Affiliation(s)
- Svenja Memmert
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany. .,Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Anna Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Andressa V B Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Birgit Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Werner Götz
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, UNESP, Araraquara, Brazil
| | - Andreas Jäger
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany.,Noel Martin Visiting Chair, Faculty of Dentistry, University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Capolupo A, Cassiano C, Casapullo A, Andreotti G, Cubellis MV, Riccio A, Riccio R, Monti MC. Identification of Trombospondin-1 as a Novel Amelogenin Interactor by Functional Proteomics. Front Chem 2017; 5:74. [PMID: 29057222 PMCID: PMC5635807 DOI: 10.3389/fchem.2017.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/25/2017] [Indexed: 11/15/2022] Open
Abstract
Amelogenins are a set of low molecular-weight enamel proteins belonging to a group of extracellular matrix (ECM) proteins with a key role in tooth enamel development and in other regeneration processes, such as wound healing and angiogenesis. Since only few data are actually available to unravel amelogenin mechanism of action in chronic skin healing restoration, we moved to the full characterization of the human amelogenin isoform 2 interactome in the secretome and lysate of Human Umbilical Vein Endothelial cells (HUVEC), using a functional proteomic approach. Trombospondin-1 has been identified as a novel and interesting partner of human amelogenin isoform 2 and their direct binding has been validated thought biophysical orthogonal approaches.
Collapse
Affiliation(s)
- Angela Capolupo
- Department of Pharmacy, University of Salerno, Salerno, Italy.,PhD Program in Drug Discovery and Development, University of Salerno, Salerno, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | | | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Delle Ricerche (CNR), Napoli, Italy
| | - Maria V Cubellis
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Raffaele Riccio
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Maria C Monti
- Department of Pharmacy, University of Salerno, Salerno, Italy
| |
Collapse
|
15
|
Human gingival fibroblast response to enamel matrix derivative, porcine recombinant 21.3-kDa amelogenin and 5.3-kDa tyrosine-rich amelogenin peptide. Hum Cell 2017; 30:181-191. [PMID: 28470386 PMCID: PMC5486862 DOI: 10.1007/s13577-017-0164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Enamel matrix derivative (EMD) containing a variety of protein fractions has been used for periodontal tissue regeneration. It is suggested that the proteins contained in EMD positively influence gingival fibroblasts migration and proliferation. Effects of EMD as well as of porcine recombinated 21.3-kDa amelogenin (prAMEL) and 5.3-kDa tyrosine-rich amelogenin peptide (prTRAP) on human gingival fibroblast (HGF-1, ATCC; USA) cell line were investigated. Real-time cell analysis (xCELLigence system; Roche Applied Science) was performed to determine the effects of EMD, prAMEL and prTRAP (12.5–50 μg/mL) on HGF-1 cell proliferation and migration. The effect of treatment on cell cycle was determined using flow cytometry. EMD significantly increased HGF-1 cell proliferation after 24- and 48-h incubation. Individually, prAMEL and prTRAP also increased HGF-1 cell proliferation; however, the difference was significant only for prAMEL 50 µg/mL. prAMEL and TRAP significantly increased HGF-1 cell migration after 60- and 72-h incubation. Cell cycle analysis showed significant decrease of the percentage of cells in the G0/G1 phase and a buildup of cells in the S and M phase observed after EMD and prAMEL stimulation. This process was ligand and concentration-dependent. The various molecular components in the enamel matrix derivative might contribute to the reported effects on gingival tissue regeneration; however, biologic effects of prAMEL and prTRAP individually were different from that of EMD.
Collapse
|
16
|
Weinreb M, Nemcovsky CE. In vitro models for evaluation of periodontal wound healing/regeneration. Periodontol 2000 2017; 68:41-54. [PMID: 25867978 DOI: 10.1111/prd.12079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Periodontal wound healing and regeneration are highly complex processes, involving cells, matrices, molecules and genes that must be properly choreographed and orchestrated. As we attempt to understand and influence these clinical entities, we need experimental models to mimic the various aspects of human wound healing and regeneration. In vivo animal models that simulate clinical situations of humans can be costly and cumbersome. In vitro models have been devised to dissect wound healing/regeneration processes into discrete, analyzable steps. For soft tissue (e.g. gingival) healing, in vitro models range from simple culture of cells grown in monolayers and exposed to biological modulators or physical effectors and materials, to models in which cells are 'injured' by scraping and subsequently the 'wound' is filled with new or migrating cells, to three-dimensional models of epithelial-mesenchymal recombination or tissue explants. The cells employed are gingival keratinocytes, fibroblasts or endothelial cells, and their proliferation, migration, attachment, differentiation, survival, gene expression, matrix production or capillary formation are measured. Studies of periodontal regeneration also include periodontal ligament fibroblasts or progenitors, osteoblasts or osteoprogenitors, and cementoblasts. Regeneration models measure cellular proliferation, attachment and migration, as well as gene expression, transfer and differentiation into a mineralizing phenotype and biomineralization. Only by integrating data from models on all levels (i.e. a single cell to the whole organism) can various critical aspects of periodontal wound healing/regeneration be fully evaluated.
Collapse
|
17
|
Lossdörfer S, Sun M, Götz W, Dard M, Jäger A. Enamel Matrix Derivative Promotes Human Periodontal Ligament Cell Differentiation and Osteoprotegerin Production in vitro. J Dent Res 2016; 86:980-5. [PMID: 17890675 DOI: 10.1177/154405910708601012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enamel matrix derivative (EMD) has been used successfully to aid periodontal repair. We sought to elucidate the mechanism of action of EMD and hypothesized that combined exposure to EMD and parathyroid hormone (PTH), which acts anabolicly when administered intermittently, would enhance periodontal ligament cell proliferation, differentiation, and local factor production. Confluent human periodontal ligament cells were exposed to EMD continuously or to PTH(1-34) intermittently, or a combination of both. Cell number, alkaline phosphatase activity, osteocalcin, and osteoprotegerin production were determined. Continuous challenge with EMD resulted in an increase of the differentiation parameters and osteoprotegerin production, while simultaneously inhibiting proliferation. Intermittent PTH(1-34) administration exerted opposite effects. Combined administration of EMD and PTH(1-34) weakened or even nullified the effects seen for the agents alone. These results suggest that EMD promotes periodontal ligament cell differentiation and osteoprotegerin production, potentially resulting in a microenvironment supporting periodontal repair, whereas combining EMD and PTH(1-34) failed to prove beneficial in this respect.
Collapse
Affiliation(s)
- S Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| | | | | | | | | |
Collapse
|
18
|
Pansani TN, Basso FG, Turrioni APS, Soares DG, Hebling J, de Souza Costa CA. Effects of low-level laser therapy and epidermal growth factor on the activities of gingival fibroblasts obtained from young or elderly individuals. Lasers Med Sci 2016; 32:45-52. [PMID: 27677475 DOI: 10.1007/s10103-016-2081-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
Abstract
This study evaluated the effects of low-level laser therapy (LLLT) and epidermal growth factor (EGF) on fibroblasts obtained from young and elderly individuals. Gingival fibroblasts from young (Y) and elderly (E) individuals were seeded in wells of 24-well plates with Dulbecco's modified Eagle's medium (DMEM) containing 10 % of fetal bovine serum (FBS). After 24 h, the cells were irradiated (LASERTable-InGaAsP-780 ± 3 nm, 25 mW, 3 J/cm2) or exposed to EGF (100 μM). After 72 h, cells were evaluated for viability, migration, collagen and vascular endothelial growth factor (VEGF) synthesis, and gene expression of growth factors. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α = 5 %). Y and E fibroblasts irradiated with laser or exposed to EGF showed increased viability and collagen synthesis. Enhanced cell migration was observed for Y fibroblasts after both treatments, whereas only the LLLT stimulated migration of E cells. VEGF synthesis was higher for Y and E cells exposed to EGF, while this synthesis was reduced when E fibroblasts were irradiated. Increased gene expression of VEGF was observed only for Y and E fibroblasts treated with LLLT. Regardless of a patient's age, the LLLT and EGF applications can biostimulate gingival fibroblast functions involved in tissue repair.
Collapse
Affiliation(s)
- Taisa Nogueira Pansani
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, University Estadual Paulista (UNESP), Araraquara, Brazil
| | - Fernanda Gonçalves Basso
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, University Estadual Paulista (UNESP), Araraquara, Brazil
| | - Ana Paula Silveira Turrioni
- Department of Pediatric Dentistry, School of Dentistry, University Federal Uberlândia (UFU), Uberlândia, Brazil
| | - Diana Gabriela Soares
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, University Estadual Paulista (UNESP), Araraquara, Brazil
| | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, University Estadual Paulista (UNESP), Araraquara, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, University Estadual Paulista (UNESP), Humaita, 1680. Centro, 14801903, Araraquara, SP, Brazil.
| |
Collapse
|
19
|
Groeger S, Windhorst A, Meyle J. Influence of Enamel Matrix Derivative on Human Epithelial Cells In Vitro. J Periodontol 2016; 87:1217-27. [PMID: 27315393 DOI: 10.1902/jop.2016.160088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND In periodontal therapy enamel matrix derivative (EMD) has been successfully used for tissue regeneration by altering activity of various cells involved in periodontal regeneration. Studies have focused primarily on clinical parameters and outcome. Effects of EMD on oral epithelial cells are of crucial importance in order to understand the biology of regeneration. Aims of this study are to investigate proliferative and cytotoxic effects of EMD on oral epithelial cells and their possible influences on epithelial barrier function. METHODS SCC-25 cells, a human squamous cell carcinoma cell line, and primary keratinocytes were either treated with EMD dissolved in culture medium or added to wells/inserts precoated with EMD. Cells were incubated for 24, 48, and 72 hours. Proliferation rate was analyzed measuring the 5-bromo-2'-deoxyuridine nucleotide uptake. Cytotoxic effects of EMD treatment were sampled by lactate dehydrogenase release. Alterations of the epithelial barrier function induced by EMD were investigated by analysis of transepithelial electrical resistance (TER). RESULTS Statistically significant inhibitory effects of both malignant and primary cell proliferation could be demonstrated by precoating culture plate wells with EMD. No cytotoxic effects caused by EMD were detected. Precoating of inserts with EMD induced a significant increase of TER and barrier function. CONCLUSIONS This investigation compares applying EMD in solution to cells with precoating of wells with EMD. When precoating of wells was used solely, inhibition of cell proliferation was evident. Precoating may represent more suitable clinical usage. Furthermore, prelayering EMD induced an increase of TER of primary cells. These results suggest EMD may enhance barrier function.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus Liebig University, Giessen, Germany
| | - Anita Windhorst
- Department of Medical Statistics and Informatics, Justus Liebig University
| | - Joerg Meyle
- Department of Periodontology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
20
|
Miron RJ, Fujioka-Kobayashi M, Zhang Y, Caballé-Serrano J, Shirakata Y, Bosshardt DD, Buser D, Sculean A. Osteogain improves osteoblast adhesion, proliferation and differentiation on a bovine-derived natural bone mineral. Clin Oral Implants Res 2016; 28:327-333. [PMID: 26919609 DOI: 10.1111/clr.12802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND The use of enamel matrix derivative (EMD) has been shown to facilitate periodontal regeneration by histologically resulting in formation of cementum, periodontal ligament and bone. Recently, a new liquid carrier system for EMD has been introduced with better physicochemical properties specifically designed for bone graft mixing (Osteogain). The aim of this study was to investigate the combination of Osteogain with a bovine-derived natural bone mineral (NBM) on osteoblast migration, adhesion, proliferation and differentiation. MATERIALS AND METHODS Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto 1)NBM particles alone or 2)NBM + Osteogain. Samples were compared for cell migration at 8 h, cell adhesion at 4 h, cell proliferation at 1, 3 and 5 days and real-time PCR at 3 and 14 days for genes encoding runt-related transcription factor 2 (Runx2), collagen1alpha2 (COL1a2), alkaline phosphatase (ALP) and osteocalcin (OCN). Furthermore, alizarin red staining was utilized to investigate the mineralization at 14 days. RESULTS Osteogain significantly upregulated cell adhesion over twofold onto NBM particles and promoted cell proliferation at 3 and 5 days after seeding. Furthermore, the combination of NBM with Osteogain significantly upregulated genes encoding Runx2, ALP, COL1a2 and OCN (from 1.5- to 3-fold) and increased alizarin red staining over 3 fold at 14 days when compared to NBM particles alone. CONCLUSION Pre-coating Osteogain onto NBM bone grafting particles significantly increased cell adhesion, proliferation and differentiation of osteoblasts in vitro. Future animal studies are now necessary to further investigate the regenerative potential of Osteogain in combination with a bone grafting material prior to clinical use for bone regeneration.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Oral Surgery and Stomatology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jordi Caballé-Serrano
- Department of Oral Surgery and Stomatology, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Oral and MaxilloFacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Yoshinori Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Dieter D Bosshardt
- Department of Periodontology, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Oral Surgery and Stomatology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Cianci E, Recchiuti A, Trubiani O, Diomede F, Marchisio M, Miscia S, Colas RA, Dalli J, Serhan CN, Romano M. Human Periodontal Stem Cells Release Specialized Proresolving Mediators and Carry Immunomodulatory and Prohealing Properties Regulated by Lipoxins. Stem Cells Transl Med 2015; 5:20-32. [PMID: 26607175 PMCID: PMC4704879 DOI: 10.5966/sctm.2015-0163] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022] Open
Abstract
The actions of human periodontal ligament stem cells (hPDLSCs) on polymorphonuclear neutrophil (PMN) apoptosis and antimicrobial functions, and the impact of lipoxin A4 (LXA4) on hPDLSCs were investigated. hPDLSCs significantly reduced apoptosis and stimulated microbicidal activity of human PMNs, via both cell-cell interactions and paracrine mechanisms. hPDLSCs also were found to biosynthesize proresolving lipid mediators and prostaglandins. This study also demonstrated that the LXA4-ALX/FPR2 axis regulates regenerative functions of hPDLSCs by a novel receptor-mediated mechanism. Unresolved inflammation and tissue destruction are underlying mechanisms of periodontitis, which is linked to dysregulated polymorphonuclear neutrophil (PMN) functions. Lipoxin A4 (LXA4) is a specialized proresolving lipid mediator (SPM) that dampens excessive inflammation, promotes resolution, and protects from leukocyte-mediated tissue damage. Human periodontal ligament stem cells (hPDLSCs) represent key players during tissue regeneration and may contribute to resolution of inflammation; thus, they may represent a promising tool in regenerative dentistry. In the present study, we investigated the actions of hPDLSCs on PMN apoptosis and antimicrobial functions, and determined the impact of LXA4 on hPDLSCs. hPDLSCs significantly reduced apoptosis and stimulated microbicidal activity of human PMNs, via both cell-cell interactions and paracrine mechanisms. Lipid mediator metabololipidomics analysis demonstrated that hPDLSCs biosynthesize SPMs, including resolvin D1, D2, D5, and D6; protectin D1; maresins; and LXB4; as well as prostaglandins D2, E2, and F2α. LXA4 significantly enhanced proliferation, migration, and wound healing capacity of hPDLSCs through the activation of its cognate receptor ALX/FPR2, expressed on hPDLSCs. Together, these results demonstrate that hPDLSCs modulate PMN functions, and provide the first evidence that stem cells generate SPM and that the LXA4-ALX/FPR2 axis regulates regenerative functions of hPDLSCs by a novel receptor-mediated mechanism. Significance These findings uncovered unappreciated features of stem cells from the periodontal ligament, supporting the notion that these cells may act as master regulators of pathophysiological events through the release of mediators that promote the resolution of inflammation and bacterial killing. The study also demonstrated that it is possible to modulate important functions of periodontal stem cells using lipoxin A4, a potent endogenous stop signal of inflammation. Thus, this study revealed an unappreciated anti-inflammatory proregenerative circuit that may be exploited to combat periodontal pathologies using resident stem cells. Moreover, the data may represent a more general template to explain the immunomodulatory functions of stem cells.
Collapse
Affiliation(s)
- Eleonora Cianci
- Department of Medicine and Aging Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sebastiano Miscia
- Department of Medicine and Aging Science, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mario Romano
- StemTeCh Group, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
22
|
Lin CY, Lee CH, Huang CC, Lee ST, Guo HR, Su SB. Impact of high glucose on metastasis of colon cancer cells. World J Gastroenterol 2015; 21:2047-2057. [PMID: 25717237 PMCID: PMC4326139 DOI: 10.3748/wjg.v21.i7.2047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/08/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the possible mechanism of how glucose promotes invasion and metastasis of colon cancer cells.
METHODS: CT-26 rat colorectal cancer cells were cultured in different concentrations of glucose environments (10, 20, and 30 mmol/L). Wound healing assay and transwell chamber invasion assay were utilized to test the migration and invasion, respectively. In order to understand the role of signal transducer and activator of transcription 3 (STAT3) in the process, STAT3 inhibitors, including Stattic (an STAT3 specific inhibitor) and small interfering RNA targeting STAT3, were used to block STAT3 function to evaluate their impact on CT-26 cell motion. To verify whether STAT3 and matrix metalloproteinase-9 (MMP-9) protein expression is associated with glucose-induced cell movement, Western blot was used to compare the differences in the expression of MMP-9 and STAT3 in cells incubated with and without STAT3 inhibitors in high glucose condition.
RESULTS: In both wound healing and invasion assays, the migration and invasion of CT-26 cells increased gradually with the increase in glucose concentration. However, the glucose-induced migration and invasion were obviously inhibited by STAT3 inhibitors (P < 0.05). Similarly, in Western blot assessment, both MMP-9 and STAT3 expression increased under a high glucose environment and the highest expression was achieved when 30 mmol/L glucose was used. However, in cells treated with 30 mmol/L mannitol, either MMP-9 or STAT3 expression did not increase (P > 0.05). When STAT3 inhibitors were added in the 30 mM glucose group, not only STAT3 but also MMP-9 expression decreased significantly (P < 0.05).
CONCLUSION: Our study provides evidence that glucose can promote both migration and invasion of CT-26 cells, and that the STAT3-induced MMP-9 signal pathway is involved in this process.
Collapse
|
23
|
Ragghianti Zangrando MS, Chambrone D, Pasin IM, Conde MC, Pannuti CM, de Lima LAPA. Two-year randomized clinical trial of enamel matrix derivative treated infrabony defects: radiographic analysis. BMC Oral Health 2014; 14:149. [PMID: 25475143 PMCID: PMC4266965 DOI: 10.1186/1472-6831-14-149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/19/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND This split-mouth, double-blind randomized controlled trial evaluated radiographic changes in infrabony defects treated with open flap debridement (OFD) or OFD associated with enamel matrix derivative (EMD) after a 24-month follow-up. The radiographic distance from the CEJ to the bottom of the defect (BD) was considered the primary outcome. CEJ-BC and defect angle were secondary outcomes. METHODS Ten patients presenting 2 or more defects were selected. An individualized film holder was used to take standardized radiographs of the 43 defects, at baseline and after 24 months. Images were digitized and used to measure the distances from the cemento-enamel junction (CEJ) to the alveolar crest (AC), CEJ to the bottom of the defect (BD) and infrabony defect angle. Statistical analysis was performed in SPSS for Windows (version 5.2). Paired samples t test was used to compare test and control groups and to evaluate changes within each group. The level of significance was set at α = 0.05%. RESULTS After 24 months, a significant crestal bone loss was observed for EMD (1.01 mm; p = 0.049) but not for OFD (0.14 mm; p = 0.622). However, no differences were detected between groups (p = 0.37). Reduction of the bone defect depth was significant for OFD (0.70 mm; p = 0.005) but not for EMD (0.04 mm; p = 0.86), while no differences were detected between them (p = 0.87). Both EMD (0.69°; p = 0.82) and OFD (5.71°; p = 0.24) showed an improvement in defect angle measurements but no significant differences were observed after 24 months or between the groups (p = 0.35). CONCLUSION Linear radiographic analysis was not able to demonstrate superiority of EMD treated infrabony defects when compared to ODF after 24 months. TRIAL REGISTRATION ClinicalTrials.gov: NCT02195765. Registered 17 July 2014.
Collapse
Affiliation(s)
| | - Daniela Chambrone
- School of Dentistry, University of São Paulo, Av. Lineu Prestes, 2227 Cidade Universitária, 05508-000 São Paulo, SP Brazil
| | - Ivan Munhoz Pasin
- School of Dentistry, University of São Paulo, Av. Lineu Prestes, 2227 Cidade Universitária, 05508-000 São Paulo, SP Brazil
| | - Marina Clemente Conde
- School of Dentistry, University of São Paulo, Av. Lineu Prestes, 2227 Cidade Universitária, 05508-000 São Paulo, SP Brazil
| | - Cláudio Mendes Pannuti
- School of Dentistry, University of São Paulo, Av. Lineu Prestes, 2227 Cidade Universitária, 05508-000 São Paulo, SP Brazil
| | | |
Collapse
|
24
|
Miron RJ, Dard M, Weinreb M. Enamel matrix derivative, inflammation and soft tissue wound healing. J Periodontal Res 2014; 50:555-69. [PMID: 25418917 DOI: 10.1111/jre.12245] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/17/2022]
Abstract
Over 15 years have now passed since enamel matrix derivative (EMD) emerged as an agent capable of periodontal regeneration. Following thorough investigation, evidenced-based clinical application is now established for a multitude of clinical settings to promote regeneration of periodontal hard tissues. Despite the large number of studies and review articles written on this topic, no single review has compiled the influence of EMD on tissue inflammation, an area of research that merits substantial attention in periodontology. The aim of the present review was to gather all studies that deal with the effects of EMD on tissue inflammation with particular interest in the cellular mechanisms involved in inflammation and soft tissue wound healing/resolution. The effects of EMD on monocytes, macrophages, lymphocytes, neutrophils, fibroblasts and endothelial cells were investigated for changes in cell behavior as well as release of inflammatory markers, including interleukins, prostaglandins, tumor necrosis factor-α, matrix metalloproteinases and members of the OPG-RANKL pathway. In summary, studies listed in this review have reported that EMD is able to significantly decrease interleukin-1b and RANKL expression, increase prostaglandin E2 and OPG expression, increase proliferation and migration of T lymphocytes, induce monocyte differentiation, increase bacterial and tissue debris clearance, as well as increase fibroplasias and angiogenesis by inducing endothelial cell proliferation, migration and capillary-like sprout formation. The outcomes from the present review article indicate that EMD is able to affect substantially the inflammatory and healing responses and lay the groundwork for future investigation in the field.
Collapse
Affiliation(s)
- R J Miron
- Department of Periodontology, Department of Oral Surgery, University of Bern, Bern, Switzerland.,Faculty of Dental Medicine, University of Laval, Quebec City, QC, Canada
| | - M Dard
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, NY, USA
| | - M Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
25
|
Wu SM, Chiu HC, Chin YT, Lin HY, Chiang CY, Tu HP, Fu MMJ, Fu E. Effects of enamel matrix derivative on the proliferation and osteogenic differentiation of human gingival mesenchymal stem cells. Stem Cell Res Ther 2014; 5:52. [PMID: 24739572 PMCID: PMC4076631 DOI: 10.1186/scrt441] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Gingiva-derived mesenchymal stem cells (GMSCs) have recently been harvested and applied for rebuilding lost periodontal tissue. Enamel matrix derivative (EMD) has been used for periodontal regeneration and the formation of new cementum with inserting collagen fibers; however, alveolar bone formation is minimal. Recently, EMD has been shown to enhance the proliferation and mineralization of human bone marrow mesenchymal stem cells. Because the gingival flap is the major component to cover the surgical wound, the effects of EMD on the proliferation and mineralization of GMSCs were evaluated in the present study. METHODS After single cell suspension, the GMSCs were isolated from the connective tissues of human gingiva. The colony forming unit assay of the isolated GMSCs was measured. The expression of stem cell markers was examined by flow cytometry. The cellular telomerase activity was identified by polymerase chain reaction (PCR). The osteogenic, adipogenic and neural differentiations of the GMSCs were further examined. The cell proliferation was determined by MTS assay, while the expression of mRNA and protein for mineralization (including core binding factor alpha, cbfα-1; alkaline phosphatase, ALP; and osteocalcin, OC; ameloblastin, AMBN) were analyzed by real time-PCR, enzyme activity and confocal laser scanning microscopy. RESULTS The cell colonies could be easily identified and the colony forming rates and the telomerase activities increased after passaging. The GMSCs expressed high levels of surface markers for CD73, CD90, and CD105, but showed low expression of STRO-1. Osteogenic, adipogenic and neural differentiations were successfully induced. The proliferation of GMSCs was increased after EMD treatment. ALP mRNA was significantly augmented by treating with EMD for 3 hours, whereas AMBN mRNA was significantly increased at 6 hours after EMD treatment. The gene expression of OC was enhanced at the dose of 100 μg/ml EMD at day 3. Increased protein expression for cbfα-1 at day 3, for ALP at day 5 and 7, and for OC at week 4 after the EMD treatments were observed. CONCLUSIONS Human GMSCs could be successfully isolated and identified. EMD treatments not only induced the proliferation of GMSCs but also enhanced their osteogenic differentiation after induction.
Collapse
|
26
|
Kesim S, Kılıc D, Ozdamar S, Liman N. Effect of Smoking on Attachment of Human Periodontal Ligament Cells to Periodontally Involved Root Surfaces Following Enamel Matrix Derivative Application. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Vignoletti F, Nunez J, Sanz M. Soft tissue wound healing at teeth, dental implants and the edentulous ridge when using barrier membranes, growth and differentiation factors and soft tissue substitutes. J Clin Periodontol 2014; 41 Suppl 15:S23-35. [DOI: 10.1111/jcpe.12191] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Fabio Vignoletti
- Department of Periodontology; University Complutense of Madrid; Madrid Spain
| | - Javier Nunez
- Department of Periodontology; University Complutense of Madrid; Madrid Spain
| | - Mariano Sanz
- Department of Periodontology; University Complutense of Madrid; Madrid Spain
| |
Collapse
|
28
|
Nizam N, Discioglu F, Saygun I, Bal V, Avcu F, Ozkan CK, Serdar MA. The effect of α-tocopherol and selenium on human gingival fibroblasts and periodontal ligament fibroblasts in vitro. J Periodontol 2013; 85:636-44. [PMID: 23805812 DOI: 10.1902/jop.2013.130184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The aim of the present study is to evaluate the effect of α-tocopherol and selenium on gingival fibroblasts (GFs) and periodontal ligament fibroblasts (PDLFs) in terms of proliferation, basic fibroblast growth factor (bFGF) release, collagen type I synthesis, and wound healing. METHODS Primary cultures of human GFs and PDLFs were isolated. Four test groups and a control group free of medication was formed. In group E, 60 μM α-tocopherol was used, and in groups ES1, ES2, and ES3, the combination of 60 μM α-tocopherol with 5 × 10(-9) M, 10 × 10(-9) M, and 50 × 10(-9) M selenium was used, respectively. Viability, proliferation, bFGF, and collagen type I synthesis from both cell types were evaluated at 24, 48, and 72 hours, and healing was compared on a new wound-healing model at 12, 24, 36, 48, and 72 hours. RESULTS α-Tocopherol alone significantly increased the healing rate of PDLFs at 12 hours and increased bFGF and collagen type I release from GFs and PDLFs at 24, 48, and 72 hours. The α-tocopherol/selenium combination significantly enhanced the proliferation rate of both cells at 48 hours, decreased the proliferation of PDLFs at 72 hours, and increased the healing rate of GFs at 12 hours and PDLFs at 12 and 48 hours. bFGF and collagen type I synthesis was also increased in both cell types at 24, 48, and 72 hours by α-tocopherol/selenium combination. CONCLUSION α-Tocopherol and α-tocopherol/selenium combination is able to accelerate the proliferation rate and wound-healing process and increase the synthesis of bFGF and collagen type I from both GFs and PDLFs.
Collapse
Affiliation(s)
- Nejat Nizam
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
29
|
In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent 2012; 2012:719452. [PMID: 22844284 PMCID: PMC3403309 DOI: 10.1155/2012/719452] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to determine adequate energy doses using specific parameters of LLLT to produce biostimulatory effects on human gingival fibroblast culture. Cells (3 × 104 cells/cm2) were seeded on 24-well acrylic plates using plain DMEM supplemented with 10% fetal bovine serum. After 48-hour incubation with 5% CO2 at 37°C, cells were irradiated with a InGaAsP diode laser prototype (LASERTable; 780 ± 3 nm; 40 mW) with energy doses of 0.5, 1.5, 3, 5, and 7 J/cm2. Cells were irradiated every 24 h totalizing 3 applications. Twenty-four hours after the last irradiation, cell metabolism was evaluated by the MTT assay and the two most effective doses (0.5 and 3 J/cm2) were selected to evaluate the cell number (trypan blue assay) and the cell migration capacity (wound healing assay; transwell migration assay). Data were analyzed by the Kruskal-Wallis and Mann-Whitney nonparametric tests with statistical significance of 5%. Irradiation of the fibroblasts with 0.5 and 3 J/cm2 resulted in significant increase in cell metabolism compared with the nonrradiated group (P < 0.05). Both energy doses promoted significant increase in the cell number as well as in cell migration (P < 0.05). These results demonstrate that, under the tested conditions, LLLT promoted biostimulation of fibroblasts in vitro.
Collapse
|
30
|
Yan XZ, Rathe F, Gilissen C, van der Zande M, Veltman J, Junker R, Yang F, Jansen JA, Walboomers XF. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells. J Tissue Eng Regen Med 2012; 8:463-72. [PMID: 22689476 DOI: 10.1002/term.1545] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/23/2012] [Accepted: 05/03/2012] [Indexed: 11/05/2022]
Abstract
Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation.
Collapse
Affiliation(s)
- X Z Yan
- Department of Biomaterials, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kiss A, Cucchiarini M, Menger MD, Kohn D, Hannig M, Madry H. Enamel matrix derivative inhibits proteoglycan production and articular cartilage repair, delays the restoration of the subchondral bone and induces changes of the synovial membrane in a lapine osteochondral defect modelin vivo. J Tissue Eng Regen Med 2012; 8:41-9. [DOI: 10.1002/term.1495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Alice Kiss
- Department of Operative Dentistry and Periodontology; Saarland University Medical Centre; Homburg/Saar Germany
| | - Magali Cucchiarini
- Centre of Experimental Orthopaedics; Saarland University; Homburg/Saar Germany
| | - Michael D. Menger
- Institute für Experimental Surgery, Department of Surgery; Saarland University Medical Centre; Homburg/Saar Germany
| | - Dieter Kohn
- Department of Orthopaedic Surgery; Saarland University Medical Centre; Homburg/Saar Germany
| | - Matthias Hannig
- Department of Operative Dentistry and Periodontology; Saarland University Medical Centre; Homburg/Saar Germany
| | - Henning Madry
- Centre of Experimental Orthopaedics; Saarland University; Homburg/Saar Germany
- Department of Orthopaedic Surgery; Saarland University Medical Centre; Homburg/Saar Germany
| |
Collapse
|
32
|
Taguchi Y, Yasui N, Takahashi S, Tominaga K, Kato H, Komasa S, Shida M, Hayashi H, Tanaka A, Umeda M. Hard Tissue Formation by Human Periodontal Ligament Fibroblast Cells Treated with an Emdogain^|^reg;-Derived Oligopeptide in vitro. J HARD TISSUE BIOL 2012. [DOI: 10.2485/jhtb.21.375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Mohazab L, Koivisto L, Jiang G, Kytömäki L, Haapasalo M, Owen G, Wiebe C, Xie Y, Heikinheimo K, Yoshida T, Smith C, Heino J, Häkkinen L, McKee M, Larjava H. Critical role for αvβ6 integrin in enamel biomineralization. J Cell Sci 2012; 126:732-44. [DOI: 10.1242/jcs.112599] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tooth enamel has the highest degree of biomineralization of all vertebrate hard tissues. During the secretory stage of enamel formation, ameloblasts deposit an extracellular matrix that is in direct contact with ameloblast plasma membrane. Although it is known that integrins mediate cell-matrix adhesion and regulate cell signaling in most cell types, the receptors that regulate ameloblast adhesion and matrix production are not well characterized. Thus, we hypothesized that αvβ6 integrin is expressed in ameloblasts where it regulates biomineralization of enamel. Human and mouse ameloblasts were found to express both β6 integrin mRNA and protein. The maxillary incisors of Itgb6−/− mice lacked yellow pigment and their mandibular incisors appeared chalky and rounded. Molars of Itgb6−/− mice showed signs of reduced mineralization and severe attrition. The mineral-to-protein ratio in the incisors was significantly reduced in Itgb6−/− enamel, mimicking hypomineralized amelogenesis imperfecta. Interestingly, amelogenin-rich extracellular matrix abnormally accumulated between the ameloblast layer of Itgb6−/− mouse incisors and the forming enamel surface, and also between ameloblasts. This accumulation was related to increased synthesis of amelogenin, rather than to reduced removal of the matrix proteins. This was confirmed in cultured ameloblast-like cells, which did not use αvβ6 integrin as an endocytosis receptor for amelogenins, although it participated in cell adhesion on this matrix indirectly via endogenously produced matrix proteins. In summary, integrin αvβ6 is expressed by ameloblasts and it plays a crucial role in regulating amelogenin deposition/turnover and subsequent enamel biomineralization.
Collapse
|
34
|
Abstract
The role of regenerative periodontal therapy is the reconstitution of lost periodontal structures, ie, new formation of root cementum, periodontal ligament, and alveolar bone. The outcome of basic research has pointed to the important role of enamel matrix protein derivative (EMD) in periodontal wound healing. Histologic results from animal and human studies have shown that treatment with EMD promotes periodontal regeneration. Moreover, clinical studies have indicated that treatment with EMD positively influences periodontal wound healing in humans. The goal of this paper is to review the existing literature on EMD.
Collapse
Affiliation(s)
- Vandana J Rathva
- Department of Periodontics, KM Shah Dental College and Hospital, Sumandeep University, Gujarat, India
| |
Collapse
|
35
|
Jiang SY, Shu R, Song ZC, Xie YF. Effects of enamel matrix proteins on proliferation, differentiation and attachment of human alveolar osteoblasts. Cell Prolif 2011; 44:372-9. [PMID: 21702859 DOI: 10.1111/j.1365-2184.2011.00762.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Enamel matrix proteins (EMPs) have been demonstrated to promote periodontal regeneration. However, effects of EMPs on human alveolar osteoblasts (hAOBs), up to now, have still been unclear. The purpose of this study was to investigate influence of EMPs on proliferation, differentiation and attachment of hAOBs in vitro. MATERIALS AND METHODS EMPs were extracted using the acetic acid method, hAOBs were obtained and cultured in vitro. Cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of osteogenic markers and cell attachment were measured in the absence and in the presence of EMPs (50, 100 and 200 μg/ml). RESULTS EMPs increased proliferation of hAOBs; however, they inhibited ALP activity and mRNA expression of osteogenic markers (collagen I, ALP, runt-related protein 2, osteocalcin, bone sialoprotein and osteopontin). Meanwhile, EMPs hindered hAOBs' attachment. These effects occurred in EMPs concentration-dependent manner. CONCLUSIONS These results indicate that EMPs may inhibit osteoblastic differentiation and attachment to prevent ankylosis and allow other cell types to regenerate periodontal tissues.
Collapse
Affiliation(s)
- S-Y Jiang
- Department of Periodontology, College of Stomatology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | | | | | | |
Collapse
|
36
|
Kémoun P, Gronthos S, Snead ML, Rue J, Courtois B, Vaysse F, Salles JP, Brunel G. The role of cell surface markers and enamel matrix derivatives on human periodontal ligament mesenchymal progenitor responses in vitro. Biomaterials 2011; 32:7375-88. [PMID: 21784516 DOI: 10.1016/j.biomaterials.2011.06.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/20/2011] [Indexed: 12/17/2022]
Abstract
Periodontitis is a chronic-, infectious-disease of the human periodontium that is characterized by the loss of supporting tissues surrounding the tooth such as the periodontal ligament (PDL), cementum and alveolar bone. Regeneration of the periodontium is dependent on the participation of mesenchymal stem/stromal cells (MSC) resident in the PDL. Enamel matrix derivative (EMD), an extract from immature porcine enamel rich in amelogenin protein but that also contain bone morphogenetic protein (BMP), is used to treat periodontal defects. The effects of EMD on MSC cells of the PDL are not well characterized. In this in vitro study, we identify PDL progenitor cells from multiple individuals and demonstrate that EMD stimulates them. We show that the effect of EMD on cell proliferation and migration is mediated through the amelogenin it contains, while the differentiation of these progenitor cells to cell types of mineralized tissue is mainly due to BMP signaling.
Collapse
Affiliation(s)
- Philippe Kémoun
- Faculty of Odontology, University Paul-Sabatier, 3 Chemin des Maraîchers, 31062 Toulouse Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Rath B, Jäger A, Jepsen S, Deschner J. Interactions of regenerative, inflammatory and biomechanical signals on bone morphogenetic protein-2 in periodontal ligament cells. J Periodontal Res 2011; 46:374-81. [PMID: 21410703 DOI: 10.1111/j.1600-0765.2011.01357.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Regeneration of periodontal tissues by EMD remains a major challenge because a number of modifying factors are as yet unknown. The effects of EMD seem to be mediated, at least in part, by bone morphogenetic protein-2 (BMP-2). This in vitro study was performed to examine whether the effects of EMD on BMP-2 activity are modulated by inflammatory and/or biomechanical signals. MATERIAL AND METHODS Periodontal ligament cells were seeded on BioFlex(®) plates and exposed to EMD under normal, inflammatory or biomechanical loading conditions for 1 and 6 d. In order to mimic proinflammatory or biomechanical loading conditions in vitro, cells were stimulated with interleukin-1β (IL-1β), which is increased at inflamed periodontal sites, and cyclic tensile strain of various magnitudes, respectively. The synthesis of BMP-2, its receptors (BMPR-1A, BMPR-1B and BMPR-2) and its inhibitors (follistatin, matrix gla protein and noggin) were analyzed using real-time RT-PCR and ELISA. RESULTS In EMD-treated cells, BMP-2 synthesis was increased significantly at 1 d. EMD also induced the expression of all BMP receptors, and of the BMP inhibitors follistatin and noggin. In general, IL-1β and biomechanical loading neither down-regulated BMP-2 nor up-regulated BMP inhibitors in EMD-stimulated cells. However, IL-1β and biomechanical loading, when applied for a longer time period, caused a down-regulation of EMD-induced BMP receptors. CONCLUSION EMD induces not only BMP-2, but also its receptors and inhibitors, in PDL cells. IL-1β and biomechanical forces may counteract the beneficial effects of EMD on BMP-2 activity via the down-regulation of BMP receptors.
Collapse
Affiliation(s)
- M Nokhbehsaim
- Clinical Research Unit, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nokhbehsaim M, Deschner B, Bourauel C, Reimann S, Winter J, Rath B, Jäger A, Jepsen S, Deschner J. Interactions of enamel matrix derivative and biomechanical loading in periodontal regenerative healing. J Periodontol 2011; 82:1725-34. [PMID: 21513471 DOI: 10.1902/jop.2011.100678] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although enamel matrix derivative (EMD) has been shown to promote periodontal regeneration, it is unknown whether the actions of EMD are modulated by occlusal loading. This in vitro study was performed to investigate whether biomechanical forces regulate the response of periodontal ligament (PDL) cells to EMD. METHODS Human PDL cells were treated with EMD in the presence and absence of cyclic tensile strain (CTS) of various magnitudes for ≤ 14 days. Synthesis of transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), growth factor receptors, collagen, and runt-related transcription factor 2- (RUNX2), cell numbers and adhesion, wound fill rate, and calcium accumulation were analyzed by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, a wound healing assay, and alizarine red S staining. RESULTS Wound fill rate, cell numbers and adhesion, and expression of TGF-β1, VEGF, collagen, and RUNX2 were significantly increased by EMD. In the presence of CTS, the EMD-induced effects were significantly reduced. The inhibition of the EMD-upregulated VEGF expression by CTS was blocked by a specific inhibitor of nuclear factor-kappa B signaling. Moreover, CTS downregulated receptors for growth factors involved in the actions of EMD. CTS also antagonized significantly the EMD-induced calcium deposition. CONCLUSIONS These in vitro findings suggest that the beneficial actions of EMD on PDL cell functions critical for periodontal regeneration are jeopardized by biomechanical loading. Clinical studies should clarify whether protection of teeth against occlusal forces in the early healing stage may positively affect the outcome of regenerative therapy with EMD.
Collapse
|
39
|
Possibilities and potential roles of the functional peptides based on enamel matrix proteins in promoting the remineralization of initial enamel caries. Med Hypotheses 2011; 76:391-4. [DOI: 10.1016/j.mehy.2010.10.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/21/2010] [Accepted: 10/29/2010] [Indexed: 11/18/2022]
|
40
|
Mirastschuski U, Konrad D, Lundberg E, Lyngstadaas SP, Jorgensen LN, Ågren MS. Effects of a topical enamel matrix derivative on skin wound healing. Wound Repair Regen 2011. [DOI: 10.1111/j.1524-475x.2004.tb00001.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Nokhbehsaim M, Winter J, Rath B, Jäger A, Jepsen S, Deschner J. Effects of enamel matrix derivative on periodontal wound healing in an inflammatory environment in vitro. J Clin Periodontol 2011; 38:479-90. [DOI: 10.1111/j.1600-051x.2010.01696.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Jäger A, Jepsen S, Deschner J. Anti-inflammatory effects of EMD in the presence of biomechanical loading and interleukin-1β in vitro. Clin Oral Investig 2011; 16:275-83. [PMID: 21225299 DOI: 10.1007/s00784-010-0505-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/30/2010] [Indexed: 02/01/2023]
Abstract
Enamel matrix derivative (EMD) used to promote periodontal regeneration has been shown to exert anti-inflammatory effects. This in vitro study was performed to investigate if the anti-inflammatory actions of EMD are modulated by the local cellular environment, such as inflammation or occlusal, i.e., biomechanical, loading. Human periodontal ligament cells were seeded on BioFlex plates and incubated with EMD under normal, inflammatory, and biomechanical loading conditions for 1 and 6 days. In order to mimic inflammatory and biomechanical loading conditions in vitro, cells were stimulated with interleukin (IL)-1β and exposed to dynamic tensile strain, respectively. The gene expression of IL-1β, IL-1 receptor antagonist (IL-1RN), IL-6, IL-8, IL-10, and cyclooxygenase (COX)-2 was analyzed by real-time RT-PCR and the IL-6 protein synthesis by enzyme-linked immunoassay. For statistical analysis, Student's t test, ANOVA, and post-hoc comparison tests were applied (p < 0.05). EMD downregulated significantly the expression of IL-1β and COX-2 at 1 day and of IL-6, IL-8, and COX-2 at 6 days in normal condition. In an inflammatory environment, the anti-inflammatory actions of EMD were significantly enhanced at 6 days. In the presence of low biomechanical loading, EMD caused a downregulation of IL-1β and IL-8, whereas high biomechanical loading significantly abrogated the anti-inflammatory effects of EMD at both days. Neither IL-1RN nor IL-10 was upregulated by EMD. These data suggest that high occlusal forces may abrogate anti-inflammatory effects of EMD and should, therefore, be avoided immediately after the application of EMD to achieve best healing results.
Collapse
Affiliation(s)
- Marjan Nokhbehsaim
- Clinical Research Unit 208, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Ogihara S, Wang HL. Periodontal Regeneration With or Without Limited Orthodontics for the Treatment of 2- or 3-Wall Infrabony Defects. J Periodontol 2010; 81:1734-42. [DOI: 10.1902/jop.2010.100127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Nokhbehsaim M, Deschner B, Winter J, Reimann S, Bourauel C, Jepsen S, Jäger A, Deschner J. Contribution of Orthodontic Load to Inflammationmediated Periodontal Destruction. J Orofac Orthop 2010; 71:390-402. [DOI: 10.1007/s00056-010-1031-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/08/2010] [Indexed: 11/30/2022]
|
45
|
Dilsiz A, Canakci V, Aydin T. The Combined Use of Nd:YAG Laser and Enamel Matrix Proteins in the Treatment of Periodontal Infrabony Defects. J Periodontol 2010; 81:1411-8. [DOI: 10.1902/jop.2010.100031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Khedmat S, Seyedabadi M, Ghahremani MH, Ostad SN. Cyclooxygenase 2 plays a role in Emdogain-induced proliferation. J Periodontal Res 2010; 46:67-73. [PMID: 20860590 DOI: 10.1111/j.1600-0765.2010.01313.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Enamel matrix proteins are involved in the development and regeneration of root cementum and in its attachment to dentin; however, the mechanisms through which this occurs have yet to be elucidated. The present study was therefore carried out to evaluate the mitogenic and proliferative responses of human periodontal fibroblast (HPLF) cells to Emdogain (EMD), and the potential role of cyclooxygenase 2 (COX-2) in this process. MATERIAL AND METHODS We investigated the effects of EMD on 5-bromo-2'-deoxyuridine (BrdU) incorporation, colchicine freezing of mitosis, XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and Trypan Blue dye exclusion, with or without celecoxibe, a selective cyclooxygenase-2 (COX-2) inhibitor; we also evaluated the expression of COX-2 mRNA and COX-2 protein in response to EMD. RESULTS EMD significantly enhanced mitosis in, and proliferation of, human periodontal ligament fibroblasts in a dose-dependent manner; however, there was a small increase of DNA synthesis only in response to a high dose of EMD (200 μg/mL). EMD (100 and 200 μg/mL) elicited an increase in COX-2 expression (p ≤ 0.05). Celecoxibe (20 μm) diminished the EMD-induced mitosis and proliferation of HPLF cells (p ≤ 0.05). CONCLUSION Celecoxibe hampered EMD-induced mitosis and proliferation, which, in association with EMD-increased COX-2 expression, indicates that COX-2 may be involved in the proliferative response of HPLF cells to EMD.
Collapse
Affiliation(s)
- S Khedmat
- Department of Endodontics and Dental Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
47
|
Potijanyakul P, Sattayasansakul W, Pongpanich S, Leepong N, Kintarak S. Effects of enamel matrix derivative on bioactive glass in rat calvarium defects. J ORAL IMPLANTOL 2010; 36:195-204. [PMID: 20553173 DOI: 10.1563/aaid-joi-d-09-00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissue engineering-based bone grafting has emerged as a viable alternative to biologic and synthetic grafts. The purpose of this study was to evaluate the effect of enamel matrix derivative (EMD; Emdogain gel, Biora AB, Malmö, Sweden) on bioactive glass in enhancing bone formation in rat calvarium defects. Twenty rats were used in the study. In all animals, 2 standardized critical-sized calvarial defects (5.0 mm diameter) were created surgically. The animals were randomly allocated into 4 groups of 5 animals each. Group AI: one calvarial defect was filled with bioactive glass plus EMD, while the contralateral defect was filled with bioactive glass alone. The healing period was 2 weeks. Groups AII and AIII: the animals were treated in the same manner as in group AI, but the healing periods were 4 and 8 weeks, respectively. Group B: one calvarial defect was filled with EMD only, while the contralateral defect was empty (CSD). The healing period was 8 weeks. New bone formation was evaluated by radiomorphometry and histomorphometry. Results of radiomorphometry showed no significant difference in the mean optical density between bioactive glass with EMD and bioactive glass alone; no defect completely regenerated with bone. The histologic analysis revealed that defects filled with bioactive glass plus EMD in all groups contained slightly more percentage of new bone than those filled with bioactive glass alone; however, the difference was not statistically significant. The highest percentage of new bone formation was present at 8 weeks in the bioactive glass plus EMD group. Bioactive glass particles, used with or without EMD, maintained the volume and contour of the area grafted in CSD. However, they did not lead to a significant difference in bone formation when compared with CSD 8 weeks postoperatively.
Collapse
Affiliation(s)
- Pisanu Potijanyakul
- Department of Oral Surgery, Prince of Songkla university, Hat Yai, Songkhla, Thailand.
| | | | | | | | | |
Collapse
|
48
|
Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 2010; 31:7892-927. [PMID: 20684986 DOI: 10.1016/j.biomaterials.2010.07.019] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/04/2010] [Indexed: 12/17/2022]
Abstract
Periodontitis is a globally prevalent inflammatory disease that causes the destruction of the tooth-supporting apparatus and potentially leads to tooth loss. Currently, the methods to reconstitute lost periodontal structures (i.e. alveolar bone, periodontal ligament, and root cementum) have relied on conventional mechanical, anti-infective modalities followed by a range of regenerative procedures such as guided tissue regeneration, the use of bone replacement grafts and exogenous growth factors (GFs), and recently developed tissue engineering technologies. However, all current or emerging paradigms have either been shown to have limited and variable outcomes or have yet to be developed for clinical use. To accelerate clinical translation, there is an ongoing need to develop therapeutics based on endogenous regenerative technology (ERT), which can stimulate latent self-repair mechanisms in patients and harness the host's innate capacity for regeneration. ERT in periodontics applies the patient's own regenerative 'tools', i.e. patient-derived GFs and fibrin scaffolds, sometimes in association with commercialized products (e.g. Emdogain and Bio-Oss), to create a material niche in an injured site where the progenitor/stem cells from neighboring tissues can be recruited for in situ periodontal regeneration. The choice of materials and the design of implantable devices influence therapeutic potential and the number and invasiveness of the associated clinical procedures. The interplay and optimization of each niche component involved in ERT are particularly important to comprehend how to make the desired cell response safe and effective for therapeutics. In this review, the emerging opportunities and challenges of ERT that avoid the ex vivo culture of autologous cells are addressed in the context of new approaches for engineering or regeneration of functional periodontal tissues by exploiting the use of platelet-rich products and its associated formulations as key endogenous resources for future clinical management of periodontal tissue defects.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology & Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
49
|
Laaksonen M, Sorsa T, Salo T. Emdogain in carcinogenesis: a systematic review of in vitro studies. J Oral Sci 2010; 52:1-11. [PMID: 20339227 DOI: 10.2334/josnusd.52.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Emdogain is a commercial product of unknown composition and is clinically used to induce periodontal regeneration. This study aims to review current knowledge of the in vitro effects of Emdogain on oral tissues and, in particular, factors related to carcinoma. A systematic approach was used to review studies from the Embase and Pubmed databases; a total of 76 studies were included. These comprised in vitro studies of the cytokines in, or regulated by, Emdogain and assays designed to study the effects of EMD on human cells in oral tissues or malignant cells. Several studies have shown that EMD regulates the proliferation, migration, adhesion, gene expression, and cytokine production of (pre-)osteoblasts, periodontal fibroblasts, and gingival fibroblasts. However, the effects of EMD on malignant oral cells are not well understood. EMD seems to have broad regulatory effects on malignant cells and on several carcinoma-related factors. Evidence suggests that patients with premalignant or malignant mucosal lesions should not be treated with EMD.
Collapse
Affiliation(s)
- Matti Laaksonen
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Institute of Dentistry, University of Helsinki, Finland
| | | | | |
Collapse
|
50
|
Lan R, Geng H, Hwang Y, Mishra P, Skloss WL, Sprague EA, Saikumar P, Venkatachalam M. A novel wounding device suitable for quantitative biochemical analysis of wound healing and regeneration of cultured epithelium. Wound Repair Regen 2010; 18:159-67. [PMID: 20230600 DOI: 10.1111/j.1524-475x.2010.00576.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We describe the fabrication and use of an in vitro wounding device that denudes cultured epithelium in patterns designed to leave behind strips or islands of cells sufficiently narrow or small to ensure that all the remaining cells become rapidly activated and then migrate, dedifferentiate, and proliferate in near synchrony. The design ensures that signals specific to regenerating cells do not become diluted by quiescent differentiated cells that are not affected by wound-induced activation. The device consists of a flat circular disk of rubber, engraved to produce alternating ridges and grooves in patterns of concentric circles or parallel lines. The disk is mounted at the end of a pneumatically controlled piston assembly. Application of controlled pressure and circular or linear movement of the disk on cultures produced highly reproducible wounding patterns. The near-synchronous regenerative activity of cell bands or islands allowed the collection of samples large enough for biochemical studies to sensitively detect alterations involving mRNA for several early response genes and protein phosphorylation in major signaling pathways. The method is versatile, easy to use and reproducible, and should facilitate biochemical, proteomic, and genomic studies of wound-induced regeneration of cultured epithelium.
Collapse
Affiliation(s)
- Rongpei Lan
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | |
Collapse
|