1
|
Shetty SS, Sowmya S, Pradeep A, Jayakumar R. Gingival Mesenchymal Stem Cells: A Periodontal Regenerative Substitute. Tissue Eng Regen Med 2025; 22:1-21. [PMID: 39607668 PMCID: PMC11711796 DOI: 10.1007/s13770-024-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Gingival mesenchymal stem cells (GMSCs) are distinctive homogenous subset of mesenchymal stem cells (MSCs), which has its development from neural ectomesenchyme along with contributions from the perifollicular mesenchyme and the dental follicle proper. GMSCs stand apart from other dental MSCs owing to their ease of accessibility and availability with incredible long culture sustainability without any tumorigenic capability, and stable telomerase activity. Their capacity to differentiate into various cell lineages and inherent therapeutic effect in chronic inflammatory diseases like colitis, rheumatoid arthritis, systemic lupus erythematous (SLE) and diabetes makes them immensely valuable. The immunomodulatory and anti-inflammatory properties aid its usage in auto immune diseases and graft versus host disease. However, the differentiation, immunomodulatory and anti-inflammatory effects of GMSCs in periodontal tissue regeneration are less explored. METHODS In this review article, we have comprehensively compiled and described several reports on GMSCs till date, including their basic properties and isolation protocols, subpopulations, spheroid GMSCs, gingiva-derived IPSCsinduced pluripotent stem cells (iPSCs), their characterization, multilineage differentiation, and immunomodulatory properties along with precise applications in periodontal regeneration and peri-implantitis. RESULTS AND CONCLUSION Though the studies on GMSCs in periodontal regeneration lack superior quality random clinical trials, this review article still strengthens the view that GMSCs can be a newer source in periodontal tissue reconstruction/regeneration.
Collapse
Affiliation(s)
- Sonia S Shetty
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - S Sowmya
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| | - Aathira Pradeep
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - R Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
2
|
Wu KCH, Liu L, Xu A, Chan YH, Cheung BMY. Shared genetic architecture between periodontal disease and type 2 diabetes: a large scale genome-wide cross-trait analysis. Endocrine 2024; 85:685-694. [PMID: 38460073 PMCID: PMC11291565 DOI: 10.1007/s12020-024-03766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
PURPOSE To investigate the relationship between abnormal glucose metabolism, type 2 diabetes (T2D), and periodontal disease (PER) independent of Body Mass Index (BMI), we employed a genome-wide cross-trait approach to clarify the association. METHODS Our study utilized the most extensive genome-wide association studies conducted for populations of European ancestry, including PER, T2D, fasting glucose, fasting insulin, 2-hour glucose after an oral glucose challenge, HOMA-β, HOMA-IR (unadjusted or adjusted for BMI) and HbA1c. RESULTS With this approach, we were able to identify pleiotropic loci, establish expression-trait associations, and quantify global and local genetic correlations. There was a significant positive global genetic correlation between T2D (rg = 0.261, p = 2.65 × 10-13), HbA1c (rg = 0.182, p = 4.14 × 10-6) and PER, as well as for T2D independent of BMI (rg = 0.158, p = 2.34 × 10-6). A significant local genetic correlation was also observed between PER and glycemic traits or T2D. We also identified 62 independent pleiotropic loci that impact both PER and glycemic traits, including T2D. Nine significant pathways were identified between the shared genes between T2D, glycemic traits and PER. Genetically liability of HOMA-βadjBMI was causally associated with the risk of PER. CONCLUSION Our research has revealed a genetic link between T2D, glycemic traits, and PER that is influenced by biological pleiotropy. Notably, some of these links are not related to BMI. Our research highlights an underlying link between patients with T2D and PER, regardless of their BMI.
Collapse
Affiliation(s)
- Kevin Chun Hei Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lin Liu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yap Hang Chan
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bernard Man Yung Cheung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Institute of Cardiovascular Science and Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
3
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Effect of platelet-rich plasma on the attachment of periodontal ligament fibroblasts to the diseased root surface and the attendant collagen formation. Clin Oral Investig 2023; 27:529-539. [PMID: 36260167 DOI: 10.1007/s00784-022-04748-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/02/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the effect of different concentrations of platelet-rich plasma (PRP) on collagen formation via periodontal ligament fibroblasts (PDLFs) on the surface of demineralised diseased tooth roots. METHODS Various PDLFs were grown from tissue explants, with the cells between the fifth and eighth passage in the culture used. Human whole blood obtained from healthy subjects was collected in tubes containing an anticoagulant (acid-citrate-dextrose) and centrifuged (1300 rpm for 10 min) before the supernatant PRP layer was removed. A second spin at (2000 rpm for 10 min) produced the PRP fraction. The effect of PRP of various concentrations on the attachment of PDLFs on the diseased root surface of human teeth demineralised with ethylenediaminetetraacetic acid (EDTA) and treated with the PRP was then investigated in terms of PRP collagen formation, with the formation observed using the Sirius red staining method. RESULTS The optical density values of the experimental groups were statistically significantly higher than those of the control groups (P < 0.05), while the Sirius red staining returned positive results for both the experimental group (A) and the control group (B). The images were analysed using a histogram, and a statistically significant difference was found (P < 0.05). CONCLUSION While PRP could promote the attachment and collagen formation of PDLFs on the diseased root surface of human teeth demineralised with EDTA and treated with PRP, the effect is potentially reduced when the dose exceeds 20%.
Collapse
|
5
|
Nair K, Bhat AR. Applications of Gene Therapy in Dentistry: A Review Article. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2023. [DOI: 10.1055/s-0042-1759711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractGene therapy promises to possess a good prospect in bridging the gap between dental applications and medicine. The dynamic therapeutic modalities of gene therapy have been advancing rapidly. Conventional approaches are being revamped to be more comprehensive and pre-emptive, which could do away with the need for surgery and medicine altogether. The complementary base sequences known as genes convey the instructions required to manufacture proteins. The oral cavity is one of the most accessible locations for the therapeutic intervention of gene therapy for several oral tissues. In 1990, the first significant trial of gene therapy was overseen to alleviate adenosine deaminase deficiency. The notion of genetic engineering has become increasingly appealing as a reflection of its benefits over conventional treatment modalities. An example of how this technology may alter dentistry is the implementation of gene therapy for dental and oral ailments. The objective of this article is to examine the effects of gene therapy on the field of dentistry, periodontology and implantology. Furthermore, the therapeutic factors of disease therapy, minimal invasion, and appropriate outcome have indeed been taken into consideration.
Collapse
Affiliation(s)
- Karthika Nair
- Department of Periodontology, A B Shetty Memorial Institute of Dental Sciences, NITTE Deemed to be University, Mangaluru, Karnataka, India
| | - Amitha Ramesh Bhat
- Department of Periodontology, A B Shetty Memorial Institute of Dental Sciences, NITTE Deemed to be University, Mangaluru, Karnataka, India
| |
Collapse
|
6
|
Tayanloo-Beik A, Nikkhah A, Roudsari PP, Aghayan H, Rezaei-Tavirani M, Nasli-Esfahani E, Mafi AR, Nikandish M, Shouroki FF, Arjmand B, Larijani B. Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:83-110. [PMID: 35999347 DOI: 10.1007/5584_2022_734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA- CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Kanemoto Y, Miyaji H, Nishida E, Miyata S, Mayumi K, Yoshino Y, Kato A, Sugaya T, Akasaka T, Nathanael AJ, Santhakumar S, Oyane A. Periodontal tissue engineering using an apatite/collagen scaffold obtained by a plasma- and precursor-assisted biomimetic process. J Periodontal Res 2021; 57:205-218. [PMID: 34786723 DOI: 10.1111/jre.12954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/13/2021] [Accepted: 10/30/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES In the treatment of severe periodontal destruction, there is a strong demand for advanced scaffolds that can regenerate periodontal tissues with adequate quality and quantity. Recently, we developed a plasma- and precursor-assisted biomimetic process by which a porous collagen scaffold (CS) could be coated with low-crystalline apatite. The apatite-coated collagen scaffold (Ap-CS) promotes cellular ingrowth within the scaffold compared to CS in rat subcutaneous tissue. In the present study, the osteogenic activity of Ap-CS was characterized by cell culture and rat skull augmentation tests. In addition, the periodontal tissue reconstruction with Ap-CS in a beagle dog was compared to that with CS. METHODS The plasma- and precursor-assisted biomimetic process was applied to CS to obtain Ap-CS with a low-crystalline apatite coating. The effects of apatite coating on the scaffold characteristics (i.e., surface morphology, water absorption, Ca release, protein adsorption, and enzymatic degradation resistance) were assessed. Cyto-compatibility and the osteogenic properties of Ap-CS and CS were assessed in vitro using preosteoblastic MC3T3-E1 cells. In addition, we performed in vivo studies to evaluate bone augmentation and periodontal tissue reconstruction with Ap-CS and CS in a rat skull and canine furcation lesion, respectively. RESULTS As previously reported, the plasma- and precursor-assisted biomimetic process generated a low-crystalline apatite layer with a nanoporous structure that uniformly covered the Ap-CS surface. Ap-CS showed significantly higher water absorption, Ca release, lysozyme adsorption, and collagenase resistance than CS. Cell culture experiments revealed that Ap-CS was superior to CS in promoting the osteoblastic differentiation of MC3T3-E1 cells while suppressing their proliferation. Additionally, Ap-CS significantly promoted (compared to CS) the augmentation of the rat skull bone and showed the potential to regenerate alveolar bone in a dog furcation defect. CONCLUSION Ap-CS fabricated by the plasma- and precursor-assisted biomimetic process provided superior promotion of osteogenic differentiation and bone neoformation compared to CS.
Collapse
Affiliation(s)
- Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Saori Miyata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kayoko Mayumi
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Yoshino
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsukasa Akasaka
- Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Arputharaj Joseph Nathanael
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Syama Santhakumar
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
10
|
Goker F, Larsson L, Del Fabbro M, Asa'ad F. Gene Delivery Therapeutics in the Treatment of Periodontitis and Peri-Implantitis: A State of the Art Review. Int J Mol Sci 2019; 20:ijms20143551. [PMID: 31330797 PMCID: PMC6679027 DOI: 10.3390/ijms20143551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Periodontal disease is a chronic inflammatory condition that affects supporting tissues around teeth, resulting in periodontal tissue breakdown. If left untreated, periodontal disease could have serious consequences; this condition is in fact considered as the primary cause of tooth loss. Being highly prevalent among adults, periodontal disease treatment is receiving increased attention from researchers and clinicians. When this condition occurs around dental implants, the disease is termed peri-implantitis. Periodontal regeneration aims at restoring the destroyed attachment apparatus, in order to improve tooth stability and thus reduce disease progression and subsequent periodontal tissue breakdown. Although many biomaterials have been developed to promote periodontal regeneration, they still have their own set of disadvantages. As a result, regenerative medicine has been employed in the periodontal field, not only to overcome the drawbacks of the conventional biomaterials but also to ensure more predictable regenerative outcomes with minimal complications. Regenerative medicine is considered a part of the research field called tissue engineering/regenerative medicine (TE/RM), a translational field combining cell therapy, biomaterial, biomedical engineering and genetics all with the aim to replace and restore tissues or organs to their normal function using in vitro models for in vivo regeneration. In a tissue, cells are responding to different micro-environmental cues and signaling molecules, these biological factors influence cell differentiation, migration and cell responses. A central part of TE/RM therapy is introducing drugs, genetic materials or proteins to induce specific cellular responses in the cells at the site of tissue repair in order to enhance and improve tissue regeneration. In this review, we present the state of art of gene therapy in the applications of periodontal tissue and peri-implant regeneration. PURPOSE We aim herein to review the currently available methods for gene therapy, which include the utilization of viral/non-viral vectors and how they might serve as therapeutic potentials in regenerative medicine for periodontal and peri-implant tissues.
Collapse
Affiliation(s)
- Funda Goker
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20122 Milano, Italy
- IRCCS Orthopedic Institute Galeazzi, 20161 Milano, Italy
| | - Farah Asa'ad
- Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
11
|
Carmagnola D, Pellegrini G, Dellavia C, Rimondini L, Varoni E. Tissue engineering in periodontology: Biological mediators for periodontal regeneration. Int J Artif Organs 2019; 42:241-257. [DOI: 10.1177/0391398819828558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Teeth and the periodontal tissues represent a highly specialized functional system. When periodontal disease occurs, the periodontal complex, composed by alveolar bone, root cementum, periodontal ligament, and gingiva, can be lost. Periodontal regenerative medicine aims at recovering damaged periodontal tissues and their functions by different means, including the interaction of bioactive molecules, cells, and scaffolds. The application of growth factors, in particular, into periodontal defects has shown encouraging effects, driving the wound healing toward the full, multi-tissue periodontal regeneration, in a precise temporal and spatial order. The aim of the present comprehensive review is to update the state of the art concerning tissue engineering in periodontology, focusing on biological mediators and gene therapy.
Collapse
Affiliation(s)
- Daniela Carmagnola
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Gaia Pellegrini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Claudia Dellavia
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Lia Rimondini
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “Amedeo Avogadro,” Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases, CAAD, Università del Piemonte Orientale “Amedeo Avogadro,” Novara, Italy
| | - Elena Varoni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
12
|
Trubiani O, D'Arcangelo C, Di Iorio D, Di Nardo Di Maio F, Caputi S. Dental Pulp Stem Cells Bioadhesivity: Evaluation on Mineral-Trioxide-Aggregate. Int J Immunopathol Pharmacol 2017; 20:81-6. [PMID: 17897508 DOI: 10.1177/039463200702001s16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cells are undifferentiated cells that have the capacity to self-renew. They have been discovered in many adult tissues, including teeth. Dental Pulp Mesenchymal Stem Cells (DP-MSCs) are involved in dental repair by activation of growth factors, released after caries and have the ability to regenerate a dentin-pulp-like complex. The molecular/cellular research gives the possibility to grow new tissues and biological structures for clinical applications, providing cells for therapies including cell transplantation and tissue engineering. In this study DP-MSCs were derived from dental pulp of 10 donors. To evaluate material toxicity, after in vitro isolation, the cells were seeded on mineral trioxide aggregate (MTA). Initial light microscopy investigation of cells revealed no signs of cell death due to toxicity or infection, on the contrary the scaffolds supplied an excellent support for cell structures, the cells proliferated and adhered to substrate. Similar observation was seen in scanning electron microscopy, in particular the cells had proliferated and spread, covering a considerable part of the surface of the biomaterials investigated, with an elaborate form of attachment, in fact, the cells formed a continuous layer on the upper surface of the MTA. In conclusion, the aim of this study is to demonstrate that DP-MSCs combined with MTA could be a potential source for regenerative medicine, encouraging further study to evaluate the new dentin formation.
Collapse
Affiliation(s)
- O Trubiani
- Department of Stomatology and Oral Sciences, University of Chieti-Pescara, Chieti, Italy.
| | | | | | | | | |
Collapse
|
13
|
Bayer EA, Fedorchak MV, Little SR. The Influence of Platelet-Derived Growth Factor and Bone Morphogenetic Protein Presentation on Tubule Organization by Human Umbilical Vascular Endothelial Cells and Human Mesenchymal Stem Cells in Coculture. Tissue Eng Part A 2016; 22:1296-1304. [PMID: 27650131 PMCID: PMC5107722 DOI: 10.1089/ten.tea.2016.0163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
A three-dimensional in vitro Matrigel plug was used as a model to explore delivery patterns of platelet-derived growth factor (PDGF) and bone morphogenetic protein-2 (BMP-2) to a coculture of human mesenchymal and endothelial cells. While BMP-2 is well recognized for its role in promoting fracture healing through proliferation and differentiation of osteoclast precursors, it is not a growth factor known to promote the process of angiogenesis, which is also critical for complete bone tissue repair. PDGF, in contrast, is a known regulator of angiogenesis, and also a powerful chemoattractant for osteoblast precursor cells. It has been suggested that presentation of PDGF followed by BMP may better promote vascularized bone tissue formation. Yet, it is unclear as to how cells would respond to various durations of delivery of each growth factor as well as to various amounts of overlap in presentation in terms of angiogenesis. Using a three-dimensional in vitro Matrigel plug model, we observed how various presentation schedules of PDGF and BMP-2 influenced tubule formation by human mesenchymal stem cells and human umbilical vascular endothelial cells. We observed that sequential presentation of PDGF to BMP-2 led to increased tubule formation over simultaneous delivery of these growth factors. Importantly, a 2-4 day overlap in the sequential presentation of PDGF and BMP-2 increased tubule formation as compared with groups with zero or complete growth factor overlap, suggesting that a moderate amount of angiogenic and osteogenic growth factor overlap may be beneficial for processes associated with angiogenesis.
Collapse
Affiliation(s)
- Emily A. Bayer
- Department of Bioengineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- The McGowan Institute for Regenerative Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Morgan V. Fedorchak
- Department of Bioengineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- The McGowan Institute for Regenerative Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical Engineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Ophthalmology, The University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven R. Little
- Department of Bioengineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- The McGowan Institute for Regenerative Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical Engineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Immunology, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, The University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Lin Z, Rios HF, Cochran DL. Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP Regeneration Workshop. J Periodontol 2016; 86:S134-52. [PMID: 25644297 DOI: 10.1902/jop.2015.130689] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
More than 30 years have passed since the first successful application of regenerative therapy for treatment of periodontal diseases. Despite being feasible, periodontal regeneration still faces numerous challenges, and complete restoration of structure and function of the diseased periodontium is often considered an unpredictable task. This review highlights developing basic science and technologies for potential application to achieve reconstruction of the periodontium. A comprehensive search of the electronic bibliographic database PubMed was conducted to identify different emerging therapeutic approaches reported to influence either biologic pathways and/or tissues involved in periodontal regeneration. Each citation was assessed based on its abstract, and the full text of potentially eligible reports was retrieved. Based on the review of the full papers, their suitability for inclusion in this report was determined. In principle, only reports from scientifically well-designed studies that presented preclinical in vivo (animal studies) or clinical (human studies) evidence for successful periodontal regeneration were included. Hence, in vitro studies, namely those conducted in laboratories without any live animals, were excluded. In case of especially recent and relevant reviews with a narrow focus on specific regenerative approaches, they were identified as such, and thereby the option of referring to them to summarize the status of a specific approach, in addition to or instead of listing each separately, was preserved. Admittedly, the presence of subjectivity in the selection of studies to include in this overview cannot be excluded. However, it is believed that the contemporary approaches described in this review collectively represent the current efforts that have reported preclinical or clinical methods to successfully enhance regeneration of the periodontium. Today's challenges facing periodontal regenerative therapy continue to stimulate important research and clinical development, which, in turn, shapes the current concept of periodontal tissue engineering. Emerging technologies--such as stem cell therapy, bone anabolic agents, genetic approaches, and nanomaterials--also offer unique opportunities to enhance the predictability of current regenerative surgical approaches and inspire development of novel treatment strategies.
Collapse
Affiliation(s)
- Zhao Lin
- Department of Periodontics, Virginia Commonwealth University School of Dentistry, Richmond, VA
| | | | | |
Collapse
|
15
|
Zheng MZ, Lee SY, Yu SJ, Kim BO. Effect of Cornus officinalis extract on the differentiation of MC3T3-E1 osteoblast-like cells. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-014-0428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Standardized in vivo model for studying novel regenerative approaches for multitissue bone–ligament interfaces. Nat Protoc 2015; 10:1038-49. [DOI: 10.1038/nprot.2015.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Vasita R, Katti DS. Growth factor-delivery systems for tissue engineering: a materials perspective. Expert Rev Med Devices 2014; 3:29-47. [PMID: 16359251 DOI: 10.1586/17434440.3.1.29] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transplantation of organs, their surgical reconstruction or implantation of synthetic devices that can perform the function of organs, are the currently available methods for treating loss of tissue/organs in humans. However, the limitations associated with these techniques have led to the development of tissue engineering. One of the primary goals of tissue engineering is to provide growth factor delivery systems that can induce desired cell responses both in vitro and in vivo, in order to cause accelerated tissue regeneration. To make growth factors a more therapeutically viable alternative for the treatment of chronic degenerative diseases, a wide range of natural and synthetic materials have been employed as vehicles for their controlled delivery. The choice of material and design of the carrier device influence the mode of immobilization of growth factors on the scaffolds and their local/systemic administration. From a tissue engineer's perspective, materials could be used for designing scaffolds as well as for delivering single or multiple growth factors. Therefore, this review discusses growth factor delivery systems, with particular reference to carrier-based growth factor delivery systems with a focus on materials.
Collapse
Affiliation(s)
- Rajesh Vasita
- Indian Institute of Technology - Kanpur, Department of Biological Sciences and Bioengineering, Kanpur-208016, Uttar-Pradesh, India.
| | | |
Collapse
|
18
|
|
19
|
Abstract
Periodontal regeneration is considered to be biologically possible but clinically unpredictable. In periodontitis, inflammation manifests clinically as loss of supporting periodontal tissues and regeneration of damaged tissue is the main goal of treatment. For decades, periodontists have sought to repair the damage through a variety of surgical procedures, and use of grafting materials and growth factors, and of barrier membranes. Reports have emerged that demonstrate which populations of adult stem cells reside in the periodontal ligaments of humans and other animals. This opens the way for new cell-based therapies for periodontal regeneration. This review provides an overview of adult human stem cells and their potential use in periodontal regeneration.
Collapse
|
20
|
Chong LY, Chien LY, Chung MC, Liang K, Lim JCS, Fu JH, Wang CH, Chang PC. Controlling the proliferation and differentiation stages to initiate periodontal regeneration. Connect Tissue Res 2013. [PMID: 23186286 DOI: 10.3109/03008207.2012.751985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The success of periodontal regeneration depends on the coordination of early cell proliferation and late cell differentiation. The aim of this study was to investigate whether the proliferation or differentiation stage predominantly promotes the initiation of periodontal regeneration. Critical-sized periodontal defects were surgically created on rat maxillae and filled with poly-(D,L-lactide-co-glycolide)-poly-d,l-lactide hybrid microspheres encapsulating platelet-derived growth factor (PDGF, a promoter of mitogenesis), simvastatin (a promoter of osteogenic differentiation), or bovine serum albumin (a control). The encapsulation efficiency and in vitro release profiles of the microspheres were determined by high-performance liquid chromatography and enzyme-linked immunosorbent assay. The maxillae were harvested after 10 or 14 days and assessed by micro-computed tomography, histology, and immunohistochemistry for regeneration efficacy and cell viability. The rapid release of PDGF was observed within the first week, whereas a slow release profile was noted for simvastatin. The PDGF-treated specimens demonstrated a significantly higher bone volume fraction compared with bovine serum albumin- (p < 0.05) or simvastatin-treated (p < 0.05) specimens at day 14. Histologically, active bone formation originating from the defect borders was noted in both the PDGF- and the simvastatin-treated specimens, and functionally aligned periodontal ligament fiber insertion was only observed in the PDGF-treated specimens. The significant promotion of mitogenesis by PDGF treatment was also noted at day 14 (p < 0.05). In conclusion, increased mitogenesis or osteogenic differentiation may stimulate osteogenesis, and the upregulation of mitogenesis by PDGF appears to play a role in the initiation of periodontal regeneration.
Collapse
Affiliation(s)
- Li Yen Chong
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In humans, microbially induced inflammatory periodontal diseases are the primary initiators that disrupt the functional and structural integrity of the periodontium (i.e., the alveolar bone, the periodontal ligament, and the cementum). The reestablishment of its original structure, properties, and function constitutes a significant challenge in the development of new therapies to regenerate tooth-supporting defects. Preclinical models represent an important in vivo tool to critically evaluate and analyze the key aspects of novel regenerative therapies, including (1) safety, (2) effectiveness, (3) practicality, and (4) functional and structural stability over time. Therefore, these models provide foundational data that supports the clinical validation and the development of novel innovative regenerative periodontal technologies. Steps are provided on the use of the root fenestration animal model for the proper evaluation of periodontal outcome measures using the following parameters: descriptive histology, histomorphometry, immunostaining techniques, three-dimensional imaging, electron microscopy, gene expression analyses, and safety assessments. These methods will prepare investigators and assist them in identifying the key end points that can then be adapted to later stage human clinical trials.
Collapse
|
22
|
Wu CC, Yang SH, Huang TL, Liu CC, Lu DH, Yang KC, Lin FH. The interaction between co-cultured human nucleus pulposus cells and mesenchymal stem cells in a bioactive scaffold. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Ramseier CA, Rasperini G, Batia S, Giannobile WV. Advanced reconstructive technologies for periodontal tissue repair. Periodontol 2000 2012; 59:185-202. [PMID: 22507066 PMCID: PMC3335769 DOI: 10.1111/j.1600-0757.2011.00432.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Reconstructive therapies to promote the regeneration of lost periodontal support have been investigated through both preclinical and clinical studies. Advanced regenerative technologies using new barrier-membrane techniques, cell-growth-stimulating proteins or gene-delivery applications have entered the clinical arena. Wound-healing approaches using growth factors to target the restoration of tooth-supporting bone, periodontal ligament and cementum are shown to significantly advance the field of periodontal-regenerative medicine. Topical delivery of growth factors, such as platelet-derived growth factor, fibroblast growth factor or bone morphogenetic proteins, to periodontal wounds has demonstrated promising results. Future directions in the delivery of growth factors or other signaling models involve the development of innovative scaffolding matrices, cell therapy and gene transfer, and these issues are discussed in this paper.
Collapse
Affiliation(s)
- Christoph A. Ramseier
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Giulio Rasperini
- Unit of Periodontology, department of Surgical, Regenerative and Diagnostic Science, Foundation IRCCS Cà Granda Policlinico, University of Milan, Milan Italy
| | - Salvatore Batia
- Unit of Periodontology, department of Surgical, Regenerative and Diagnostic Science, Foundation IRCCS Cà Granda Policlinico, University of Milan, Milan Italy
| | - William V. Giannobile
- Deptartment of Periodontics and Oral Medicine and Michigan Center for Oral Health Research, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
24
|
Elangovan S, Jain S, Tsai PC, Margolis HC, Amiji M. Nano-sized calcium phosphate particles for periodontal gene therapy. J Periodontol 2012; 84:117-25. [PMID: 22414259 DOI: 10.1902/jop.2012.120012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Growth factors such as platelet-derived growth factor (PDGF) have significantly enhanced periodontal therapy outcomes with a high degree of variability, mostly due to the lack of continual supply for a required period of time. One method to overcome this barrier is gene therapy. The aim of this in vitro study is to evaluate PDGF-B gene delivery in fibroblasts using nano-sized calcium phosphate particles (NCaPP) as vectors. METHODS NCaPP incorporating green fluorescent protein (NCaPP-GFP) and PDGF-B (NCaPP-PDGF-B) plasmids were synthesized using an established precipitation system and characterized using transmission electron microscopy and 1.2% agarose gel electrophoresis. Biocompatibility and transfection of the nanoplexes in fibroblasts were evaluated using cytotoxicity assay and florescence microscopy, respectively. Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to evaluate PDGF-B transfection after different time points of treatments, and the functionality of PDGF-B transfection was evaluated using the cell proliferation assay. RESULTS Synthesized NCaPP nanoplexes incorporating the genes of GFP and PDGF-B were spherical in shape and measured about 30 to 50 nm in diameter. Gel electrophoresis confirmed DNA incorporation and stability within the nanoplexes, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reagent assay demonstrated their biocompatibility in fibroblasts. In vitro transfection studies revealed a higher and longer lasting transfection after NCaPP-PDGF-B treatment, which lasted up to 96 hours. Significantly enhanced fibroblast proliferation observed in NCaPP-PDGF-B-treated cells confirmed the functionality of these nanoplexes. CONCLUSION NCaPP demonstrated higher levels of biocompatibility and efficiently transfected PDGF plasmids into fibroblasts under described in vitro conditions.
Collapse
Affiliation(s)
- Satheesh Elangovan
- Department of Periodontics, The University of Iowa College of Dentistry, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
25
|
Saito M, Tsuji T. Extracellular matrix administration as a potential therapeutic strategy for periodontal ligament regeneration. Expert Opin Biol Ther 2012; 12:299-309. [DOI: 10.1517/14712598.2012.655267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Przybylowski C, Quinn T, Callahan A, Kaplan M, Golding A, Alesi C, Ammar M, LeBlon CE, Guo Y, Zhang X, Jedlicka SS. MC3T3 preosteoblast differentiation on bone morphogenetic protein-2 peptide ormosils. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16490f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Smith MH, Izumi K, Feinberg SE. Tissue Engineering. CURRENT THERAPY IN ORAL AND MAXILLOFACIAL SURGERY 2012:79-91. [DOI: 10.1016/b978-1-4160-2527-6.00009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Yang KC, Wang CH, Chang HH, Chan WP, Chi CH, Kuo TF. Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med 2011; 6:777-85. [PMID: 22034398 DOI: 10.1002/term.483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 01/25/2011] [Accepted: 07/12/2011] [Indexed: 01/06/2023]
Abstract
Odontogenesis is a complex process with a series of epithelial-mesenchymal interactions and odontogenic molecular cascades. In tissue engineering of teeth from stem cells, platelet-rich fibrin (PRF), which is rich in growth factors and cytokines, may improve regeneration. Accordingly, PRF was added into fibrin glue to enrich the microenvironment with growth factors. Unerupted second molar tooth buds were harvested from miniature swine and cultured in vitro for 3 weeks to obtain dental bud cells (DBCs). Whole blood was collected for the preparation of PRF and fibrin glue before surgery. DBCs were suspended in fibrin glue and then enclosed with PRF, and the DBC-fibrin glue-PRF composite was autografted back into the original alveolar sockets. Radiographic and histological examinations were used to identify the regenerated tooth structure 36 weeks after implantation. Immunohistochemical staining was used to detect proteins specific to tooth regeneration. One pig developed a complete tooth with crown, root, pulp, enamel, dentin, odontoblast, cementum, blood vessels, and periodontal ligaments in indiscriminate shape. Another animal had an unerupted tooth that expressed cytokeratin 14, dentin matrix protein-1, vascular endothelial growth factor, and osteopontin. This study demonstrated, using autogenic cell transplantation in a porcine model, that DBCs seeded into fibrin glue-PRF could regenerate a complete tooth.
Collapse
Affiliation(s)
- Kai-Chiang Yang
- Department of Organ Reconstruction, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Galler KM, D'Souza RN. Tissue engineering approaches for regenerative dentistry. Regen Med 2011; 6:111-24. [PMID: 21175291 DOI: 10.2217/rme.10.86] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although teeth can withstand enormous abrasive forces, they are susceptible to damage due to trauma, acids and bacterial attack. Conventional treatment relies on synthetic materials to fill defects and replace whole teeth, but these remain substitutes and cannot restore the tissues' physiological architecture and function. With the isolation of postnatal stem cells from various sources in the oral cavity and the development of smart materials for cell and growth factor delivery, possibilities for alternative, biology-based treatments arise. Interdisciplinary approaches are needed to move from replacement to regeneration, involving clinicians as well as biologists, stem cell researchers and material scientists. First, in order to provide an appreciation for the complexity of the tooth as a whole, its components and surrounding structures will be described. Next, the basic principles of tooth development will be presented, which can be applied to recreate signaling events and utilize them to build whole teeth. For the regeneration of individual tooth structures, the classical tissue engineering triad can be utilized, using dental stem cells, scaffold materials and relevant growth and differentiation factors. Recent successful engineering initiatives on whole teeth as well as on specific tissues such as enamel, the dentin-pulp complex or periodontal ligament will be discussed. In projecting future research directions, we conclude with a brief discussion of key components necessary to develop effective strategies for dental tissue engineering, which might enable us to implement novel regenerative strategies in clinical practice in the near future.
Collapse
Affiliation(s)
- Kerstin M Galler
- Department of Operative Dentistry & Periodontology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
30
|
|
31
|
Rios HF, Lin Z, Oh B, Park CH, Giannobile WV. Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol 2011; 82:1223-37. [PMID: 21284553 DOI: 10.1902/jop.2011.100710] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory periodontal diseases are a leading cause of tooth loss and are linked to multiple systemic conditions, such as cardiovascular disease and stroke. Reconstruction of the support and function of affected tooth-supporting tissues represents an important therapeutic endpoint for periodontal regenerative medicine. An improved understanding of periodontal biology coupled with current advances in scaffolding matrices has introduced novel treatments that use cell and gene therapy to enhance periodontal tissue reconstruction and its biomechanical integration. Cell and gene delivery technologies have the potential to overcome limitations associated with existing periodontal therapies, and may provide a new direction in sustainable inflammation control and more predictable tissue regeneration of supporting alveolar bone, periodontal ligament, and cementum. This review provides clinicians with the current status of these early-stage and emerging cell- and gene-based therapeutics in periodontal regenerative medicine, and introduces their future application in clinical periodontal treatment. The paper concludes with prospects on the application of cell and gene tissue engineering technologies for reconstructive periodontology.
Collapse
Affiliation(s)
- Hector F Rios
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109–1078, USA.
| | | | | | | | | |
Collapse
|
32
|
Markopoulou CE, Dereka XE, Vavouraki HN, Pepelassi EE, Mamalis AA, Karoussis IK, Vrotsos IA. Effect of rhTGF-β1 combined with bone grafts on human periodontal cell differentiation. Growth Factors 2011; 29:14-20. [PMID: 21128741 DOI: 10.3109/08977194.2010.533663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various techniques and materials have been proposed for the treatment of periodontal defects. In periodontal regeneration, periodontal ligament (PDL) cell differentiation as well as certain growth factors and their delivery system applied are critical. The purpose of this study was to evaluate the in vitro effect of recombinant human transforming growth factor-beta 1 (rhTGF-β1) combined with two different bone grafts on human PDL (hPDL) cell differentiation. The hPDL cells were treated with TGF-β1 alone or in combination with a calcified freeze-dried bone allograft (FDBA) and a porous biphasic calcium phosphate (BC) bone graft. Cell differentiation effect was estimated by measuring alkaline phosphatase (ALPase) activity and osteocalcin secretion. Results demonstrated that rhTGF-β1 alone or in combination with FDBA and BC provoked a significant (p<0.05) increase in ALPase activity as compared with controls. The findings of this study confirmed the beneficial role of rhTGF-β1 combined with FDBA and BC as carriers in periodontal regeneration.
Collapse
Affiliation(s)
- C E Markopoulou
- Department of Periodontics, School of Dentistry, University of Athens, 2 Thivon Street, Goudi, 11527, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
33
|
Advanced and Prospective Technologies for Potential Use in Craniofacial Tissues Regeneration by Stem Cells and Growth Factors. J Craniofac Surg 2011; 22:342-8. [PMID: 21239932 DOI: 10.1097/scs.0b013e3181f7e185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Chen FM, An Y, Zhang R, Zhang M. New insights into and novel applications of release technology for periodontal reconstructive therapies. J Control Release 2011; 149:92-110. [DOI: 10.1016/j.jconrel.2010.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/13/2010] [Indexed: 02/09/2023]
|
35
|
Kuo TF, Lin HC, Yang KC, Lin FH, Chen MH, Wu CC, Chang HH. Bone marrow combined with dental bud cells promotes tooth regeneration in miniature pig model. Artif Organs 2010; 35:113-21. [PMID: 21083830 DOI: 10.1111/j.1525-1594.2010.01064.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Growth factors and morphogens secreted by bone marrow mesenchymal stem cells (BMSCs) of bone marrow fluid may promote tooth regeneration. Accordingly, a tissue engineering approach was utilized to develop an economical strategy for obtaining the growth factors and morphogens from BMSCs. Unerupted second molar tooth buds harvested from miniature pigs were cultured in vitro to obtain dental bud cells (DBCs). Bone marrow fluid, which contains BMSCs, was collected from the porcine mandible before operation. DBCs suspended in bone marrow fluid were seeded into a gelatin/chondoitin-6-sulfate/hyaluronan tri-copolymer scaffold (GCHT scaffold). The DBCs/bone marrow fluid/GCHT scaffold was autografted into the original alveolar sockets of the pigs. Radiographic and histological examinations were applied to identify the structure of regenerated tooth at 40 weeks postimplantation. The present results showed that one pig developed a complete tooth with crown, root, pulp, enamel, dentin, odontoblast, cementum, blood vessel, and periodontal ligament in indiscriminate shape. Three animals had an unerupted tooth that expressed dentin matrix protein-1, vascular endothelial growth factor, and osteopontin; and two other pigs also had dental-like structure with dentin tubules. This study reveals that DBCs adding bone marrow fluid and a suitable scaffold can promote the tooth regeneration in autogenic cell transplantation.
Collapse
Affiliation(s)
- Tzong-Fu Kuo
- Institute of Veterinary Medicine, College of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Elangovan S, Karimbux N. Review paper: DNA delivery strategies to promote periodontal regeneration. J Biomater Appl 2010; 25:3-18. [PMID: 20511387 DOI: 10.1177/0885328210366490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Periodontal diseases are caused by bacteria with an inflammatory component that result in the loss of bone and soft tissue around the neck of the teeth. Recent therapies allow clinicians to regenerate some of the lost structures of the periodontium. Regeneration of these lost supporting structures is a highly orchestrated process, involving various cellular and molecular players, leading to the complete restoration of the periodontium (the tooth-supporting apparatus). The introduction of growth factors has positively influenced the clinical outcome of the existing regenerative procedures but the supra-physiological doses and the high cost associated with these growth factors can be drawbacks. Gene therapy may offer some interesting advantages to current therapies. In the field of periodontology, several studies have been conducted to explore the efficacy of delivering the DNA of key growth factors using viral vectors in both periodontal and peri-implant bone regeneration. Relatively few studies have explored the application of nonviral gene therapy in periodontal regeneration. This article is aimed at reviewing the studies conducted so far using viral and nonviral gene delivery approaches to achieve periodontal and peri-implant bone regeneration.
Collapse
Affiliation(s)
- Satheesh Elangovan
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, 02115, USA.
| | | |
Collapse
|
37
|
Intini G. Future approaches in periodontal regeneration: gene therapy, stem cells, and RNA interference. Dent Clin North Am 2010; 54:141-55. [PMID: 20103477 DOI: 10.1016/j.cden.2009.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Periodontal disease is a major public health issue and the development of effective therapies to treat the disease and regenerate periodontal tissue is an important goal of today's medicine. This article highlights recent scientific advancements in gene therapy, stem cell biology, and RNA interference with the intent of identifying their potential in periodontal tissue regeneration. Results from basic research, preclinical, and clinical studies indicate that these fields of research may soon contribute to more effective regenerative therapies for periodontal disease.
Collapse
Affiliation(s)
- Giuseppe Intini
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, REB 513, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Elangovan S, Srinivasan S, Ayilavarapu S. Novel regenerative strategies to enhance periodontal therapy outcome. Expert Opin Biol Ther 2010; 9:399-410. [PMID: 19344278 DOI: 10.1517/14712590902778423] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic periodontitis is a widely prevalent inflammatory condition of the supporting tissues of the teeth and is characterized by loss of teeth with an associated risk of systemic complications. Regenerative therapies such as guided tissue and bone regeneration form an important armamentarium in periodontics with a high degree of outcome predictability in certain ideal clinical scenarios. OBJECTIVE/METHODS This review elaborates novel tissue regenerative treatment modalities based on sound understanding of developmental biology, tissue engineering, inflammation and wound healing. We focus on the role of biological mediators such as growth factors, gene-based therapy, cell therapy and pro-resolution lipid mediators in the regeneration of lost bone or periodontium. RESULTS/CONCLUSIONS These therapies have the potential to regenerate both periodontium and bone, aiding in the treatment of even clinically challenging cases.
Collapse
Affiliation(s)
- Satheesh Elangovan
- Harvard School of Dental Medicine, Division of Periodontology, Department of Oral Medicine, Infection and Immunity, 188 Longwood Avenue, Boston, MA-02115, USA.
| | | | | |
Collapse
|
39
|
Galler KM, D'Souza RN, Hartgerink JD. Biomaterials and their potential applications for dental tissue engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01207f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Lee J, Stavropoulos A, Susin C, Wikesjö UME. Periodontal regeneration: focus on growth and differentiation factors. Dent Clin North Am 2010; 54:93-111. [PMID: 20103474 DOI: 10.1016/j.cden.2009.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Several growth and differentiation factors have shown potential as therapeutic agents to support periodontal wound healing/regeneration, although optimal dosage, release kinetics, and suitable delivery systems are still unknown. Experimental variables, including delivery systems, dose, and the common use of poorly characterized preclinical models, make it difficult to discern the genuine efficacy of each of these factors. Only a few growth and differentiation factors have reached clinical evaluation. It appears that well-defined discriminating preclinical models followed by well-designed clinical trials are needed to further investigate the true potential of these and other candidate factors. Thus, current research is focused on finding relevant growth and differentiation factors, optimal dosages, and the best approaches for delivery to develop clinically meaningful therapies in patient-centered settings.
Collapse
Affiliation(s)
- Jaebum Lee
- Laboratory for Applied Periodontal & Craniofacial Regeneration (LAPCR), Departments of Periodontics and Oral Biology, Medical College of Georgia School of Dentistry, 1120 5th Street AD1434, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
41
|
Kao RT, Murakami S, Beirne OR. The use of biologic mediators and tissue engineering in dentistry. Periodontol 2000 2009; 50:127-53. [PMID: 19388957 DOI: 10.1111/j.1600-0757.2008.00287.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Using the Growth Factors-enriched Platelet Glue in Spinal Fusion and its Efficiency. ACTA ACUST UNITED AC 2009; 22:246-50. [DOI: 10.1097/bsd.0b013e3181753ae2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Dangaria SJ, Ito Y, Walker C, Druzinsky R, Luan X, Diekwisch TGH. Extracellular matrix-mediated differentiation of periodontal progenitor cells. Differentiation 2009; 78:79-90. [PMID: 19433344 DOI: 10.1016/j.diff.2009.03.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/28/2009] [Accepted: 03/31/2009] [Indexed: 01/09/2023]
Abstract
The periodontal ligament (PDL) is a specialized connective tissue that connects the surface of the tooth root with the bony tooth socket. The healthy PDL harbors stem cell niches and extracellular matrix (ECM) microenvironments that facilitate periodontal regeneration. During periodontal disease, the PDL is often compromised or destroyed, reducing the life-span of the tooth. In order to explore new approaches toward the regeneration of diseased periodontal tissues, we have tested the effect of periodontal ECM signals, fibroblast growth factor 2 (FGF2), connective tissue growth factor (CTGF), and the cell adhesion peptide Arg-Gly-Asp (RGD) on the differentiation of two types of periodontal progenitor cells, PDL progenitor cells (PDLPs) and dental follicle progenitor cells (DFCs). Our studies documented that CTGF and FGF2 significantly enhanced the expression of collagens I & III, biglycan and periostin in tissue engineered regenerates after 4 weeks compared to untreated controls. Specifically, CTGF promoted mature PDL-like tissue regeneration as demonstrated by dense periostin localization in collagen fiber bundles. CTGF and FGF2 displayed synergistic effects on collagen III and biglycan gene expression, while effects on mineralization were antagonistic to each other: CTGF promoted while FGF2 inhibited mineralization in PDL cell cultures. Incorporation of RGD peptides in hydrogel matrices significantly enhanced attachment, spreading, survival and mineralization of the encapsulated DFCs, suggesting that RGD additives might promote the use of hydrogels for periodontal mineralized tissue engineering. Together, our studies have documented the effect of three key components of the periodontal ECM on the differentiation of periodontal progenitor populations.
Collapse
Affiliation(s)
- Smit J Dangaria
- Brodie Laboratory for Craniofacial Genetics, Departments of Oral Biology and Orthodontics, UIC College of Dentistry, The University of Illinois at Chicago, Chicago, IL 60565, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kunze M, Huber A, Krajewski A, Lowden E, Schuhmann N, Buening H, Hallek M, Noack M, Perabo L. Efficient gene transfer to periodontal ligament cells and human gingival fibroblasts by adeno-associated virus vectors. J Dent 2009; 37:502-8. [PMID: 19362764 DOI: 10.1016/j.jdent.2009.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/08/2009] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES We explored for the first time the possibility to deliver a reporter gene (Green Fluorescence Protein) to human primary periodontal ligament (PDL) cells and human gingival fibroblasts (HGF) using shuttle vectors derived from adeno-associated virus (AAV). Since AAV transduction rates on other human primary fibroblasts have been previously shown to depend on the particular cell lineage and on the employed viral serotype, we determined the most effective AAV variant for periodontal cells comparing different vector types. METHODS AAV serotypes 1-5 encoding GFP in single stranded (ss) and self-complementary (sc) vector genome conformations were used to infect primary HGF and PDL cells. Two days post-infection, the percentage of GFP expressing cells was determined by flow cytometry. RESULTS Highest transduction rates for both cell types were achieved with self-complementary vectors derived from AAV-2, resulting in GFP expression in up to 86% of PDL cells and 50% of HGF. Transgene expression could be observed by optical microscopy for 2 months after infection. Lower but detectable rates were obtained with serotypes 1, 3 and 5. CONCLUSIONS The efficacy demonstrated here and the safety and versatility of AAV technology indicated in previous studies clearly suggest the potential of AAV vectors as tools for gene transfer to periodontal tissues.
Collapse
Affiliation(s)
- Melanie Kunze
- Center of Dental Medicine, Department of Operative Dentistry and Periodontology, University of Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lin Z, Sugai JV, Jin Q, Chandler LA, Giannobile WV. Platelet-derived growth factor-B gene delivery sustains gingival fibroblast signal transduction. J Periodontal Res 2008; 43:440-9. [PMID: 18823454 DOI: 10.1111/j.1600-0765.2008.01089.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Platelet-derived growth factor-BB is a potent mediator of tooth-supporting periodontal tissue repair and regeneration. A limitation of the effects of topical platelet-derived growth factor-BB application is its short half-life in vivo. Gene therapy has shown strong promise for the long-term delivery of platelet-derived growth factor in both skin ulcer healing and periodontal tissue engineering. However, little is known regarding the extended effects of platelet-derived growth factor-B on cell signaling via gene delivery, especially at the level of phosphorylation of intracellular kinases. This study sought to evaluate the effect of gene transfer by Ad-PDGF-B on human gingival fibroblasts (HGFs) and the subsequent regulation of genes and cell-surface proteins associated with cellular signaling. MATERIAL AND METHODS HGFs from human subjects were treated by adenoviral PDGF-B, PDGF-1308 (a dominant negative mutant of PDGF) and recombinant human platelet-derived growth factor-BB, and then incubated in serum-free conditions for various time points and harvested at 1, 6, 12, 24, 48, 72 and 96 h. Exogenous PDGF-B was measured by RT-PCR and Western blot. Cell proliferation was evaluated by [methyl-3H]thymidine incorporation assay. We used proteomic arrays to explore phosphorylation patterns of 23 different intracellular kinases after PDGF-B gene transfer. The expression of alpha and beta PDGFR and Akt were measured by Western blot analysis. RESULTS Sustained in vitro expression of PDGF-B in HGFs by Ad-PDGF-B transduction was seen at both the mRNA and protein levels. Compared to rhPDGF-BB and Ad-PDGF-1308, Ad-PDGF-B maintained cell growth in serum-free conditions, with robust increases in DNA synthesis. Gene delivery of PDGF-B also prolonged downregulation of the growth arrest specific gene (gas) PDGF alpha R. Of the 23 intracellular kinases that we tested in proteomic arrays, Akt revealed the most notable long-term cell signaling effect as a result of the over-expression of Ad-PDGF-B, compared with pulse recombinant human platelet-derived growth factor BB. Prolonged Akt phosphorylation was induced by treatment with Ad-PDGF-B, for at least up to 96 h. CONCLUSION These findings further demonstrate that gene delivery of PDGF-B displays sustained signal transduction effects in human gingival fibroblasts that are higher than those conveyed by treatment with recombinant human platelet-derived growth factor-BB protein. These data on platelet-derived growth factor gene delivery contribute to an improved understanding of these pathways that are likely to play a role in the control of clinical outcomes of periodontal regenerative therapy.
Collapse
Affiliation(s)
- Z Lin
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|
46
|
Buxton PG, Cobourne MT. Regenerative approaches in the craniofacial region: manipulating cellular progenitors for oro-facial repair. Oral Dis 2007; 13:452-60. [PMID: 17714347 DOI: 10.1111/j.1601-0825.2007.01403.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review aims to highlight the potential for regeneration that resides within the bony tissues of the craniofacial region. We examine the five main cues which determine osteogenic differentiation: heritage of the cell, mechanical cues, the influence of the matrix, growth factor stimulation and cell-to-cell contact. We review how successful clinical procedures, such as guided tissue regeneration and distraction osteogenesis exploit this resident ability. We explore the developmental origins of the flat bones of the skull to see how such programmes of differentiation may inform new therapies or regenerative techniques. Finally we compare and contrast existing approaches of hard tissue reconstruction with future approaches inspired by the regenerative medicine philosophy, with particular emphasis on the potential for using chondrocyte-inspired factors and replaceable scaffolds.
Collapse
Affiliation(s)
- P G Buxton
- Eastman Dental Institute, UCL, London, UK.
| | | |
Collapse
|
47
|
Affiliation(s)
- Denis F Kinane
- University of Louisville School of Dentistry, Louisville, KY, USA
| | | |
Collapse
|
48
|
Gonçalves PF, Gurgel BCV, Pimentel SP, Sallum EA, Sallum AW, Casati MZ, Nociti FH. Effect of two different approaches for root decontamination on new cementum formation following guided tissue regeneration: a histomorphometric study in dogs. J Periodontal Res 2007; 41:535-40. [PMID: 17076778 DOI: 10.1111/j.1600-0765.2006.00902.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of the present study was to evaluate comparatively the effect of two different approaches for root decontamination on new cementum formation following guided tissue regeneration (GTR). MATERIAL AND METHODS Nine mongrel dogs were used to obtain bilateral chronic class III furcation defects by placing cotton ligatures around both third mandibular premolars. The teeth were randomly assigned to receive one of the following treatments: scaling and root planing, by means of hand and rotatory instruments, in order to remove soft and hard deposits as well as all root cementum (group A); or removal of only soft microbial deposits, by polishing the root surface with rubber cups and polishing paste, aiming for maximum root cementum preservation (group B). Both groups were treated with GTR, with the use of resorbable polyglycolic-lactic acid membranes (RESOLUT XT). RESULTS Four months later, data analysis showed that a superior length (mm) (3.59 +/- 1.67 and 6.20 +/- 2.26 for groups A and B, respectively; p = 0.004) and a thicker layer (microm) (18.89 +/- 9.47 and 52.29 +/- 22.48 for groups A and B, respectively; p = 0.001) of new cementum was achieved by keeping the root cementum in place during root decontamination (group B). Regardless of the treatment modality, the new cementum was predominantly of a reparative, cellular extrinsic and intrinsic fiber type. CONCLUSION Within the limits of the present study, it may be concluded that root cementum preservation may affect the new cementum formation following GTR in class III furcation defects, and the treatment modality did not influence the type of newly formed cementum.
Collapse
Affiliation(s)
- P F Gonçalves
- Division of Periodontics, School of Dentistry at Piracicaba, UNICAMP, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Regeneration of periodontal structures lost during periodontal diseases constitutes a complex biological process regulated among others by interactions between cells and growth factors. Growth factors are biologically active polypeptides affecting the proliferation, chemotaxis and differentiation of cells from epithelium, bone and connective tissue. They express their action by binding to specific cell-surface receptors present on various target cells including osteoblasts, cementoblasts and periodontal ligament fibroblasts. The observation that growth factors participate in all cell functions led to exogenous application during periodontal tissue repair aiming to their use as an alternative therapeutic approach to periodontal therapy. Cell types and cultures conditions, dose, carrier materials, application requirements are of critical importance in the outcome of periodontal repair. The purpose of this article is to review the literature with respect to the biological actions of PDGF, TGF, FGF, IGF and EGF on periodontal cells and tissues, which are involved in periodontal regeneration.
Collapse
Affiliation(s)
- X E Dereka
- Department of Periodontology, School of Dentistry, University of Athens, Athens, Greece.
| | | | | |
Collapse
|
50
|
Dereka XE, Markopoulou CE, Mamalis A, Pepelassi E, Vrotsos IA. Time- and dose-dependent mitogenic effect of basic fibroblast growth factor combined with different bone graft materials: an in vitro study. Clin Oral Implants Res 2006; 17:554-9. [PMID: 16958696 DOI: 10.1111/j.1600-0501.2006.01262.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES In periodontal regeneration, the growth factor concentrations and the delivery system used are of great importance. In an attempt to assess the mitogenic effect of basic fibroblast growth factor (bFGF) on periodontal ligament (PDL) cells combined with different bone replacement materials, two allografts of cortical (DFDBA) and cancellous (DFBA) bone and an anorganic bovine material with a synthetic peptide (ABM P-15) were used. The purpose of this study was to evaluate the in vitro mitogenic effect of different doses of bFGF alone or in combination with DFDBA, DFBA and ABM P-15 on human PDL cells in a time-dependent mode. MATERIAL AND METHODS PDL cell cultures were derived from the mid-root of four maxillary premolars. Cells were grown and reached confluence. On day 2 of quiescence, new medium was added along with (1) 1, 5, 10 and 25 ng/ml of bFGF alone, (2) 10 mg of DFDBA, DFBA and ABM P-15 alone and (3) their combination. The mitogenic effect was determined at 24 and 48 h of culture by using a hemocytometer chamber. The cells were counted under a phase contrast microscope. RESULTS The results revealed that bFGF at the highest concentrations and after 48 h exerted a significant mitogenic effect on PDL cells, and also DFDBA and DFBA supported cell proliferation. Furthermore, DFDBA and DFBA enriched with bFGF had a significant mitogenic effect after 48 h of culture. ABM P-15 with 10 and 25 ng/ml of bFGF up-regulated PDL cell proliferation after 48 h of incubation. CONCLUSIONS The findings of this study demonstrate the beneficial role of bFGF combined with DFDBA and DFBA as carriers in periodontal repair.
Collapse
Affiliation(s)
- Xanthippi E Dereka
- Department of Periodontology, School of Dentistry, University of Athens, 110 Vas Sofias Street, 11527 Athens, Greece.
| | | | | | | | | |
Collapse
|