1
|
Seok J, Kim MO, Kim SH, Ryu KY, Kim JY, Lee HJ, Kim YG, Lee Y. Flavonoid gossypetin protects alveolar bone and limits inflammation in ligature-induced periodontitis in mice. J Periodontol 2024. [PMID: 39031888 DOI: 10.1002/jper.23-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Bacterial-induced inflammation instigates the destruction of hard and soft tissues surrounding teeth in periodontitis. In severe cases, the increased number and activity of osteoclasts induces the resorption of alveolar bones, ultimately leading to tooth loss. Because of their diverse chemical structures and bioactivities, natural compounds are often suggested to treat a wide variety of diseases, including inflammatory disorders. METHODS In the present study, we demonstrated an inhibitory effect of gossypetin, a hexahydroxy flavone, on osteoclast differentiation and bone resorption using in vitro culture of osteoclasts from mouse bone marrow macrophage (BMM) precursors and in vivo model of ligature-induced periodontitis in mice. RESULTS Gossypetin significantly reduced the differentiation of osteoclasts from mouse BMM precursors in the presence of the receptor activator of nuclear factor κB ligand (RANKL). In vitro, gossypetin inhibited critical signaling events downstream of RANKL including the auto-amplification of nuclear factor of activated T-cells, cytoplasmic 1, Ca2+ oscillations, and the generation of reactive oxygen species. In a mouse ligature-induced periodontitis model, the administration of gossypetin significantly reduced osteoclastogenesis and alveolar bone resorption. Furthermore, gossypetin prevented the ligature-induced increase in macrophages and T cells and reduced the production of tumor necrosis factor-α and interleukin-6. CONCLUSION Taken together, these results show anti-osteoclastogenic and anti-inflammatory effects of gossypetin, suggesting the potential use of this natural compound in periodontitis.
Collapse
Affiliation(s)
- Jiwon Seok
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Myoung Ok Kim
- Department of Animal Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, South Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, South Korea
| | - Ka-Young Ryu
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
2
|
Bagwe S, Mehta V, Mathur A, Kumbhalwar A, Bhati A. Role of various pharmacologic agents in alveolar bone regeneration: A review. Natl J Maxillofac Surg 2023; 14:190-197. [PMID: 37661974 PMCID: PMC10474547 DOI: 10.4103/njms.njms_436_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 09/05/2023] Open
Abstract
Alveolar bone and gingiva are components of the periodontium that house the tooth. It constantly adapts itself to the masticatory forces and position of the tooth. However, localized diseases like chronic periodontitis and certain systemic diseases destroy periodontal tissues, which include the alveolar bone. Various pharmacological agents are being explored for their pleiotropic properties to combat the destruction of alveolar bone. This review focuses on the role of pharmacological agents in alveolar bone regeneration.
Collapse
Affiliation(s)
| | - Vini Mehta
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Ankita Mathur
- Department of Periodontology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Abhishek Kumbhalwar
- Research Consultant, STAT SENSE, Srushti 10, Sector 1 D, Amba Township Pvt. Ltd., Trimandir, Adalaj, Gujarat, India
| | - Ashok Bhati
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Saudi Arabia
| |
Collapse
|
3
|
Kuo CH, Zhang BH, Huang SE, Hsu JH, Wang YH, Nguyen TTN, Lai CH, Yeh JL. Xanthine Derivative KMUP-1 Attenuates Experimental Periodontitis by Reducing Osteoclast Differentiation and Inflammation. Front Pharmacol 2022; 13:821492. [PMID: 35571109 PMCID: PMC9097136 DOI: 10.3389/fphar.2022.821492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
Periodontitis is an inflammatory disease of gum that may predispose to serious systemic complications such as diabetes and cardiovascular diseases. Activation of macrophages and osteoclasts around periodontal tissue can accelerate gum inflammation. In addition, alteration of cyclic nucleotide levels is associated with the severity of periodontitis. Our previous study has shown that KMUP-1, a xanthine derivative exhibiting phosphodiesterase inhibition and soluble guanylyl cyclase activation, can inhibit lipopolysaccharide (LPS)-induced inflammation and receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclastogenesis. This study was aimed to investigate whether KMUP-1 could attenuate periodontitis both in vitro and in vivo. In vitro, the protective effect of KMUP-1 on inflammation and osteoclastogenesis was investigated in RANKL-primed RAW264.7 cells treated by Porphyromonas gingivalis LPS (PgLPS). The results showed that KMUP-1 attenuated PgLPS-induced osteoclast differentiation as demonstrated by decreased TRAP-positive multinuclear cells and TRAP activity. This reduction of osteoclast differentiation by KMUP-1 was reversed by KT5823, a protein kinase G inhibitor. Similarly, pro-inflammatory cytokine levels induced by PgLPS were inhibited by KMUP-1 in a dose-dependent manner whereas reversed by KT5823. Mechanistically, suppression of MAPKs, PI3K/Akt, and NF-κB signaling pathways and decrease of c-Fos and NFATc1 expression in osteoclast precursors by KMUP-1 may mediate its protective effect. In vivo, two models of periodontitis in rats were induced by gingival injections of PgLPS and ligature placement around molar teeth, respectively. Our results showed that KMUP-1 inhibited alveolar bone loss in both rat models, and this effect mediated at least partly by reduced osteoclastogenesis. In conclusion, our study demonstrated the therapeutic potential of KMUP-1 on periodontitis through suppression of inflammation and osteoclast differentiation.
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ban-Hua Zhang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-En Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pediatrics, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Thi Tuyet Ngan Nguyen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Han Lai
- Cardiovascular Research Center, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Jwu-Lai Yeh,
| |
Collapse
|
4
|
Zhang H, Zhang Y, Chen X, Li J, Zhang Z, Yu H. Effects of statins on cytokines levels in gingival crevicular fluid and saliva and on clinical periodontal parameters of middle-aged and elderly patients with type 2 diabetes mellitus. PLoS One 2021; 16:e0244806. [PMID: 33417619 PMCID: PMC7793287 DOI: 10.1371/journal.pone.0244806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Objective To analyze the effect of statins on cytokines levels in gingival crevicular fluid (GCF) and saliva and on clinical periodontal parameters of middle-aged and elderly patients with type 2 diabetes mellitus (T2DM). Methods Systemically healthy controls (C group, n = 62), T2DM patients not taking statins (D group, n = 57) and T2DM patients taking statins (S group, n = 24) were recruited. In each group, subjects (40–85 years) were subclassified into the h (periodontal health)group, the g (gingivitis)group or the p (periodontitis) group according to different periodontal conditions. 17 cytokines in gingival crevicular fluid (GCF) and saliva samples of each subject were measured utilizing the Luminex technology kit. Further, HbA1c (glycated hemoglobin), FPG (fasting plasma glucose), PD (probing depth), CAL (clinical attachment level), BOP (bleeding on probing), GI (gingival index) and PI (periodontal index) were recorded. Data distribution was tested through the Shapiro-Wilk test, upon which the Kruskal-Wallis test was applied followed by Mann-Whitney U test and Bonferroni’s correction. Results Levels of IFN-γ, IL-5, IL-10 and IL-13 in the saliva of the Dh group were significantly lower than those in the Ch group, while factor IL-4 was higher (p<0.05). Levels of MIP-3α, IL-7 and IL-2 in GCF of the Dh group were considerably higher than those in the Ch group (p<0.05), while that of IL-23 was considerably lower. Compared with the Cg group, levels of IFN-γ, IL-4, IL-5, IL-6, IL-10 and IL-13 were significantly lower in the saliva of the Dg group (p<0.05). Lower levels of IFN-γ, IL-5 and IL-10 were detected in the Sg group than those in the Cg group (p<0.05). At the same time, levels of IL-1β, IL-6, IL-7, IL-13, IL-17, IL-21 and MIP-3α in the gingival crevicular fluid of the Sg group were lower in comparison with the Dg group. In addition, lower levels of IL-4 and higher levels of IL-7 in GCF were identified in the Dg group than those in the Cg group, while in the Sg group, lower levels of IL-4, MIP-1αand MIP-3αwere observed than those in the Cg group (p<0.05). Lower levels of IFN-γ, IL-6, IL-10, IL-13 and I-TAC were found in the Sp group compared with those in the Cp group. The IFN-γ, IL-6 and IL-10 levels were lower in the Dp group than those in the Cp group (p<0.05). Meanwhile, in the Sp group, lower levels of pro-inflammatory factors IFN-γ, IL-1β, IL-2, IL-6, IL-7, IL-21 and TNF-α, in addition to higher levels of anti-inflammatory factors IL-4 and IL-5 in gingival crevicular fluid, were identified than those in the Dp group. Higher levels of IFN-γ,IL-1β,IL-2,IL-7,IL-21 and TNF-α and a lower level of IL-5 in the Dp group were identified than those in the Cp group (p<0.05). Moreover, statins were able to substantially reduce PD in T2DM patients with periodontitis, indicating an obvious influence on the levels of cytokines secreted by Th1 cells, Th2 cells and Th17 cells, as revealed by PCA (principal component analysis). Conclusion Statins are associated with reduced PD and cytokines levels in the GCF and saliva of T2DM patients with periodontitis.
Collapse
Affiliation(s)
- Huiyuan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yameng Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaochun Chen
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Juhong Li
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Ziyang Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
5
|
Tahamtan S, Shirban F, Bagherniya M, Johnston TP, Sahebkar A. The effects of statins on dental and oral health: a review of preclinical and clinical studies. J Transl Med 2020; 18:155. [PMID: 32252793 PMCID: PMC7132955 DOI: 10.1186/s12967-020-02326-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The statin family of drugs are safe and effective therapeutic agents for the treatment of arteriosclerotic cardiovascular disease (CVD). Due to a wide range of health benefits in addition to their cholesterol lowering properties, statins have recently attracted significant attention as a new treatment strategy for several conditions, which are not directly related to normalizing a lipid profile and preventing CVD. Statins exert a variety of beneficial effects on different aspects of oral health, which includes their positive effects on bone metabolism, their anti-inflammatory and antioxidant properties, and their potential effects on epithelization and wound healing. Additionally, they possess antimicrobial, antiviral, and fungicidal properties, which makes this class of drugs attractive to the field of periodontal diseases and oral and dental health. However, to the best of our knowledge, there has been no comprehensive study to date, which has investigated the effects of statin drugs on different aspects of dental and oral health. Therefore, the primary objective of this paper was to review the effect of statins on dental and oral health. Results of our extensive review have indicated that statins possess remarkable and promising effects on several aspects of dental and oral health including chronic periodontitis, alveolar bone loss due to either extraction or chronic periodontitis, osseointegration of implants, dental pulp cells, orthodontic tooth movement, and orthodontic relapse, tissue healing (wound/bone healing), salivary gland function, and finally, anti-cancer effects. Hence, statins can be considered as novel, safe, inexpensive, and widely-accessible therapeutic agents to improve different aspects of dental and oral health.
Collapse
Affiliation(s)
- Shabnam Tahamtan
- Dental Research Center, Department of Orthodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Dental Research Center, Department of Orthodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
6
|
Axin 1 knockdown inhibits osteoblastic apoptosis induced by Porphyromonas gingivalis lipopolysaccharide. Arch Oral Biol 2020; 112:104667. [PMID: 32092441 DOI: 10.1016/j.archoralbio.2020.104667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Porphyromonas gingivalis (Pg) is one of the pathogenic bacteria that cause periodontal diseases, lipopolysaccharide (LPS) is the key factor that triggers alveolar bone absorption. This study explored the action of Axin 1 on Pg-LPS-induced osteoblasts injury, so as to search a possible treatment for periodontal diseases. METHODS Rat osteoblasts were dealt with Pg-LPS and Axin 1 knockdown alone or in combination. The effect of Pg-LPS and Axin 1 on osteoblast viability and apoptosis were detected by Cell Counting Kit-8 and flow cytometry. The expressions of alkaline phosphatase (ALP) and Axin 1 in processed osteoblasts were measured by western blot (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) assays. Furthermore, the role of Axin 1 knockdown in the levels of inflammatory cytokines and apoptosis-related proteins were also determined. RESULTS Pg-LPS inhibited the viability of osteoblasts and promote apoptosis with concentration and time dependence. ALP expression in Pg-LPS-treated osteoblasts was reduced, while Axin 1 expression was increased. On the one hand, Axin 1 knockdown reversed the Pg-LPS-induced reduction of cell activity and pro-apoptosis effect. On the other hand, Axin 1 knockdown not only improved the ALP activity of Pg-LPS-treated cells, but also reduced the elevation of inflammatory cytokines (TNF-α, IL-1β and IL-6) caused by Pg-LPS. Moreover, Pg-LPS increased the expressions of cleaved Caspase-3 and Bax, and inhibited Bcl-2 expressed, which was rescued by Axin 1 knockdown. CONCLUSION Axin 1 knockdown inhibited Pg-LPS-induced osteoblastic apoptosis by regulating the levels of inflammatory cytokines, which may be helpful for the treatment of periodontal diseases.
Collapse
|
7
|
Huck O, Han X, Mulhall H, Gumenchuk I, Cai B, Panek J, Iyer R, Amar S. Identification of a Kavain Analog with Efficient Anti-inflammatory Effects. Sci Rep 2019; 9:12940. [PMID: 31506483 PMCID: PMC6737110 DOI: 10.1038/s41598-019-49383-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Kavain, a compound derived from Piper methysticum, has demonstrated anti-inflammatory properties. To optimize its drug properties, identification and development of new kavain-derived compounds was undertaken. A focused library of analogs was synthesized and their effects on Porphyromonas gingivalis (P. gingivalis) elicited inflammation were evaluated in vitro and in vivo. The library contained cyclohexenones (5,5-dimethyl substituted cyclohexenones) substituted with a benzoate derivative at the 3-position of the cyclohexanone. The most promising analog identifed was a methylated derivative of kavain, Kava-205Me (5,5-dimethyl-3-oxocyclohex-1-en-1-yl 4-methylbenzoate.) In an in vitro assay of anti-inflammatory effects, murine macrophages (BMM) and THP-1 cells were infected with P. gingivalis (MOI = 20:1) and a panel of cytokines were measured. Both cell types treated with Kava-205Me (10 to 200 μg/ml) showed significantly and dose-dependently reduced TNF-α secretion induced by P. gingivalis. In BMM, Kava-205Me also reduced secretion of other cytokines involved in the early phase of inflammation, including IL-12, eotaxin, RANTES, IL-10 and interferon-γ (p < 0.05). In vivo, in an acute model of P. gingivalis-induced calvarial destruction, administration of Kava-205Me significantly improved the rate of healing associated with reduced soft tissue inflammation and osteoclast activation. In an infective arthritis murine model induced by injection of collagen-antibody (ArthriomAb) + P. gingivalis, administration of Kava-205Me was able to reduce efficiently paw swelling and joint destruction. These results highlight the strong anti-inflammatory properties of Kava-205Me and strengthen the interest of testing such compounds in the management of P. gingivalis elicited inflammation, especially in the management of periodontitis.
Collapse
Affiliation(s)
- Olivier Huck
- Université de Strasbourg, Faculté de Chirurgie-Dentaire, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Xiaxian Han
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Hannah Mulhall
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Iryna Gumenchuk
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Bin Cai
- Department of Chemistry, Boston University, Boston, MA, USA
| | - James Panek
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Radha Iyer
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Salomon Amar
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA.
| |
Collapse
|
8
|
Adhikari N, Neupane S, Aryal YP, Choi M, Sohn WJ, Lee Y, Jung JK, Ha JH, Choi SY, Suh JY, Kim JY, Rho MC, Lee TH, Yamamoto H, An CH, Kim SH, An SY, Kim JY. Effects of oleanolic acid acetate on bone formation in an experimental periodontitis model in mice. J Periodontal Res 2019; 54:533-545. [PMID: 30982986 DOI: 10.1111/jre.12657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/06/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We evaluated the role of oleanolic acid acetate (OAA), a triterpenoid commonly used in the treatment of liver disorders, inflammatory diseases, and metastasis, in bone formation after tooth loss by periodontitis. BACKGROUND Periodontitis causes the sequential degradation of the alveolar bone and associated structures, resulting in tooth loss. Several studies have attempted to regenerate the bone for implantation following tooth loss. METHODS Maxillary left second molar was extracted from 8-week-old male mice following induction of periodontitis by ligature for 5 days. The extraction socket was treated with 50 ng/µL OAA for 1, 2, and 3 weeks. Detailed morphological changes were examined using Masson's trichrome staining, and the precise localization patterns of various signaling molecules, including CD31, F4/80, interleukin (IL)-6, and osteocalcin, were observed. The volume of bone formation was examined by Micro-CT. Osteoclasts were enumerated using tartrate-resistant acid phosphatase (TRAP) staining. For molecular dissection of signaling molecules, we employed the hanging-drop in vitro cultivation method at E14 for 1 day and examined the expression pattern of transforming growth factor (TGF)-β superfamily and Wnt signaling genes. RESULTS Histomorphometrical examinations showed facilitated bone formation in the extraction socket following OAA treatment. In addition, OAA-treated specimens showed the altered localization patterns of inflammatory and bone formation-related signaling molecules including CD31, F4/80, IL-6, and osteocalcin. Also, embryonic tooth germ mesenchymal tissue cultivation with OAA treatment showed the significant altered expression patterns of signaling molecules such as transforming growth factor (TGF)-β superfamily and Wnt signaling. CONCLUSIONS Oleanolic acid acetate induces bone formation and remodeling through proper modulation of osteoblast, osteoclast, and inflammation with regulations of TGF-β and Wnt signaling.
Collapse
Affiliation(s)
- Nirpesh Adhikari
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Mi Choi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, Korea
| | - Mun-Chual Rho
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| |
Collapse
|
9
|
Contribution of Statins towards Periodontal Treatment: A Review. Mediators Inflamm 2019; 2019:6367402. [PMID: 30936777 PMCID: PMC6415285 DOI: 10.1155/2019/6367402] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/23/2018] [Indexed: 01/09/2023] Open
Abstract
The pleiotropic effects of statins have been evaluated to assess their potential benefit in the treatment of various inflammatory and immune-mediated diseases including periodontitis. Herein, the adjunctive use of statins in periodontal therapy in vitro, in vivo, and in clinical trials was reviewed. Statins act through several pathways to modulate inflammation, immune response, bone metabolism, and bacterial clearance. They control periodontal inflammation through inhibition of proinflammatory cytokines and promotion of anti-inflammatory and/or proresolution molecule release, mainly, through the ERK, MAPK, PI3-Akt, and NF-κB pathways. Moreover, they are able to modulate the host response activated by bacterial challenge, to prevent inflammation-mediated bone resorption and to promote bone formation. Furthermore, they reduce bacterial growth, disrupt bacterial membrane stability, and increase bacterial clearance, thus averting the exacerbation of infection. Local statin delivery as adjunct to both nonsurgical and surgical periodontal therapies results in better periodontal treatment outcomes compared to systemic delivery. Moreover, combination of statin therapy with other regenerative agents improves periodontal healing response. Therefore, statins could be proposed as a potential adjuvant to periodontal therapy. However, optimization of the combination of their dose, type, and carrier could be instrumental in achieving the best treatment response.
Collapse
|
10
|
Bertl K, Steiner I, Pandis N, Buhlin K, Klinge B, Stavropoulos A. Statins in nonsurgical and surgical periodontal therapy. A systematic review and meta-analysis of preclinical in vivo trials. J Periodontal Res 2017; 53:267-287. [PMID: 29211309 DOI: 10.1111/jre.12514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The cholesterol-lowering drugs, statins, possess anti-inflammatory, antimicrobial and pro-osteogenic properties, and thus have been tested as an adjunct to periodontal treatment. The present systematic review aimed to answer the following focused research question: What is the effect of local and/or systemic statin use on periodontal tissues in preclinical in vivo studies of experimentally induced periodontitis (EIP) and/or acute/chronified periodontal defect (ACP) models? A literature search (of Medline/PubMed, Embase/Ovid, CENTRAL/Ovid) using the following main eligibility criteria was performed: (i) English or German language; (ii) controlled preclinical in vivo trials; (iii) local and/or systemic statin use in EIP and/or ACP models; and (iv) quantitative evaluation of periodontal tissues (i.e., alveolar bone level/amount, attachment level, cementum formation, periodontal ligament formation). Sixteen studies in EIP models and 7 studies in ACP models evaluated simvastatin, atorvastatin or rosuvastatin. Thirteen of the EIP (81%) and 2 of the ACP (29%) studies presented significantly better results in terms of alveolar bone level/amount in favor of statins. Meta-analysis based on 14 EIP trials confirmed a significant benefit of local and systemic statin use (P < .001) in terms of alveolar bone level/amount; meta-regression revealed that statin type exhibited a significant effect (P = .014) in favor of atorvastatin. Three studies reported a significantly higher periodontal attachment level in favor of statin use (P < .001). Complete periodontal regeneration was never observed; furthermore, statins did not exert any apparent effect on cementum formation. Neither local nor systemic use of statins resulted in severe adverse effects. Statin use in periodontal indications has a positive effect on periodontal tissue parameters, supporting the positive results already observed in clinical trials. Nevertheless, not all statins available have been tested so far, and further research is needed to identify the maximum effective concentration/dose and optimal carrier.
Collapse
Affiliation(s)
- K Bertl
- Department of Periodontology, Faculty of Odontology, University of Malmö, Malmö, Sweden.,Division of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - I Steiner
- Private Practice, Taiskirchen, Austria.,Postgraduate Course Periodontology, Medical University of Vienna, Vienna, Austria
| | - N Pandis
- Department of Orthodontics and Dentofacial Orthopedics, Dental School/Medical Faculty, University of Bern, Bern, Switzerland
| | - K Buhlin
- Division of Periodontology, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - B Klinge
- Department of Periodontology, Faculty of Odontology, University of Malmö, Malmö, Sweden
| | - A Stavropoulos
- Department of Periodontology, Faculty of Odontology, University of Malmö, Malmö, Sweden
| |
Collapse
|