1
|
Biazar E, Heidari Keshel S, Rezaei Tavirani M, Kamalvand M. Healing effect of acellular fish skin with plasma rich in growth factor on full-thickness skin defects. Int Wound J 2022; 19:2154-2162. [PMID: 35441469 DOI: 10.1111/iwj.13821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Acellular skin as a scaffold has a good potential to regenerate or repair damaged tissues. Growth factors such as Plasma Rich in Growth Factor (PRGF) as a rich source of active proteins can accelerate tissue regeneration. In this study, an acellular scaffold derived from fish skin with growth factors was used to repair full-thickness skin defects in a rat model. Cellular results demonstrated that epithelial cells adhere well to acellular scaffolds. The results of animal studies showed that the groups treated with acellular scaffold and growth factor have a high ability to close and heal wounds on the 28th day after surgery. Histological and staining results showed that in the treated groups with scaffold and growth factor, an epidermal layer was formed with some skin appendages similar to normal skin. Overall, such scaffolds with biological agents can cause an acceptable synergistic effect on skin regeneration and wound healing.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahshad Kamalvand
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
2
|
Fraser D, Caton J, Benoit DSW. Periodontal Wound Healing and Regeneration: Insights for Engineering New Therapeutic Approaches. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.815810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a widespread inflammatory disease that leads to loss of the tooth supporting periodontal tissues. The few therapies available to regenerate periodontal tissues have high costs and inherent limitations, inspiring the development of new approaches. Studies have shown that periodontal tissues have an inherent capacity for regeneration, driven by multipotent cells residing in the periodontal ligament (PDL). The purpose of this review is to describe the current understanding of the mechanisms driving periodontal wound healing and regeneration that can inform the development of new treatment approaches. The biologic basis underlying established therapies such as guided tissue regeneration (GTR) and growth factor delivery are reviewed, along with examples of biomaterials that have been engineered to improve the effectiveness of these approaches. Emerging therapies such as those targeting Wnt signaling, periodontal cell delivery or recruitment, and tissue engineered scaffolds are described in the context of periodontal wound healing, using key in vivo studies to illustrate the impact these approaches can have on the formation of new cementum, alveolar bone, and PDL. Finally, design principles for engineering new therapies are suggested which build on current knowledge of periodontal wound healing and regeneration.
Collapse
|
3
|
Lin Z, Nica C, Sculean A, Asparuhova MB. Positive Effects of Three-Dimensional Collagen-Based Matrices on the Behavior of Osteoprogenitors. Front Bioeng Biotechnol 2021; 9:708830. [PMID: 34368101 PMCID: PMC8334008 DOI: 10.3389/fbioe.2021.708830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Recent research has demonstrated that reinforced three-dimensional (3D) collagen matrices can provide a stable scaffold for restoring the lost volume of a deficient alveolar bone. In the present study, we aimed to comparatively investigate the migratory, adhesive, proliferative, and differentiation potential of mesenchymal stromal ST2 and pre-osteoblastic MC3T3-E1 cells in response to four 3D collagen-based matrices. Dried acellular dermal matrix (DADM), hydrated acellular dermal matrix (HADM), non-crosslinked collagen matrix (NCM), and crosslinked collagen matrix (CCM) did all enhance the motility of the osteoprogenitor cells. Compared to DADM and NCM, HADM and CCM triggered stronger migratory response. While cells grown on DADM and NCM demonstrated proliferative rates comparable to control cells grown in the absence of a biomaterial, cells grown on HADM and CCM proliferated significantly faster. The pro-proliferative effects of the two matrices were supported by upregulated expression of genes regulating cell division. Increased expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in cells grown on each of the scaffolds, suggesting excellent adhesive properties of the investigated biomaterials. In contrast to genes encoding the bone matrix proteins collagen type I (Col1a1) and osteopontin (Spp1) induced by all matrices, the expression of the osteogenic differentiation markers Runx2, Alpl, Dlx5, Ibsp, Bglap2, and Phex was significantly increased in cells grown on HADM and CCM only. Short/clinically relevant pre-coating of the 3D biomaterials with enamel matrix derivative (EMD) or recombinant bone morphogenetic protein-2 (rBMP-2) significantly boosted the osteogenic differentiation of both osteoprogenitor lines on all matrices, including DADM and NCM, indicating that EMD and BMP-2 retained their biological activity after being released from the matrices. Whereas EMD triggered the expression of all osteogenesis-related genes, rBMP-2 upregulated early, intermediate, and late osteogenic differentiation markers except for Col1a1 and Spp1. Altogether, our results support favorable influence of HADM and CCM on the recruitment, growth, and osteogenic differentiation of the osteoprogenitor cell types. Furthermore, our data strongly support the biofunctionalization of the collagen-based matrices with EMD or rBMP-2 as a potential treatment modality for bone defects in the clinical practice.
Collapse
Affiliation(s)
- Zhikai Lin
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Cristina Nica
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Asparuhova MB, Stähli A, Guldener K, Sculean A. A Novel Volume-Stable Collagen Matrix Induces Changes in the Behavior of Primary Human Oral Fibroblasts, Periodontal Ligament, and Endothelial Cells. Int J Mol Sci 2021; 22:ijms22084051. [PMID: 33919968 PMCID: PMC8070954 DOI: 10.3390/ijms22084051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to investigate the influence of a novel volume-stable collagen matrix (vCM) on early wound healing events including cellular migration and adhesion, protein adsorption and release, and the dynamics of the hemostatic system. For this purpose, we utilized transwell migration and crystal violet adhesion assays, ELISAs for quantification of adsorbed and released from the matrix growth factors, and qRT-PCR for quantification of gene expression in cells grown on the matrix. Our results demonstrated that primary human oral fibroblasts, periodontal ligament, and endothelial cells exhibited increased migration toward vCM compared to control cells that migrated in the absence of the matrix. Cellular adhesive properties on vCM were significantly increased compared to controls. Growth factors TGF-β1, PDGF-BB, FGF-2, and GDF-5 were adsorbed on vCM with great efficiency and continuously delivered in the medium after an initial burst release within hours. We observed statistically significant upregulation of genes encoding the antifibrinolytic thrombomodulin, plasminogen activator inhibitor type 1, thrombospondin 1, and thromboplastin, as well as strong downregulation of genes encoding the profibrinolytic tissue plasminogen activator, urokinase-type plasminogen activator, its receptor, and the matrix metalloproteinase 14 in cells grown on vCM. As a general trend, the stimulatory effect of the vCM on the expression of antifibrinolytic genes was synergistically enhanced by TGF-β1, PDGF-BB, or FGF-2, whereas the strong inhibitory effect of the vCM on the expression of profibrinolytic genes was reversed by PDGF-BB, FGF-2, or GDF-5. Taken together, our data strongly support the effect of the novel vCM on fibrin clot stabilization and coagulation/fibrinolysis equilibrium, thus facilitating progression to the next stages of the soft tissue healing process.
Collapse
Affiliation(s)
- Maria B. Asparuhova
- Dental Research Center, Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
- Correspondence:
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Kevin Guldener
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| |
Collapse
|
5
|
Durstberger G, Nguyen PQ, Hohensinner V, Pietschmann P, Rausch-Fan X, Andrukhov O. Effect of Enamel Matrix Derivatives on Osteoclast Formation from PBMC of Periodontitis Patients and Healthy Individuals after Interaction with Activated Endothelial Cells. ACTA ACUST UNITED AC 2021; 57:medicina57030269. [PMID: 33804249 PMCID: PMC7998895 DOI: 10.3390/medicina57030269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Background and objectives: Enamel matrix derivative (EMD) is produced from developing porcine tooth buds and represents a complex of low-molecular-weight hydrophobic enamel proteins. EMD is widely applied in periodontal regeneration. Osteoclasts are multinuclear cells, which are responsible for bone resorption. The precursors of osteoclasts, hematopoietic cells, undergo in vivo the process of transendothelial migration before differentiation. EMD is known to affect the process of osteoclastogenesis, but its effect on human osteoclasts precursors after the interaction with activated endothelium was never studied. Materials and Methods: Human umbilical vein endothelial cells (HUVECs)s were seeded in transwell inserts with a pore size of 8 µm and pre-activated by TNF-α and IL-1β for 18 h. Peripheral blood mononuclear cells (PBMCs), freshly isolated from 16 periodontitis patients and 16 healthy individuals, were added to pre-activated HUVECs. Adherent, non-adherent and transmigrated cells were collected and differentiated to osteoclasts by the standard protocol in the presence or absence of EMD. The number of osteoclasts was determined by tartrate-resistant acid phosphatase staining. Results: PBMCs isolated from periodontitis patients have formed a significantly higher osteoclast number compared to PBMCs isolated from healthy individuals (p < 0.05). EMD induced concentration-dependent inhibition of osteoclast formation from PBMCs. This was true for the different PBMC fractions isolated from both healthy individuals and periodontitis patients. Conclusions: Our data show that EMD inhibits the formation and activity of osteoclasts differentiated from the progenitor cells after the interaction with activated endothelium. This might be associated with bone resorption inhibition and supporting bone regeneration in the frame of periodontal therapy.
Collapse
Affiliation(s)
- Gerlinde Durstberger
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (G.D.); (X.R.-F.)
| | - Phuong Quynh Nguyen
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Verena Hohensinner
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immuology, Medical University of Vienna, 1090 Vienna, Austria; (V.H.); (P.P.)
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immuology, Medical University of Vienna, 1090 Vienna, Austria; (V.H.); (P.P.)
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (G.D.); (X.R.-F.)
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence:
| |
Collapse
|
6
|
Root coverage of multiple gingival recessions treated with coronally advanced flap associated with xenogeneic acellular dermal matrix or connective tissue graft: a 6-month split-mouth controlled and randomized clinical trial. Clin Oral Investig 2021; 25:5765-5773. [PMID: 33723662 DOI: 10.1007/s00784-021-03879-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES This study aimed to compare xenogeneic dermal matrix (XDM) to connective tissue graft (CTG) associated with coronally advanced flap (CAF) in treating Miller's class I and II (RT1) multiple gingival recession in a split-mouth randomized clinical trial. MATERIALS AND METHODS Fifteen patients with bilateral Miller's class I and II multiple recessions were selected. The patient's side receiving each treatment was randomly allocated to receive XDM or CTG. The clinical parameters were measured at baseline and 6 months of follow-up. RESULTS At 6 months, no significant difference in the root coverage (RC) (95.28 ± 6.89% for CTG and 92.68 ± 7.35% for XDM) and the keratinized tissue (KT) gain (0.91 ± 0.46 mm for CTG and 0.74 ± 0.39 mm for XDM) was observed between groups (p > 0.05). The CTG group presented higher complete root coverage (CRC) than XDM (60% and 33%, respectively) (p = 0.045). Multiple logistic regression indicated that the XDM (p = 0.01) and the XDM and KT interaction (p = 0.02) negatively interfered in the CRC. A 1-mm increase in the baseline KT when using XDM increases almost 6 times the chance of achieving CRC, and XDM reached a similar CRC probability to CTG when the receptor area presented at least 2 mm of KT. CONCLUSIONS Both treatments were effective for treating multiple gingival recession; similar KT gain, GR reduction, and RC were obtained for CTG and XDM, while CTG promoted higher CRC than XDM. Moreover, the amount of KT at baseline was determinant for CRC when treating multiple gingival recession with XDM. CLINICAL RELEVANCE XDM produces limited CRC in sites with a reduced amount of KT. TRIAL REGISTRATION Brazilian Clinical Trials Registry (REBEC) number RBR-56NZQ6.
Collapse
|
7
|
Enhanced Wound Healing Potential of Primary Human Oral Fibroblasts and Periodontal Ligament Cells Cultured on Four Different Porcine-Derived Collagen Matrices. MATERIALS 2020; 13:ma13173819. [PMID: 32872458 PMCID: PMC7504420 DOI: 10.3390/ma13173819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Xenogenic collagen-based matrices represent an alternative to subepithelial palatal connective tissue autografts in periodontal and peri-implant soft tissue reconstructions. In the present study, we aimed to investigate the migratory, adhesive, proliferative, and wound-healing potential of primary human oral fibroblasts (hOF) and periodontal ligament cells (hPDL) in response to four commercially available collagen matrices. Non-crosslinked collagen matrix (NCM), crosslinked collagen matrix (CCM), dried acellular dermal matrix (DADM), and hydrated acellular dermal matrix (HADM) were all able to significantly enhance the ability of hPDL and hOF cells to directionally migrate toward the matrices as well as to efficiently repopulate an artificially generated wound gap covered by the matrices. Compared to NCM and DADM, CCM and HADM triggered stronger migratory response. Cells grown on CCM and HADM demonstrated significantly higher proliferative rates compared to cells grown on cell culture plastic, NCM, or DADM. The pro-proliferative effect of the matrices was supported by expression analysis of proliferative markers regulating cell cycle progression. Upregulated expression of genes encoding the adhesive molecules fibronectin, vinculin, CD44 antigen, and the intracellular adhesive molecule-1 was detected in hPDL and hOF cells cultured on each of the four matrices. This may be considered as a prerequisite for good adhesive properties of the four scaffolds ensuring proper cell–matrix and cell–cell interactions. Upregulated expression of genes encoding TGF-β1 and EGF growth factors as well as MMPs in cells grown on each of the four matrices provided support for their pro-proliferative and pro-migratory abilities. The expression of genes encoding the angiogenic factors FGF-2 and VEGF-A was dramatically increased in cells grown on DADM and HADM only, suggesting a good basis for accelerated vascularization of the latter. Altogether, our results support favorable influence of the investigated collagen matrices on the recruitment, attachment, and growth of cell types implicated in oral soft tissue regeneration. Among the four matrices, HADM has consistently exhibited stronger positive effects on the oral cellular behavior. Our data provide solid basis for future investigations on the clinical application of the collagen-based matrices in surgical periodontal therapy.
Collapse
|
8
|
Strauss FJ, Kuchler U, Kobatake R, Heimel P, Tangl S, Gruber R. Acid bone lysates reduce bone regeneration in rat calvaria defects. J Biomed Mater Res A 2020; 109:659-665. [PMID: 32608132 PMCID: PMC7984281 DOI: 10.1002/jbm.a.37050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
Acid bone lysates (ABLs) represent the growth factors and other molecules released during autologous graft resorption. However, the impact of these bone-derived growth factors on the healing of bone defects has not yet been investigated. The aim of the present study was, therefore, to examine the impact of ABLs adsorbed to collagen membranes on bone regeneration. To this end, in 16 female Sprague Dawley rats, a standardized 5-mm-diameter critical size defect on the calvarial bone was created. The defects were covered with collagen membranes that had been soaked either in serum-free media or ABLs followed by lyophilization. After a healing period of 4 weeks, micro-computed tomography (μCT) and histological analyses by means of undecalcified thin ground sections were performed. μCT analysis of the inner 4 mm of the calvaria defect showed a greater bone defect coverage in the control group when compared to ABL group, 29.8% (confidence interval [CI]: 17.7-50.3) versus 5.6% (CI: 1.0-29.8, p = .03), respectively. Moreover, we found significantly more absolute bone volume (BV) in the control group when compared to ABL group, 0.59 mm3 (CI: 0.27-1.25) versus 0.07 mm3 (CI: 0.06-0.59, p = .04), respectively. Histomorphometry confirmed these findings with a relative BV in the central compartment of 14.1% (CI: 8.4-20.6) versus 5.6% (CI: 3.4-7.9, p = .004), respectively. These findings indicate that bone-derived growth factors contained in ABLs are able to attenuate bone regeneration within collagen membranes.
Collapse
Affiliation(s)
- Franz-Josef Strauss
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile.,Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ulrike Kuchler
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Reiko Kobatake
- Department of Advanced Prosthodontics, Hiroshima University, Higashihiroshima, Japan
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Tangl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Challenges of Engineering Biomimetic Dental and Paradental Tissues. Tissue Eng Regen Med 2020; 17:403-421. [PMID: 32621282 DOI: 10.1007/s13770-020-00269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Loss of the dental and paradental tissues resulting from trauma, caries or from systemic diseases considered as one of the most significant and frequent clinical problem to the healthcare professionals. Great attempts have been implemented to recreate functionally, healthy dental and paradental tissues in order to substitute dead and diseased tissues resulting from secondary trauma of car accidents, congenital malformations of cleft lip and palate or due to acquired diseases such as cancer and periodontal involvements. METHOD An extensive literature search has been done on PubMed database from 2010 to 2019 about the challenges of engineering a biomimetic tooth (BioTooth) regarding basic biology of the tooth and its supporting structures, strategies, and different techniques of obtaining biological substitutes for dental tissue engineering. RESULTS It has been found that great challenges need to be considered before engineering biomimetic individual parts of the tooth such as enamel, dentin-pulp complex and periodontium. In addition, two approaches have been adopted to engineer a BioTooth. The first one was to engineer a BioTooth as an individual unit and the other was to engineer a BioTooth with its supporting structures. CONCLUSION Engineering of BioTooth with its supporting structures thought to be in the future will replace the traditional and conventional treatment modalities in the field of dentistry. To accomplish this goal, different cell lines and growth factors with a variety of scaffolds at the nano-scale level are now in use. Recent researches in this area of interest are dedicated for this objective, both in vivo and in vitro. Despite progress in this field, there are still many challenges ahead and need to be overcome, many of which related to the basic tooth biology and its supporting structures and some others related to the sophisticated techniques isolating cells, fabricating the needed scaffolds and obtaining the signaling molecules.
Collapse
|
10
|
TGFβ activity released from platelet-rich fibrin adsorbs to titanium surface and collagen membranes. Sci Rep 2020; 10:10203. [PMID: 32576959 PMCID: PMC7311486 DOI: 10.1038/s41598-020-67167-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Platelet-rich fibrin (PRF) contains a broad spectrum of bioactive molecules that can trigger several cellular responses. However, these molecules along with their upstream responses remain mostly uninvestigated. By means of proteomics we revealed that PRF lysates contain more than 650 proteins, being TGF-β one of the few growth factors found. To uncover the major target genes regulated by PRF lysates, gingival fibroblasts were exposed to lysates obtained from PRF membranes followed by a whole genome array. We identified 51 genes strongly regulated by PRF including IL11, NOX4 and PRG4 which are characteristic TGF-β target genes. RT-PCR and immunoassay analysis confirmed the TGF-β receptor I kinase-dependent increased expression of IL11, NOX4 and PRG4. The PRF-derived TGF-β activity was verified by the translocation of Smad2/3 into the nucleus along with the increased phosphorylation of Smad3. Considering that PRF is clinically used in combination with dental implants and collagen membranes, we showed here that PRF-derived TGF-β activity adsorbs to titanium implants and collagen membranes indicated by the changes in gene expression and immunoassay analysis. Our study points towards TGF-β as major target of PRF and suggest that TGF-β activity released by PRF adsorbs to titanium surface and collagen membranes
Collapse
|
11
|
Nica C, Lin Z, Sculean A, Asparuhova MB. Adsorption and Release of Growth Factors from Four Different Porcine-Derived Collagen Matrices. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2635. [PMID: 32526991 PMCID: PMC7321618 DOI: 10.3390/ma13112635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
Abstract
Xenogeneic acellular collagen matrices represent a safe alternative to autologous soft tissue transplants in periodontology and implant dentistry. Here, we aimed to investigate the adsorption and release of growth factors from four porcine-derived collagen matrices using enzyme-linked immunosorbent assay. Non-crosslinked collagen matrix (NCM), crosslinked collagen matrix (CCM), dried acellular dermal matrix (DADM), and hydrated acellular dermal matrix (HADM) adsorbed each of the following growth factors, TGF-β1, FGF-2, PDGF-BB, GDF-5 and BMP-2, with an efficiency close to 100%. Growth factor release for a 13-day period was in the range of 10-50% of the adsorbed protein, except for the BMP-2 release that was in the range of 5-7%. Generally, protein release occurred in two phases. Phase I was arbitrary defined by the highest release from the matrices, usually within 24 h. Phase II, spanning the period immediately after the peak release until day 13, corresponded to the delayed release of the growth factors from the deeper layers of the matrices. HADM showed significantly (P < 0.001) higher TGF-β1, FGF-2, and PDGF-BB release in phase II, compared to the rest of the matrices. NCM exhibited significantly (P < 0.001) higher FGF-2 release in phase II, compared to CCM and DADM as well as a characteristic second peak in PDGF-BB release towards the middle of the tested period. In contrast to NCM and HADM, CCM and DADM showed a gradual and significantly higher release of GDF-5 in the second phase. Several burst releases of BMP-2 were characteristic for all matrices. The efficient adsorption and sustained protein release in the first 13 days, and the kinetics seen for HADM, with a burst release within hours and high amount of released growth factor within a secondary phase, may be beneficial for the long-term tissue regeneration following reconstructive periodontal surgery.
Collapse
Affiliation(s)
- Cristina Nica
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland; (C.N.); (Z.L.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
| | - Zhikai Lin
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland; (C.N.); (Z.L.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
- Department of Periodontology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Zhizaoju Road 639, Shanghai 200011, China
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
| | - Maria B. Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland; (C.N.); (Z.L.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
| |
Collapse
|
12
|
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 2019; 18:24. [PMID: 30885217 PMCID: PMC6423854 DOI: 10.1186/s12938-019-0647-0] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Collagen, the most abundant extracellular matrix protein in animal kingdom belongs to a family of fibrous proteins, which transfer load in tissues and which provide a highly biocompatible environment for cells. This high biocompatibility makes collagen a perfect biomaterial for implantable medical products and scaffolds for in vitro testing systems. To manufacture collagen based solutions, porous sponges, membranes and threads for surgical and dental purposes or cell culture matrices, collagen rich tissues as skin and tendon of mammals are intensively processed by physical and chemical means. Other tissues such as pericardium and intestine are more gently decellularized while maintaining their complex collagenous architectures. Tissue processing technologies are organized as a series of steps, which are combined in different ways to manufacture structurally versatile materials with varying properties in strength, stability against temperature and enzymatic degradation and cellular response. Complex structures are achieved by combined technologies. Different drying techniques are performed with sterilisation steps and the preparation of porous structures simultaneously. Chemical crosslinking is combined with casting steps as spinning, moulding or additive manufacturing techniques. Important progress is expected by using collagen based bio-inks, which can be formed into 3D structures and combined with live cells. This review will give an overview of the technological principles of processing collagen rich tissues down to collagen hydrolysates and the methods to rebuild differently shaped products. The effects of the processing steps on the final materials properties are discussed especially with regard to the thermal and the physical properties and the susceptibility to enzymatic degradation. These properties are key features for biological and clinical application, handling and metabolization.
Collapse
Affiliation(s)
- Michael Meyer
- Research Institute for Leather and Plastic Sheeting, Meissner Ring 1-5, 09599, Freiberg, Germany.
| |
Collapse
|
13
|
Strauss FJ, Di Summa F, Stähli A, Matos L, Vaca F, Schuldt G, Gruber R. TGF-β activity in acid bone lysate adsorbs to titanium surface. Clin Implant Dent Relat Res 2019; 21:336-343. [PMID: 30817088 PMCID: PMC6593995 DOI: 10.1111/cid.12734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
Abstract
Objectives Osteoblasts lay down new bone on implant surfaces. The underlying cellular mechanism and the spatio‐temporal mode of action, however, remain unclear. It can be proposed that growth factors released upon acidification by osteoclasts adsorb to the implant surface and control the early stages of osseointegration. Methods To simulate bone lysis by osteoclasts, titanium discs were exposed to acid bone lysate (ABL) followed by vigorous washing and seeding of oral fibroblasts. The expression of TGF‐β target genes interleukin 11 (IL11) and NADPH oxidase 4 (NOX4) was evaluated by reverse transcriptase polymerase chain reaction and IL11 ELISA. TGF‐β signaling activation was assessed via Smad2/3 immunofluorescence. The impact of ABL on osteogenic differentiation was determined with murine ST2 mesenchymal stromal cells. Results We report here that ABL‐conditioned titanium discs, independent of turned or rough surface, increased the expression of IL11 and NOX4. This increase was blocked by the TGF‐β receptor 1 antagonist SB431542. Further support for the TGF‐β signaling activation came from the translocation of Smad2/3 into the nucleus of oral fibroblasts. Moreover, titanium discs exposed to ABL decreased alkaline phosphatase and osteopontin in ST2 cells. Conclusions These in vitro findings suggest that titanium can adsorb TGF‐β from ABLs. The data provide a strong impetus for studies on the protein adsorption on implant surfaces in vitro and in vivo, specifically for growth factors including bone‐derived TGF‐β during successful and failed osseointegration.
Collapse
Affiliation(s)
- Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - Francesca Di Summa
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Stähli
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Luiza Matos
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Vaca
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| | - Guenther Schuldt
- Department of Periodontics, University of Southern Santa Catarina, Grande Florianopolis, Brazil
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Ramalho I, Bergamo E, Lopes A, Medina-Cintrón C, Neiva R, Witek L, Coelho P. Periodontal Tissue Regeneration Using Brain-Derived Neurotrophic Factor Delivered by Collagen Sponge. Tissue Eng Part A 2019; 25:1072-1083. [PMID: 30489221 DOI: 10.1089/ten.tea.2018.0209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
IMPACT STATEMENT The various roles played by brain-derived neurotrophic factor (BDNF) in a multitude of tissues and at different scenarios have rendered BDNF a favorable candidate for improving tissue regeneration. Although the tested formulations of BDNF quantitatively regenerate tissue to a level similar to control groups, it resulted in significantly more instances of full regeneration.
Collapse
Affiliation(s)
- Ilana Ramalho
- 1Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, Brazil.,2Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York
| | - Edmara Bergamo
- 2Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York.,3Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Adolfo Lopes
- 1Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, Brazil.,2Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York
| | - Camille Medina-Cintrón
- 4Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Rodrigo Neiva
- 4Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Lukasz Witek
- 2Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York
| | - Paulo Coelho
- 2Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York
| |
Collapse
|
15
|
Strauss FJ, Stähli A, Beer L, Mitulović G, Gilmozzi V, Haspel N, Schwab G, Gruber R. Acid bone lysate activates TGFβ signalling in human oral fibroblasts. Sci Rep 2018; 8:16065. [PMID: 30375456 PMCID: PMC6207660 DOI: 10.1038/s41598-018-34418-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Demineralized bone matrix is a widely used allograft from which not only the inorganic mineral but also embedded growth factors are removed by hydrochloric acid (HCl). The cellular response to the growth factors released during the preparation of demineralized bone matrix, however, has not been studied. Here we investigated the in vitro impact of acid bone lysate (ABL) prepared from porcine cortical bone chips on oral fibroblasts. Proteomic analysis of ABL revealed a large spectrum of bone-derived proteins including TGF-β1. Whole genome microarrays and RT-PCR together with the pharmacologic blocking of TGF-β receptor type I kinase with SB431542 showed that ABL activates the TGF-β target genes interleukin 11, proteoglycan 4, and NADPH oxidase 4. Interleukin 11 expression was confirmed at the protein level by ELISA. Immunofluorescence and Western blot showed the nuclear localization of Smad2/3 and increased phosphorylation of Smad3 with ABL, respectively. This effect was independent of whether ABL was prepared from mandible, calvaria or tibia. These results demonstrate that TGF-β is a major growth factor that is removed upon the preparation of demineralized bone matrix.
Collapse
Affiliation(s)
- Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Sergio Livingstone 943, Santiago, Chile
| | - Alexandra Stähli
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Goran Mitulović
- Clinical Department of Laboratory Medicine Proteomics Core Facility, Medical University Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Valentina Gilmozzi
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Nina Haspel
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Gerhild Schwab
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| |
Collapse
|
16
|
Kuchler U, Rybaczek T, Dobask T, Heimel P, Tangl S, Klehm J, Menzel M, Gruber R. Bone-conditioned medium modulates the osteoconductive properties of collagen membranes in a rat calvaria defect model. Clin Oral Implants Res 2018; 29:381-388. [PMID: 29453780 DOI: 10.1111/clr.13133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Collagen membranes are not limited to be occlusive barriers as they actively support bone regeneration. However, the impact of bone-derived growth factors on their osteoconductive competence has not been examined. METHODS Twenty adult Sprague Dawley rats were included in the study. Calvaria defects with a diameter of five millimeter were created. The defect was covered with one layer of a collagen membrane previously soaked in conditioned medium of porcine bone chips or in culture medium alone. After 4 weeks, microcomputed tomography was performed. Undecalcified thin-ground sections were subjected to light and scanning electron microscopy. Primary outcome parameter was the bone volume in the defect. Unit of analysis was the bone-conditioned medium (BCM). RESULTS In the central defect area of the control and the BCM group, median new bone connected to the host bone was 0.54 and 0.32 mm³, respectively (p = .10). In the ectocranial defect area, the control group showed significantly more bone than the BCM group (0.90 and 0.26 mm³; p = .02). Based on an exploratory interpretation, the control group had smaller bony islands than the BCM group. Scanning electron microscopy and histology indicate the formation of bone but also the collagen membrane to be mineralized in the defect site. CONCLUSIONS These results demonstrate that the commercial collagen membrane holds an osteoconductive competence in a rat calvaria defect model. Soaking collagen membranes with BCM shifts bone formation toward the formation of bony islands rather than new bone connected to the host bone.
Collapse
Affiliation(s)
- Ulrike Kuchler
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Tina Rybaczek
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Toni Dobask
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Tangl
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jessica Klehm
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Wei F, Xiao Y. Modulation of the Osteoimmune Environment in the Development of Biomaterials for Osteogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:69-86. [DOI: 10.1007/978-981-13-0947-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Talebi Ardakani MR, Hajizadeh F, Yadegari Z. Comparison of Attachment and Proliferation of Human Gingival Fibroblasts on Different Collagen Membranes. Ann Maxillofac Surg 2018; 8:218-223. [PMID: 30693235 PMCID: PMC6327806 DOI: 10.4103/ams.ams_150_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background and Aim Human gingival fibroblasts cultured on collagen membrane as an alternative treatment method used in tissue regeneration can lead to improved results in root coverage. The aim of this study was to evaluate the human gingival fibroblast proliferation and adhesion cultured on three types of collagen membranes. Materials and Methods In this in vitro study, first-line human gingival fibroblast cells (HGF1-RT1) prepared and cultured on three membranes, including porcine pericardium (PP) (Jason, Botiss dental), human pericardium (HP) (Regen, Faravardeh Baft Iranian), and glutaraldehyde cross-linked (GC) (BioMend Extend, Zimmer Dental). Cell survival was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) after 24, 48, and 72 h and 7 days. Furthermore, morphology and adhesion of cells on the membrane were evaluated after 1 and 7 days by electron microscopy (scanning electron microscopy [SEM]). Statistical analysis was performed using two-way ANOVA with a significance level of 0.05. Results Based on the results of MTT, cell survival on HP and PP membranes after 7 days significantly increased (P < 0.001), but for the GC membrane, it was reduced after 7 days (P = 0.031). Cell survival on HP and PP membranes did not differ (P = 1) and was more than GC (P < 0.001). SEM images showed that the adhesion of cells was better on HP and PP membranes than GC. Conclusion The results of this study showed that natural collagen membranes (HP and PP) similarly support proliferation and adhesion of gingival fibroblasts. Survival and adhesion of gingival fibroblasts on cross-linked collagen membrane was less than two other membranes.
Collapse
Affiliation(s)
| | - Farhad Hajizadeh
- Department of Periodontology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yadegari
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Shirakata Y, Miron RJ, Shinohara Y, Nakamura T, Sena K, Horai N, Bosshardt DD, Noguchi K, Sculean A. Healing of two-wall intra-bony defects treated with a novel EMD-liquid-A pre-clinical study in monkeys. J Clin Periodontol 2017; 44:1264-1273. [PMID: 28965367 DOI: 10.1111/jcpe.12825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 01/26/2023]
Abstract
AIM To investigate the effect of a novel enamel matrix derivative formulation (EMD-liquid or Osteogain) combined with an absorbable collagen sponge (ACS) on periodontal wound healing in intra-bony defects in monkeys. MATERIALS AND METHODS Chronic two-wall intra-bony defects were created at the distal aspect of eight teeth in three monkeys (Macaca fascicularis). The 24 defects were randomly assigned to one of the following treatments: (i) open flap debridement (OFD) + ACS alone, (ii) OFD + Emdogain + ACS (Emdogain/ACS), (iii) OFD + Osteogain + ACS (Osteogain/ACS) or (iv) OFD alone. At 4 months, the animals were euthanized for histologic evaluation. RESULTS Osteogain/ACS resulted in more consistent formation of cementum, periodontal ligament and bone with limited epithelial proliferation compared to OFD alone, Emdogain/ACS and OFD + ACS. Among the four treatment groups, the Osteogain/ACS group demonstrated the highest amount of regenerated tissues. However, complete periodontal regeneration was not observed in any of the defects in the four groups. CONCLUSIONS The present findings indicate that in two-wall intra-bony defects, reconstructive surgery with Osteogain/ACS appears to be a promising novel approach for facilitating periodontal wound healing/regeneration, thus warranting further clinical testing.
Collapse
Affiliation(s)
- Yoshinori Shirakata
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Richard J Miron
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yukiya Shinohara
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Sena
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Naoto Horai
- Shin Nippon Biomedical Laboratories, Ltd, Kagoshima, Japan
| | - Dieter D Bosshardt
- Robert K. Schenk Laboratory of Oral Histology, University of Bern, Bern, Switzerland
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Al-Habbal D, Janjić K, Edelmayer M, Moritz A, Agis H. Collagen barrier membranes do not adsorb hypoxia mimetic activity-Activity of gingival fibroblasts cultured directly on collagen barrier membranes loaded with hypoxia mimetic agents. J Biomed Mater Res B Appl Biomater 2017; 106:874-879. [PMID: 28419698 DOI: 10.1002/jbm.b.33893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/26/2017] [Accepted: 03/25/2017] [Indexed: 12/17/2022]
Abstract
Hypoxia-based strategies for applications in oral surgery and periodontology have been proposed where collagen barrier membranes (CBM) are loaded with hypoxia mimetic agents (HMA) to induce a pro-angiogenic response. While it was found that CBM release HMA, it remained unclear if CBM adsorb HMA activity. Here we evaluated the response of oral cells cultured on CBM, supplemented with the HMA dimethyloxalylglycine (DMOG), desferrioxamine (DFO), and l-mimosine (l-MIM). Gingival fibroblasts (GF) were cultured on unwashed CBM as well as on CBM that had been washed with serum-free medium for 48 hours. The pro-angiogenic response was measured based on vascular endothelial growth factor (VEGF) production. Viability and proliferation were assessed based on MTT and BrdU assays. We found that GF seeded onto CBM loaded with DFO and l-MIM, but not DMOG, showed an increase in VEGF to 6.1-fold and 7.7-fold compared to unloaded CBM, respectively. Cells remained vital, but a trend for decreased proliferation was observed on DMOG and DFO-loaded CBM which did not reach the level of significance. Evaluation of washed CBM revealed no difference between the unloaded CBM and CBM supplemented with DMOG, DFO, or l-MIM. In conclusion, our results suggest that CBM do not adsorb hypoxia mimetic activity but release HMA within the first hours. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 874-879, 2018.
Collapse
Affiliation(s)
- Diana Al-Habbal
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Michael Edelmayer
- Austrian Cluster for Tissue Regeneration, Austria.,Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
21
|
Edelmayer M, Al-Habbal D, Pensch M, Janjić K, Agis H. Effect of prolyl hydroxylase inhibitor-loaded collagen barrier membranes on osteoclastogenesis and osteoblastogenesis. J Biomater Appl 2017; 31:1370-1379. [PMID: 28376673 DOI: 10.1177/0885328217702563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prolyl hydroxylase inhibitors induce a proangiogenic response and are therefore proposed to optimize regenerative approaches in periodontics and oral surgery. Here the effect of the prolyl hydroxylase inhibitors dimethyloxalylglycine and deferoxamine, released from collagen barrier membranes, on osteoclastogenesis and osteoblastogenesis was evaluated. Collagen barrier membranes were loaded with dimethyloxalylglycine and deferoxamine. Release studies were performed and supernatants were taken after 1, 3, 6, 24, and 48 h. The effect of these supernatants on osteoblast- and osteoclast-precursor cells was evaluated. Furthermore, dose response studies for dimethyloxalylglycine and deferoxamine were performed. Osteoclastogenesis was evaluated with RAW 264.7 cells based on the number of multinuclear tartrate-resistant acid phosphatase positive cells. Osteoblastogenesis was evaluated with MC3T3-E1 cells based on alkaline phosphatase. Metabolic activity and cell proliferation were assessed based on MTT and BrdU assays. Vascular endothelial growth factor production was evaluated using an immunoassay. We found that supernatants taken in the first hour from collagen barrier membranes loaded with dimethyloxalylglycine or deferoxamine reduced osteoclastogenesis. Osteoblastogenesis was not reduced significantly. Cell proliferation and metabolic activity of RAW 264.7 and MC3T3-E1 cells were inhibited by supernatants of collagen barrier membranes loaded with deferoxamine but not dimethyloxalylglycine. In RAW 264.7 cell culture, vascular endothelial growth factor production was increased only by supernatants of collagen barrier membranes loaded with dimethyloxalylglycine, but not deferoxamine. In MC3T3-E1 cell culture, supernatants of collagen barrier membranes loaded with dimethyloxalylglycine and deferoxamine both increased vascular endothelial growth factor production. Direct measurements showed that the majority of dimethyloxalylglycine and deferoxamine is released in the first hours. Dose-response studies supported the divergent effects of deferoxamine and dimethyloxalylglycine in RAW 264.7 and MC3T3-E1 cultures. Our findings show diverse effects of dimethyloxalylglycine- and deferoxamine-loaded collagen barrier membranes during osteoclastogenesis and osteoblastogenesis. Preclinical studies will reveal if the increase in vascular endothelial growth factor together with the inhibitory effect on osteoclasts can stimulate oral tissue regeneration.
Collapse
Affiliation(s)
- Michael Edelmayer
- 1 Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Diana Al-Habbal
- 2 Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Manuela Pensch
- 1 Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria.,2 Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Klara Janjić
- 2 Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Hermann Agis
- 2 Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Mozgan EM, Edelmayer M, Janjić K, Pensch M, Fischer MB, Moritz A, Agis H. Release kinetics and mitogenic capacity of collagen barrier membranes supplemented with secretome of activated platelets - the in vitro response of fibroblasts of the periodontal ligament and the gingiva. BMC Oral Health 2017; 17:66. [PMID: 28327149 PMCID: PMC5361806 DOI: 10.1186/s12903-017-0357-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
Background Platelet preparations can stimulate the healing process and have mitogenic properties. We hypothesized that collagen barrier membranes (CBM), clinically used in guided bone regeneration and guided tissue regeneration, can serve as carriers for platelet secretome. Methods Secretome was generated from washed platelets and unwashed platelets (washed/unwashed PSEC) and lyophilized onto CBM. Overall appearance of CBM was evaluated by scanning electron microscopy. The impact of PSEC on cell attachment was measured based on fluorescence microscopy with DiI-labeled cells. To assess the release kinetics, supernatants of CBM were collected and medium was replaced at hour 1–48. The mitogenic effect was evaluated with periodontal fibroblasts. Furthermore, the release of total protein, platelet-derived growth factor (PDGF)-BB, and transforming growth factor (TGF) β1 was measured. Results CBM overall appearance and cell attachment was not modulated by PSEC. Supernatants taken after one hour induced a mitogenic response in fibroblasts and showed the highest levels of total protein, TGFβ1 and PDGF-BB. These effects decreased rapidly in subsequent supernatants. While supernatants of CBM loaded with unwashed PSEC induced a stronger mitogenic response than supernatants of CBM loaded with washed PSEC this difference between the PSEC preparations was not observed when cells were seeded on 48–hours-washed CBM. Conclusions CBM release platelet-derived factors in continuously declining release kinetics.
Collapse
Affiliation(s)
- Eva-Maria Mozgan
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Michael Edelmayer
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Manuela Pensch
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Center for Biomedical Technology, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems, 3500, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria.
| |
Collapse
|
23
|
Shirakata Y, Miron RJ, Nakamura T, Sena K, Shinohara Y, Horai N, Bosshardt DD, Noguchi K, Sculean A. Effects of EMD liquid (Osteogain) on periodontal healing in class III furcation defects in monkeys. J Clin Periodontol 2017; 44:298-307. [DOI: 10.1111/jcpe.12663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Yoshinori Shirakata
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Richard J. Miron
- Department of Periodontology; Nova Southeastern University; Fort Lauderdale FL USA
- Department of Periodontics and Oral Medicine; University of Michigan School of Dentistry; Ann Arber MI USA
| | - Toshiaki Nakamura
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Kotaro Sena
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Yukiya Shinohara
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Naoto Horai
- Shin Nippon Biomedical Laboratories, Ltd; Kagoshima Japan
| | - Dieter D. Bosshardt
- Robert K. Schenk Laboratory of Oral Histology; University of Bern; Bern Switzerland
| | - Kazuyuki Noguchi
- Department of Periodontology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Anton Sculean
- Department of Periodontology; School of Dental Medicine; University of Bern; Bern Switzerland
| |
Collapse
|