1
|
Lv W, Hu S, Yang F, Lin D, Zou H, Zhang W, Yang Q, Li L, Chen X, Wu Y. Heme oxygenase-1: potential therapeutic targets for periodontitis. PeerJ 2024; 12:e18237. [PMID: 39430558 PMCID: PMC11488498 DOI: 10.7717/peerj.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Periodontitis is one of the most prevalent inflammatory disease worldwide, which affects 11% of the global population and is a major cause of tooth loss. Recently, oxidative stress (OS) has been found to be the pivital pathophysiological mechanism of periodontitis, and overactivated OS will lead to inflammation, apoptosis, pyroptosis and alveolar bone resorption. Interestingly, heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme degradation, can exert antioxidant activites through its products-carbon monoxide (CO), Fe2+, biliverdin and bilirubin in the inflammatory microenvironment, thus exhibiting anti-inflammatory, anti-apoptotic, anti-pyroptosis and bone homeostasis-regulating properties. In this review, particular focus is given to the role of HO-1 in periodontitis, including the spatial-temporal expression in periodental tissues and pathophysiological mechanisms of HO-1 in periodontitis, as well as the current therapeutic applications of HO-1 targeted drugs for periodontitis. This review aims to elucidate the potential applications of various HO-1 targeted drug therapy in the management of periodontitis, investigate the influence of diverse functional groups on HO-1 and periodontitis, and pave the way for the development of a new generation of therapeutics that will benefit patients suffering from periodontitis.
Collapse
Affiliation(s)
- Weiwei Lv
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shichen Hu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fei Yang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dong Lin
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haodong Zou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wanyan Zhang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Yang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihua Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaowen Chen
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Shahwan M, Kukreti N, Wong LS, Kumarasamy V, Subramaniyan V. Kaempferol: Paving the path for advanced treatments in aging-related diseases. Exp Gerontol 2024; 188:112389. [PMID: 38432575 DOI: 10.1016/j.exger.2024.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the β-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia.
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Chen Q, Wang Y, Shi C, Tong M, Sun H, Dong M, Liu S, Wang L. Molecular Mechanism of the Asarum-Angelica Drug Pair in the Treatment of Periodontitis Based on Network Pharmacology and Experimental Verification. Int J Mol Sci 2023; 24:17389. [PMID: 38139216 PMCID: PMC10744231 DOI: 10.3390/ijms242417389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
(1) To examine the potential mechanism of the Asarum-Angelica drug pair against periodontitis and provide an experimental basis for the treatment of periodontitis with herbal medicine. (2) The core components and core targets of the Asarum-Angelica drug pair in the treatment of periodontitis were detected according to network pharmacology methods. Finally, the effect of the Asarum-Angelica drug pair on osteogenic differentiation was observed in mouse embryonic osteoblast precursor cells. (3) According to the results of network pharmacology, there are 10 potential active ingredients in the Asarum-Angelica drug pair, and 44 potential targets were obtained by mapping the targets with periodontitis treatment. Ten potential active ingredients, such as kaempferol and β-sitosterol, may play a role in treating periodontitis. Cell experiments showed that the Asarum-Angelica drug pair can effectively promote the expression of osteoblast markers alkaline phosphatase (ALP), Runt-related Transcription Factor 2 (RUNX2), and BCL2 mRNA and protein in an inflammatory environment (p < 0.05). (4) Network pharmacology effectively analyzed the molecular mechanism of Asarum-Angelica in the treatment of periodontitis, and the Asarum-Angelica drug pair can promote the differentiation of osteoblasts.
Collapse
Affiliation(s)
- Qianyang Chen
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Yuhan Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
| | - Chun Shi
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Meichen Tong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Haibo Sun
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Ming Dong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Shuo Liu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| | - Lina Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
4
|
Singh AA, Ghosh A, Agrawal M, Agrawal SB. Secondary metabolites responses of plants exposed to ozone: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88281-88312. [PMID: 37440135 DOI: 10.1007/s11356-023-28634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Tropospheric ozone (O3) is a secondary pollutant that causes oxidative stress in plants due to the generation of excess reactive oxygen species (ROS). Phenylpropanoid metabolism is induced as a usual response to stress in plants, and induction of key enzyme activities and accumulation of secondary metabolites occur, upon O3 exposure to provide resistance or tolerance. The phenylpropanoid, isoprenoid, and alkaloid pathways are the major secondary metabolic pathways from which plant defense metabolites emerge. Chronic exposure to O3 significantly accelerates the direction of carbon flows toward secondary metabolic pathways, resulting in a resource shift in favor of the synthesis of secondary products. Furthermore, since different cellular compartments have different levels of ROS sensitivity and metabolite sets, intracellular compartmentation of secondary antioxidative metabolites may play a role in O3-induced ROS detoxification. Plants' responses to resource partitioning often result in a trade-off between growth and defense under O3 stress. These metabolic adjustments help the plants to cope with the stress as well as for achieving new homeostasis. In this review, we discuss secondary metabolic pathways in response to O3 in plant species including crops, trees, and medicinal plants; and how the presence of this stressor affects their role as ROS scavengers and structural defense. Furthermore, we discussed how O3 affects key physiological traits in plants, foliar chemistry, and volatile emission, which affects plant-plant competition (allelopathy), and plant-insect interactions, along with an emphasis on soil dynamics, which affect the composition of soil communities via changing root exudation, litter decomposition, and other related processes.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Department of Botany, University of Lucknow, -226007, Lucknow, India
| | - Annesha Ghosh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Synthetic Analogues of Gibbilimbol B Induce Bioenergetic Damage and Calcium Imbalance in Trypanosoma cruzi. Life (Basel) 2023; 13:life13030663. [PMID: 36983820 PMCID: PMC10052702 DOI: 10.3390/life13030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023] Open
Abstract
Chagas disease is an endemic tropical disease caused by the protozoan Trypanosoma cruzi, which affects around 7 million people worldwide, mostly in development countries. The treatment relies on only two available drugs, with severe adverse effects and a limited efficacy. Therefore, the search for new therapies is a legitimate need. Within this context, our group reported the anti-Trypanosoma cruzi activity of gibbilimbol B, a natural alkylphenol isolated from the plant Piper malacophyllum. Two synthetic derivatives, LINS03018 (1) and LINS03024 (2), demonstrated a higher antiparasitic potency and were selected for mechanism of action investigations. Our studies revealed no alterations in the plasma membrane potential, but a rapid alkalinization of the acidocalcisomes. Nevertheless, compound 1 exhibit a pronounced effect in the bioenergetics metabolism, with a mitochondrial impairment and consequent decrease in ATP and reactive oxygen species (ROS) levels. Compound 2 only depolarized the mitochondrial membrane potential, with no interferences in the respiratory chain. Additionally, no macrophages response of nitric oxide (NO) was observed in both compounds. Noteworthy, simple structure modifications in these derivatives induced significant differences in their lethal effects. Thus, this work reinforces the importance of the mechanism of action investigations at the early phases of drug discovery and support further developments of the series.
Collapse
|
6
|
Hosseini A, Alipour A, Baradaran Rahimi V, Askari VR. A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation. Biofactors 2022; 49:322-350. [PMID: 36471898 DOI: 10.1002/biof.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Different toxins, including chemicals and natural, can be entered from various routes and influence human health. Herbal medicines and their active components can attenuate the toxicity of agents via multiple mechanisms. For example, kaempferol, as a flavonoid, can be found in fruits and vegetables, and has an essential role in improving disorders such as cardiovascular disorders, neurological diseases, cancer, pain, and inflammation situations. The beneficial effects of kaempferol may be related to the inhibition of oxidative stress, attenuation of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. This flavonoid boasts a wide spectrum of toxin targeting effects in tissue fibrosis, inflammation, and oxidative stress thus shows promising protective effects against natural and chemical toxin induced hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity, lung, and intestinal in the in vitro and in vivo setting. The most remarkable aspect of kaempferol is that it does not focus its efforts on just one organ or one molecular pathway. Although its significance as a treatment option remains questionable and requires more clinical studies, it seems to be a low-risk therapeutic option. It is crucial to emphasize that kaempferol's poor bioavailability is a significant barrier to its use as a therapeutic option. Nanotechnology can be a promising way to overcome this challenge, reviving optimism in using kaempferol as a viable treatment agent against toxin-induced disorders.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alieh Alipour
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Ryyti R, Hämäläinen M, Leppänen T, Peltola R, Moilanen E. Phenolic Compounds Known to Be Present in Lingonberry ( Vaccinium vitis-idaea L.) Enhance Macrophage Polarization towards the Anti-Inflammatory M2 Phenotype. Biomedicines 2022; 10:3045. [PMID: 36551801 PMCID: PMC9776286 DOI: 10.3390/biomedicines10123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macrophages are pleiotropic immune cells whose phenotype can polarize towards the pro-inflammatory M1 or anti-inflammatory M2 direction as a response to environmental changes. In obesity, the number of macrophages in adipose tissue is enhanced, and they shift towards the M1 phenotype. Activated M1 macrophages secrete pro-inflammatory cytokines and adipokines involved in the development of systemic low-grade inflammation, complicating obesity. Polyphenols are widely found in the vegetable kingdom and have anti-inflammatory properties. We and others have recently found that lingonberry (Vaccinium vitis-idaea L.) supplementation is able to prevent the development of low-grade inflammation and its metabolic consequences in experimentally induced obesity. In the present study, we investigated the effects of twelve phenolic compounds known to be present in lingonberry (resveratrol, piceid, quercetin, kaempferol, proanthocyanidins, delphinidin, cyanidin, benzoic acid, cinnamic acid, coumaric acid, caffeic acid, and ferulic acid) on macrophage polarization, which is a meaningful mechanism determining the low-grade inflammation in obesity. Mouse J774 and human U937 macrophages and commercially available phenolic compounds were used in the studies. Three of the twelve compounds investigated showed an effect on macrophage polarization. Resveratrol, kaempferol, and proanthocyanidins enhanced anti-inflammatory M2-type activation, evidenced as increased expression of Arg-1 and MRC-1 in murine macrophages and CCL-17 and MRC-1 in human macrophages. Resveratrol and kaempferol also inhibited pro-inflammatory M1-type activation, shown as decreased expression of IL-6, NO, and MCP-1 in murine macrophages and TNF-α and IL-6 in human macrophages. In the further mechanistic studies, the effects of the three active compounds were investigated on two transcription factors important in M2 activation, namely on PPARγ and STAT6. Resveratrol and kaempferol were found to enhance PPARγ expression, while proanthocyanidins increased the phosphorylation of STAT6. The results suggest proanthocyanidins, resveratrol, and kaempferol as active constituents that may be responsible for the positive anti-inflammatory effects of lingonberry supplementation in obesity models. These data also extend the previous knowledge on the anti-inflammatory effects of lingonberry and encourage further studies to support the use of lingonberry and lingonberry-based products as a part of a healthy diet.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Rainer Peltola
- Bioeconomy and Environment, Natural Resources Institute Finland, 96200 Rovaniemi, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
8
|
Kaur J, Sanghavi AD, Chopra A, Lobo R, Saha S. Antimicrobial and cytotoxicity properties of Plumeria alba flower extract against oral and periodontal pathogens: A comparative in vitro study. J Indian Soc Periodontol 2022; 26:334-341. [PMID: 35959306 PMCID: PMC9362818 DOI: 10.4103/jisp.jisp_329_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 11/13/2022] Open
Abstract
Context: Plumeria alba, commonly known as frangipani or West Indian jasmine, is a traditional and ancient folklore medicine known for its antimicrobial, anti-inflammatory, and antioxidant properties. The extracts from P. alba obtained from the leaves, bark, and flowers, are commonly used to manage bacterial, fungal, and viral infections such as herpes, scabies, and fungal infections. The constituents of the P. alba plant have shown promising antihelmintic, antipyretic, and antirheumatic properties. Although studies have confirmed that extracts from Plumeria species are effective against microbial infections and cancer, its role in managing oral diseases, particularly the chronic inflammatory disease of the gums (gingivitis and periodontitis), has never been explored. Therefore, the current study aimed to explore the antimicrobial and cytotoxic properties of the P. alba flower extract against oral and periodontal pathogens compared to chlorhexidine and doxycycline. Settings and Design: This was an in vitro study. Materials and Methods: The ethanolic extract was prepared from the freshly plucked P. alba flowers. The antimicrobial properties of the extract were evaluated by testing the minimal inhibitory concentration, minimal bactericidal concentration, and well-diffusion assay against Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Prevotella intermedia, Tannerella forsythia, Streptococcus mutans, Actinomyces viscosus, Streptococcus salivarius, and Candida albicans. The results were compared to chlorhexidine and doxycycline. The cytotoxicity was checked by the against human-derived gingival fibroblast and keratinocytes. Statistical Analysis Used: One-way ANOVA for the mean zones of inhibition against all the microorganisms was done. Results: P. alba extract inhibited the growth for all the tested oral and periodontal pathogens at 25 μg/ml. The well-diffusion assay of P. alba extract was comparable to chlorhexidine but was not statistically significant compared to doxycycline. Conclusion: P. alba can be used as a promising alternative to chlorhexidine for the management of oral and periodontal infections.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Amee Dilip Sanghavi
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Richard Lobo
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Swagata Saha
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
9
|
Rahul, Siddique YH. Neurodegenerative Diseases and Flavonoids: Special Reference to Kaempferol. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:327-342. [PMID: 33511932 DOI: 10.2174/1871527320666210129122033] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple Sclerosis and Ischemic stroke have become a major health problem worldwide. Pre-clinical studies have demonstrated the beneficial effects of flavonoids on neurodegenerative diseases and suggest them to be used as therapeutic agents. Kaempferol is found in many plants such as tea, beans, broccoli, strawberries, and neuroprotective effects against the development of many neurodegenerative diseases such as Parkinson, Alzheimer's disease and Huntington's disease. The present study summarizes the neuroprotective effects of kaempferol in various models of neurodegenerative diseases. Kaempferol delays the initiation as well as the progression of neurodegenerative disorders by acting as a scavenger of free radicals and preserving the activity of various antioxidant enzymes. Kaempferol can cross the Blood-Brain Barrier (BBB), and therefore results in an enhanced protective effect. The multi-target property of kaempferol makes it a potential dietary supplement in preventing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Yasir H Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
10
|
Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010313. [PMID: 35011546 PMCID: PMC8746929 DOI: 10.3390/molecules27010313] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Plant secondary metabolites (PSMs) are vital for human health and constitute the skeletal framework of many pharmaceutical drugs. Indeed, more than 25% of the existing drugs belong to PSMs. One of the continuing challenges for drug discovery and pharmaceutical industries is gaining access to natural products, including medicinal plants. This bottleneck is heightened for endangered species prohibited for large sample collection, even if they show biological hits. While cultivating the pharmaceutically interesting plant species may be a solution, it is not always possible to grow the organism outside its natural habitat. Plants affected by abiotic stress present a potential alternative source for drug discovery. In order to overcome abiotic environmental stressors, plants may mount a defense response by producing a diversity of PSMs to avoid cells and tissue damage. Plants either synthesize new chemicals or increase the concentration (in most instances) of existing chemicals, including the prominent bioactive lead compounds morphine, camptothecin, catharanthine, epicatechin-3-gallate (EGCG), quercetin, resveratrol, and kaempferol. Most PSMs produced under various abiotic stress conditions are plant defense chemicals and are functionally anti-inflammatory and antioxidative. The major PSM groups are terpenoids, followed by alkaloids and phenolic compounds. We have searched the literature on plants affected by abiotic stress (primarily studied in the simulated growth conditions) and their PSMs (including pharmacological activities) from PubMed, Scopus, MEDLINE Ovid, Google Scholar, Databases, and journal websites. We used search keywords: "stress-affected plants," "plant secondary metabolites, "abiotic stress," "climatic influence," "pharmacological activities," "bioactive compounds," "drug discovery," and "medicinal plants" and retrieved published literature between 1973 to 2021. This review provides an overview of variation in bioactive phytochemical production in plants under various abiotic stress and their potential in the biodiscovery of therapeutic drugs. We excluded studies on the effects of biotic stress on PSMs.
Collapse
|
11
|
Dong L, Yang H, Wang Z, Jiang N, Zhang A. Antimicrobial peptide CC34 attenuates intestinal inflammation via downregulation of the NF-κB signaling pathway. 3 Biotech 2021; 11:397. [PMID: 34422538 DOI: 10.1007/s13205-021-02948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
The investigational drug CC34 is a cation peptide with multiple bioactivities. Here, we studied the anti-inflammatory effects of CC34 in lipopolysaccharide (LPS)-treated mouse monocyte-macrophage cells (RAW264.7) and in mice with LPS-induced intestinal inflammation. In vitro, CC34 treatment with less than 50 μg/mL for 24 h did not induce cytotoxicity in RAW264.7 cells. Furthermore, CC34 significantly lowered the levels of select inflammatory cytokines, including TNF-α, IL-1β, and IL-6. Intracellular levels of reactive oxygen species (ROS) were lower in RAW264.7 cells treated with CC34 + LPS than in cells treated with LPS alone. Additionally, CC34 treatment suppressed iNOS and COX-2 mRNA levels in LPS-treated cells. We also observed that CC34 exerted anti-inflammatory activity by suppressing the phosphorylation of IKKβ, IκBα, and NF-κB p65 in vitro. Moreover, CC34 downregulated the release of inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the jejunum tissue and serum of LPS-treated mice. We also found that the myeloperoxidase (MPO) levels were decreased, and the pathological damages were effectively abated in the jejunum tissue of CC34 + LPS-treated mice. In summary, we demonstrated that CC34 exerted anti-inflammatory activities, associated with the neutralization of LPS, inhibition of ROS, inhibition the NF-κB signaling pathway, and down-regulating the secretion of inflammatory cytokines. Thus, CC34 may represent an effective therapeutic strategy for intestinal inflammation.
Collapse
|
12
|
Gao J, Xiong K, Zhou W, Li W. Extensive Metabolite Profiling in the Unexploited Organs of Black Tiger for Their Potential Valorization in the Pharmaceutical Industry. Life (Basel) 2021; 11:544. [PMID: 34200589 PMCID: PMC8229443 DOI: 10.3390/life11060544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Black tiger (Kadsura coccinea (Lem.)) has been reported to hold enormous pharmaceutical potential. The fruit and rhizome of black tiger are highly exploited in the pharmaceutical and other industries. However, the most important organs from the plant such as the leaf and stem are considered biowastes mainly because a comprehensive metabolite profile has not been reported in these organs. Knowledge of the metabolic landscape of the unexploited black tiger organs could help identify and isolate important compounds with pharmaceutical and nutritional values for a better valorization of the species. In this study, we used a widely targeted metabolomics approach to profile the metabolomes of the K. coccinea leaf (KL) and stem (KS) and compared them with the root (KR). We identified 642, 650 and 619 diverse metabolites in KL, KS and KR, respectively. A total of 555 metabolites were mutually detected among the three organs, indicating that the leaf and stem organs may also hold potential for medicinal, nutritional and industrial applications. Most of the differentially accumulated metabolites between organs were enriched in flavone and flavonol biosynthesis, phenylpropanoid biosynthesis, arginine and proline metabolism, arginine biosynthesis, tyrosine metabolism and 2-oxocarboxylic acid metabolism pathways. In addition, several important organ-specific metabolites were detected in K. coccinea. In conclusion, we provide extensive metabolic information to stimulate black tiger leaf and stem valorization in human healthcare and food.
Collapse
Affiliation(s)
- Jianfei Gao
- Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001, China; (J.G.); (W.L.)
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertification Control of China, School of Karst Science, Guizhou Normal University, Guiyang 550001, China
| | - Wei Zhou
- Guizhou Industry Polytechnic College, Guiyang 550008, China;
| | - Weijie Li
- Institute of Mountain Resources, Guizhou Academy of Sciences, Guiyang 550001, China; (J.G.); (W.L.)
| |
Collapse
|
13
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
14
|
Duan Y, An W, Wu H, Wu Y. Salvianolic Acid C Attenuates LPS-Induced Inflammation and Apoptosis in Human Periodontal Ligament Stem Cells via Toll-Like Receptors 4 (TLR4)/Nuclear Factor kappa B (NF-κB) Pathway. Med Sci Monit 2019; 25:9499-9508. [PMID: 31831723 PMCID: PMC6929551 DOI: 10.12659/msm.918940] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease that causes gingival detachment and disintegration of alveolar bone. Salvianolic acid C (SAC) is a polyphenol compound with anti-inflammatory and antioxidant activities that is isolated from Danshen, a traditional Chinese medicine made from the roots of Salvia miltiorrhiza Bunge. The aim of this study was to investigate the mechanisms of underlying its protective effects and its inhibition effect on inflammation and apoptosis in human periodontal ligament stem cells (hPDLSCs). MATERIAL AND METHODS LPS-induced hPDLSCs, as a model mimicking an inflammatory process of periodontitis in vivo, were established to investigate the therapeutic effect of SAC in periodontitis. The inflammatory cytokines secretion and oxidative stress status were measured by use of specific commercial test kits. The hPDLSCs viability was analyzed by Cell Counting Kit-8 assay. The cell apoptosis and cell cycle were assayed with flow cytometry. Expressions levels of proteins involved in apoptosis, osteogenic differentiation, and TLR4/NF-kappaB pathway were evaluated by Western blotting. Alkaline phosphatase (ALP) activity was detected by ALP assay kit and ALP staining. The mineralized nodules formation of hPDLSCs was checked by Alizarin Red S staining. RESULTS Our results showed that LPS induced increased levels of inflammatory cytokines and oxidative stress and mediated the phosphorylation and nuclear translocation of NF‑kappaB p65 in hPDLSCs. SAC reversed the abnormal secretion of inflammatory cytokines and inhibited the TLR4/NF‑kappaB activation induced by LPS. SAC also upregulated cell viability, ALP activity, and the ability of osteogenic differentiation. The anti-inflammation and TLR4/NF‑kappaB inhibition effects of SAC were reversed by TLR4 overexpression. CONCLUSIONS Taken together, our results revealed that SAC effectively attenuates LPS-induced inflammation and apoptosis via the TLR4/NF-kappaB pathway and that SAC is effective in treating periodontitis.
Collapse
Affiliation(s)
- Yan Duan
- Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Wei An
- Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Hongmei Wu
- Department of Oral Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China (mainland)
| | - Yunxia Wu
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
15
|
Hoppenbrouwers T, Cvejić Hogervorst JH, Garssen J, Wichers HJ, Willemsen LEM. Long Chain Polyunsaturated Fatty Acids (LCPUFAs) in the Prevention of Food Allergy. Front Immunol 2019; 10:1118. [PMID: 31178862 PMCID: PMC6538765 DOI: 10.3389/fimmu.2019.01118] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
N-3 long chain polyunsaturated fatty acids (LCPUFAs) are considered to possess protective properties for human health by impacting on immunological reactions. An “inflammation-suppressive” effect appears to be the common denominator of the beneficial effects of most of these dietary components which may protect against the development of chronic immune disorders such as (food) allergy. LCPUFAs, especially n-3 LCPUFAs, have been shown to interact with both the sensitization as well as the effector phase in food allergy in pre-clinical models. In this review, we explore the anti-allergic properties of LCPUFAs by providing an overview of clinical, in vivo and in vitro studies. Furthermore, we discuss the susceptibility of LCPUFAs to lipid oxidation and possible strategies to support the efficacy of LCPUFAs in reducing the allergy risk by using additional components with anti-oxidative and anti-inflammatory capacities such as the flavonoid quercetin. Finally, we propose new strategies to prevent (food) allergy using combinations of LCPUFAs and additional nutrients in diets or supplements, and postulate to investigate the use of LCPUFAs in allergic symptom relief.
Collapse
Affiliation(s)
| | | | - Johan Garssen
- Department of Immunology, Nutricia Research BV, Utrecht, Netherlands.,Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Harry J Wichers
- Food & Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Amaral M, de Sousa FS, Silva TAC, Junior AJG, Taniwaki NN, Johns DM, Lago JHG, Anderson EA, Tempone AG. A semi-synthetic neolignan derivative from dihydrodieugenol B selectively affects the bioenergetic system of Leishmania infantum and inhibits cell division. Sci Rep 2019; 9:6114. [PMID: 30992481 PMCID: PMC6467890 DOI: 10.1038/s41598-019-42273-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023] Open
Abstract
Leishmaniasis is a neglected disease that affects more than 12 million people, with a limited therapy. Plant-derived natural products represent a useful source of anti-protozoan prototypes. In this work, four derivatives were prepared from neolignans isolated from the Brazilian plant Nectandra leucantha, and their effects against intracellular amastigotes of Leishmania (L.) infantum evaluated in vitro. IC50 values between 6 and 35 µM were observed and in silico predictions suggested good oral bioavailability, no PAINS similarities, and ADMET risks typical of lipophilic compounds. The most selective (SI > 32) compound was chosen for lethal action and immunomodulatory studies. This compound caused a transient depolarization of the plasma membrane potential and induced an imbalance of intracellular Ca2+, possibly resulting in a mitochondrial impairment and leading to a strong depolarization of the membrane potential and decrease of ATP levels. The derivative also interfered with the cell cycle of Leishmania, inducing a programmed cell death-like mechanism and affecting DNA replication. Further immunomodulatory studies demonstrated that the compound eliminates amastigotes via an independent activation of the host cell, with decrease levels of IL-10, TNF and MCP-1. Additionally, this derivative caused no hemolytic effects in murine erythrocytes and could be considered promising for future lead studies.
Collapse
Affiliation(s)
- Maiara Amaral
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, 01246-000, Brazil
| | - Fernanda S de Sousa
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, 09972-270, Brazil
| | - Thais A Costa Silva
- Centre of Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, Brazil
| | - Andrés Jimenez G Junior
- Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, 05403-000, Brazil
| | - Noemi N Taniwaki
- Laboratory of Electron Microscopy, Instituto Adolfo Lutz, São Paulo, 01246-000, Brazil
| | - Deidre M Johns
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| | - João Henrique G Lago
- Centre of Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, Brazil
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, 01246-000, Brazil.
| |
Collapse
|
17
|
Abstract
Flavonoids are tricyclic polyphenolic compounds naturally occurring in plants. Being nature’s antioxidants flavonoids have been shown to reduce the damages induced by oxidative stress in cells. Besides being an antioxidant, flavonols are demonstrated to have anti-infective properties, i.e., antiviral, antifungal, anti-angiogenic, anti-tumorigenic, and immunomodulatory bioproperties. Plants use them as one of their defense mechanisms against radiation-induced DNA damage and also for fungal infections. The use of flavonols for fabrication of new drugs has been underway with objectives to develop safer and effective therapeutic agents. This review covers 15 flavonols for their structure, biological properties, role in plant metabolisms, and current research focused on computational drug design using flavonols for searching drug leads.
Collapse
|
18
|
Rabha DJ, Singh TU, Rungsung S, Kumar T, Parida S, Lingaraju MC, Paul A, Sahoo M, Kumar D. Kaempferol attenuates acute lung injury in caecal ligation and puncture model of sepsis in mice. Exp Lung Res 2018; 44:63-78. [DOI: 10.1080/01902148.2017.1420271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dipankar Jyoti Rabha
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Soya Rungsung
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Tarun Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Madhu Cholenahalli Lingaraju
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
19
|
Anti-inflammatory and antioxidant effects of polyphenols extracted from Antirhea borbonica medicinal plant on adipocytes exposed to Porphyromonas gingivalis and Escherichia coli lipopolysaccharides. Pharmacol Res 2017; 119:303-312. [DOI: 10.1016/j.phrs.2017.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/20/2017] [Accepted: 02/02/2017] [Indexed: 02/02/2023]
|
20
|
Yue SJ, Xin LT, Fan YC, Li SJ, Tang YP, Duan JA, Guan HS, Wang CY. Herb pair Danggui-Honghua: mechanisms underlying blood stasis syndrome by system pharmacology approach. Sci Rep 2017; 7:40318. [PMID: 28074863 PMCID: PMC5225497 DOI: 10.1038/srep40318] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Herb pair Danggui-Honghua has been frequently used for treatment of blood stasis syndrome (BSS) in China, one of the most common clinical pathological syndromes in traditional Chinese medicine (TCM). However, its therapeutic mechanism has not been clearly elucidated. In the present study, a feasible system pharmacology model based on chemical, pharmacokinetic and pharmacological data was developed via network construction approach to clarify the mechanisms of this herb pair. Thirty-one active ingredients of Danggui-Honghua possessing favorable pharmacokinetic profiles and biological activities were selected, interacting with 42 BSS-related targets to provide potential synergistic therapeutic actions. Systematic analysis of the constructed networks revealed that these targets such as HMOX1, NOS2, NOS3, HIF1A and PTGS2 were mainly involved in TNF signaling pathway, HIF-1 signaling pathway, estrogen signaling pathway and neurotrophin signaling pathway. The contribution index of every active ingredient also indicated six compounds, including hydroxysafflor yellow A, safflor yellow A, safflor yellow B, Z-ligustilide, ferulic acid, and Z-butylidenephthalide, as the principal components of this herb pair. These results successfully explained the polypharmcological mechanisms underlying the efficiency of Danggui-Honghua for BSS treatment, and also probed into the potential novel therapeutic strategies for BSS in TCM.
Collapse
Affiliation(s)
- Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Lan-Ting Xin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Ya-Chu Fan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Shu-Jiao Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu-Ping Tang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hua-Shi Guan
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, P. R. China
| |
Collapse
|
21
|
Balli U, Cetinkaya BO, Keles GC, Keles ZP, Guler S, Sogut MU, Erisgin Z. Assessment of MMP-1, MMP-8 and TIMP-2 in experimental periodontitis treated with kaempferol. J Periodontal Implant Sci 2016; 46:84-95. [PMID: 27127689 PMCID: PMC4848383 DOI: 10.5051/jpis.2016.46.2.84] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/28/2016] [Indexed: 11/10/2022] Open
Abstract
Purpose The objective of this study was to investigate the effect of a dietary flavonoid, kaempferol, which has been shown to possess antiallergic, anti-inflammatory, anticarcinogenic, and antioxidant activities on the periodontium by histomorphometric analysis and on gingival tissue matrix metalloproteinase-1 (MMP-1), MMP-8, and tissue inhibitor of metalloproteinase-2 (TIMP-2) by biochemical analysis of rats after experimental periodontitis induction. Methods Sixty Wistar rats were randomly divided into six groups of ten rats each, and silk ligatures were placed around the cervical area of the mandibular first molars for 15 days, except in the healthy control rats. In the experimental periodontitis groups, systemic kaempferol (10 mg/kg/2d) and saline were administered by oral gavage at two different periods (with and without the presence of dental biofilm) to all rats except for the ten non-medicated rats. Alveolar bone area, alveolar bone level, and attachment level were determined by histomorphometric analysis, and gingival tissue levels of MMP-1, MMP-8, and TIMP-2 were detected by biochemical analysis. Results Significantly greater bone area and significantly less alveolar bone and attachment loss were observed in the kaempferol application groups compared to the control groups (P<0.05). In addition, gingival tissue MMP-1 and -8 levels were significantly lower in the kaempferol application groups compared to the control groups and the periodontitis group (P<0.001). There were no statistically significant differences in TIMP-2 levels between the kaempferol and saline application groups (P>0.05). Conclusions Kaempferol application may be useful in decreasing alveolar bone resorption, attachment loss, and MMP-1 and -8 production in experimental periodontitis.
Collapse
Affiliation(s)
- Umut Balli
- Department of Periodontology, Bulent Ecevit University Faculty of Dentistry, Zonguldak, Turkey
| | - Burcu Ozkan Cetinkaya
- Department of Periodontology, Ondokuzmayis University Faculty of Dentistry, Samsun, Turkey
| | - Gonca Cayir Keles
- Department of Periodontology, Ondokuzmayis University Faculty of Dentistry, Samsun, Turkey
| | - Zeynep Pinar Keles
- Department of Periodontology, Ondokuzmayis University Faculty of Dentistry, Samsun, Turkey
| | - Sevki Guler
- Department of Periodontology, Ondokuzmayis University Faculty of Dentistry, Samsun, Turkey
| | - Mehtap Unlu Sogut
- Ondokuzmayis University Samsun High School of Health, Samsun, Turkey
| | - Zuleyha Erisgin
- Department of Histology and Embryology, Giresun University Faculty of Medicine, Giresun, Turkey
| |
Collapse
|
22
|
Malan M, Serem JC, Bester MJ, Neitz AWH, Gaspar ARM. Anti-inflammatory and anti-endotoxin properties of peptides derived from the carboxy-terminal region of a defensin from the tick Ornithodoros savignyi. J Pept Sci 2015; 22:43-51. [PMID: 26662999 DOI: 10.1002/psc.2838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/18/2022]
Abstract
Antimicrobial peptides are small cationic peptides that possess a large spectrum of bioactivities, including antimicrobial, anti-inflammatory and antioxidant activities. Several antimicrobial peptides are known to inhibit lipopolysaccharide (LPS)-induced inflammation in vitro and to protect animals from sepsis. In this study, the cellular anti-inflammatory and anti-endotoxin activities of Os and Os-C, peptides derived from the carboxy-terminal of a tick defensin, were investigated. Both Os and Os-C were found to bind LPS in vitro, albeit to a lesser extent than polymyxin B and melittin, known endotoxin-binding peptides. Binding to LPS was found to reduce the bactericidal activity of Os and Os-C against Escherichia coli confirming the affinity of both peptides for LPS. At a concentration of 25 µM, the nitric oxide (NO) scavenging activity of Os was higher than glutathione, a known NO scavenger. In contrast, Os-C showed no scavenging activity. Os and Os-C inhibited LPS/IFN-γ induced NO and TNF-α production in RAW 264.7 cells in a concentration-dependent manner, with no cellular toxicity even at a concentration of 100 µM. Although inhibition of NO and TNF-α secretion was more pronounced for melittin and polymyxin B, significant cytotoxicity was observed at concentrations of 1.56 µM and 25 µM for melittin and polymyxin B, respectively. In addition, Os, Os-C and glutathione protected RAW 264.7 cells from oxidative damage at concentrations as low as 25 µM. This study identified that besides previously reported antibacterial activity of Os and Os-C, both peptides have in addition anti-inflammatory and anti-endotoxin properties.
Collapse
Affiliation(s)
- Melissa Malan
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - June C Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Albert W H Neitz
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
23
|
Non-Nutrient, Naturally Occurring Phenolic Compounds with Antioxidant Activity for the Prevention and Treatment of Periodontal Diseases. Antioxidants (Basel) 2015; 4:447-81. [PMID: 26783837 PMCID: PMC4665427 DOI: 10.3390/antiox4030447] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/27/2023] Open
Abstract
One of the main factors able to explain the pathophysiological mechanism of inflammatory conditions that occur in periodontal disease is oxidative stress. Given the emerging understanding of this relationship, host-modulatory therapies using antioxidants could be interesting to prevent or slow the breakdown of soft and hard periodontal tissues. In this context, non-nutrient phenolic compounds of various foods and plants have received considerable attention in the last decade. Here, studies focusing on the relationship between different compounds of this type with periodontal disease have been collected. Among them, thymoquinone, coenzyme Q (CoQ), mangiferin, resveratrol, verbascoside and some flavonoids have shown to prevent or ameliorate periodontal tissues damage in animal models. However evidence regarding this effect in humans is poor and only limited to topical treatments with CoQ and catechins. Along with animal experiments, in vitro studies indicate that possible mechanisms by which these compounds might exert their protective effects include antioxidative properties, oxygen and nitrogen scavenging abilities, and also inhibitory effects on cell signaling cascades related to inflammatory processes which have an effect on RNS or ROS production as well as on antioxidant defense systems.
Collapse
|
24
|
Punicalagin Induces Nrf2/HO-1 Expression via Upregulation of PI3K/AKT Pathway and Inhibits LPS-Induced Oxidative Stress in RAW264.7 Macrophages. Mediators Inflamm 2015; 2015:380218. [PMID: 25969626 PMCID: PMC4417599 DOI: 10.1155/2015/380218] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/12/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress are thought to play a central role in potentiating macrophage activation, causing excessive inflammation, tissue damage, and sepsis. Recently, we have shown that punicalagin (PUN) exhibits anti-inflammatory activity in LPS-stimulated macrophages. However, the potential antioxidant effects of PUN in macrophages remain unclear. Revealing these effects will help understand the mechanism underlying its ability to inhibit excessive macrophage activation. Hemeoxygenase-1 (HO-1) exhibits antioxidant activity in macrophages. Therefore, we hypothesized that HO-1 is a potential target of PUN and tried to reveal its antioxidant mechanism. Here, PUN treatment increased HO-1 expression together with its upstream mediator nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). However, specific inhibition of Nrf2 by brusatol (a specific Nrf2 inhibitor) dramatically blocked PUN-induced HO-1 expression. Previous research has demonstrated that the PI3K/Akt pathway plays a critical role in modulating Nrf2/HO-1 protein expression as an upstream signaling molecule. Here, LY294002, a specific PI3K/Akt inhibitor, suppressed PUN-induced HO-1 expression and led to ROS accumulation in macrophages. Furthermore, PUN inhibited LPS-induced oxidative stress in macrophages by reducing ROS and NO generation and increasing superoxide dismutase (SOD) 1 mRNA expression. These findings provide new perspectives for novel therapeutic approaches using antioxidant medicines and compounds against oxidative stress and excessive inflammatory diseases including tissue damage, sepsis, and endotoxemic shock.
Collapse
|
25
|
Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem 2014; 86:103-12. [PMID: 25147152 DOI: 10.1016/j.ejmech.2014.08.011] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/30/2022]
Abstract
Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g., tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine (e.g., Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Its anti-oxidant/anti-inflammatory effects have been demonstrated in various disease models, including those for encephalomyelitis, diabetes, asthma, and carcinogenesis. Moreover, kaempferol act as a scavenger of free radicals and superoxide radicals as well as preserve the activity of various anti-oxidant enzymes such as catalase, glutathione peroxidase, and glutathione-S-transferase. The anticancer effect of this flavonoid is mediated through different modes of action, including anti-proliferation, apoptosis induction, cell-cycle arrest, generation of reactive oxygen species (ROS), and anti-metastasis/anti-angiogenesis activities. In addition, kaempferol was found to exhibit its anticancer activity through the modulation of multiple molecular targets including p53 and STAT3, through the activation of caspases, and through the generation of ROS. The anti-tumor effects of kaempferol have also been investigated in tumor-bearing mice. The combination of kaempferol and conventional chemotherapeutic drugs produces a greater therapeutic effect than the latter, as well as reduces the toxicity of the latter. In this review, we summarize the anti-oxidant/anti-inflammatory and anticancer effects of kaempferol with a focus on its molecular targets and the possible use of this flavonoid for the treatment of inflammatory diseases and cancer.
Collapse
|
26
|
Gutiérrez-Venegas G, Ventura-Arroyo JA, Arreguín-Cano JA, Ostoa-Pérez MF. Flavonoids inhibit iNOS production via mitogen activated proteins in lipoteichoic acid stimulated cardiomyoblasts. Int Immunopharmacol 2014; 21:320-7. [PMID: 24768712 DOI: 10.1016/j.intimp.2014.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/25/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Infective endocarditis is caused by oral commensal bacteria which are important etiologic agents in this disease and can induce release of nitric oxide (NO), promoting an inflammatory response in the endocardium. In this study, we investigated the properties of kaempherol, epigallocatechin, apigenin, and naringin in embryonic mouse heart cells (H9c2) treated with lipoteichoic acid (LTA) obtained from Streptococcus sanguinis. NO production was measured with the Griess method. Expression of inducible nitric oxide synthase (iNOS) was detected by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, western blot assays and immunofluorescence staining were used to assess translocation of nuclear factor kappa beta (NF-κB), degradation of IκB, and activity of the mitogen activated protein (MAP) kinases extracellular signal-regulated kinase (ERK 1/2), p38, and c-Jun N-terminal kinase (JNK). And the effects of these flavonoids on cell viability were also assessed. Our results showed that flavonoids blocked activation of ERK, JNK, and p38 in cardiomyocytes treated with LTA. Moreover, the flavonoids showed no cytotoxic effects and blocked NF-κB translocation and IκB degradation and inhibited LTA-induced NF-κB promoter activity, iNOS expression and NO production. In conclusion these effects are consistent with some of the observed anti-inflammatory properties of other flavonoids.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico.
| | - Jairo Agustín Ventura-Arroyo
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
| | - Juan Antonio Arreguín-Cano
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
| | - María Fernanda Ostoa-Pérez
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., Mexico
| |
Collapse
|
27
|
Suzuki JI, Imai Y, Aoki M, Fujita D, Aoyama N, Tada Y, Wakayama K, Akazawa H, Izumi Y, Isobe M, Komuro I, Nagai R, Hirata Y. Periodontitis in cardiovascular disease patients with or without Marfan syndrome--a possible role of Prevotella intermedia. PLoS One 2014; 9:e95521. [PMID: 24748407 PMCID: PMC3991676 DOI: 10.1371/journal.pone.0095521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023] Open
Abstract
Background Although periodontitis is a risk factor for cardiovascular disease (CVD), the influence of periodontitis on Marfan syndrome (MFS) with CVD is unclear. The aim of this study was to assess the relationship between periodontal bacterial burden and MSF with CVD. Methods and Results The subjects were patients with MFS with CVD (n = 47); age and gender matched non-MFS CVD patients (n = 48) were employed as controls. Full-mouth clinical measurements, including number of teeth, probing of pocket depth (PD), bleeding on probing (BOP) and community periodontal index (CPI) were recorded. We also evaluated the existence of three periodontal pathogens, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella intermedia using polymerase chain reaction assays. Serum antibody titers against the pathogens were also measured. We revealed that MFS with CVD patients had periodontitis more frequently than the age and gender matched non-MFS CVD control subjects. MFS with CVD patients had significantly severer periodontitis, fewer remaining teeth and deeper PD compared to the non-MFS CVD controls. Furthermore, the serum antibody titer level against Prevotella intermedia was significantly lower in MFS plus CVD patients compared to the non-MFS CVD patients. Conclusion Periodontitis may influence the pathophysiology of cardiovascular complications in MFS patients. A specific periodontal pathogen might be a crucial therapeutic target to prevent CVD development.
Collapse
Affiliation(s)
- Jun-ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Bunkyo, Tokyo, Japan
- * E-mail:
| | - Yasushi Imai
- Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Mieko Aoki
- Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Daishi Fujita
- Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Norio Aoyama
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Yuko Tada
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kouji Wakayama
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | |
Collapse
|
28
|
Cho YJ, Kim SJ. Effect of quercetin on the production of nitric oxide in murine macrophages stimulated with lipopolysaccharide from Prevotella intermedia. J Periodontal Implant Sci 2013; 43:191-7. [PMID: 24040572 PMCID: PMC3769598 DOI: 10.5051/jpis.2013.43.4.191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/14/2013] [Indexed: 12/13/2022] Open
Abstract
Purpose Nitric oxide (NO) is a short-lived bioactive molecule that is known to play an important role in the pathogenesis of periodontal disease. In the current study, we investigated the effect of the flavonoid quercetin on the production of NO in murine macrophages activated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen related to inflammatory periodontal disease, and tried to elucidate the underlying mechanisms of action. Methods LPS was isolated from P. intermedia ATCC 25611 cells by the standard hot phenol-water method. The concentration of NO in cell culture supernatants was determined by measuring the accumulation of nitrite. Inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) protein expression, phosphorylation of c-Jun N-terminal kinase (JNK) and p38, inhibitory κB (IκB)-α degradation, and signal transducer and activator of transcription 1 (STAT1) phosphorylation were analyzed via immunoblotting. Results Quercetin significantly attenuated iNOS-derived NO production in RAW246.7 cells activated by P. intermedia LPS. In addition, quercetin induced HO-1 protein expression in cells activated with P. intermedia LPS. Tin protoporphyrin IX (SnPP), a competitive inhibitor of HO-1, abolished the inhibitory effect of quercetin on LPS-induced NO production. Quercetin did not affect the phosphorylation of JNK and p38 induced by P. intermedia LPS. The degradation of IκB-α induced by P. intermedia LPS was inhibited when the cells were treated with quercetin. Quercetin also inhibited LPS-induced STAT1 signaling. Conclusions Quercetin significantly inhibits iNOS-derived NO production in murine macrophages activated by P. intermedia LPS via anti-inflammatory HO-1 induction and inhibition of the nuclear factor-κB and STAT1 signaling pathways. Our study suggests that quercetin may contribute to the modulation of host-destructive responses mediated by NO and appears to have potential as a novel therapeutic agent for treating inflammatory periodontal disease.
Collapse
Affiliation(s)
- Yun-Jung Cho
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea
| | | |
Collapse
|