1
|
Lyu J, Shen S, Hao Y, Zhou M, Tao J. The impact of Thiopeptide antibiotics on inflammatory responses in periodontal tissues through the regulation of the MAPK pathway. Int Immunopharmacol 2024; 133:112094. [PMID: 38652969 DOI: 10.1016/j.intimp.2024.112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Periodontitis is a bacteria-induced inflammatory disease that damages the tissues supporting the teeth, gums, periodontal ligaments, and alveolar bone. Conventional treatments such as surgical procedures, anti-inflammatory drugs, and antibiotics, are somewhat effective; however, these may lead to discomfort and adverse events, thereby affecting patient outcomes. Therefore, this study aimed to find an effective method to prevent the onset of periodontal disease and explore the specific mechanisms of their action.The impact of thiostrepton on Porphyromonas gingivalis and periodontal ligament stem cells was evaluated in an inflammatory microenvironment. In vivo experiments were performed using a mouse periodontitis model to assess the effectiveness of locally applied thiostrepton combined with a silk fibroin hydrogel in impeding periodontitis progression. Thiostrepton exhibited significant antimicrobial effects against Porphyromonas gingivalis and anti-inflammatory properties by regulating the MAPK pathway through DUSP2. Locally applied thiostrepton effectively impeded the progression of periodontitis and reduced tissue damage. Thiostrepton treatment is a promising and tolerable preventive strategy for periodontitis, offering antimicrobial and anti-inflammatory benefits. These findings suggest the potential of thiostrepton as a valuable addition to periodontitis management, warranting further research and clinical exploration to improve patient outcomes.
Collapse
Affiliation(s)
- Jiaxuan Lyu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Shihui Shen
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Yanmei Hao
- Department of sStomatology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, People's Republic of China, No.301 North Zhengyuan street, Ningxia, 750002, China.
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
2
|
Huang X, Xiao J, Wang H, Peng Y, Liu H, Ma L, Wang X, Cao Z. CKIP-1 mediates P. gingivalis-suppressed osteogenic/cementogenic differentiation of periodontal ligament cells partially via p38 signaling pathway. J Oral Microbiol 2023; 15:2236427. [PMID: 37483640 PMCID: PMC10360982 DOI: 10.1080/20002297.2023.2236427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023] Open
Abstract
Objectives Casein kinase 2 interacting protein-1 (CKIP-1) is a versatile player involved in various biological processes. However, whether CKIP-1 mediates the osteogenic/cementogenic differentiation of periodontal ligament cells (PDLCs) under Porphyromonas gingivalis (Pg) stimulation remains unknown. Material and Methods The effect of Pg on PDLC differentiation was first verified. CKIP-1 expression in Pg-infected PDLCs or in PDL of apical periodontitis (AP) mice was detected. The changes of CKIP-1 during PDLC differentiation was also determined. PDLC differentiation capacity in CKIP-1 knockout (KO) mice and CKIP-1-silenced PDLCs with or without Pg stimulation were further studied. Inhibitor was finally applied to verify the involvement of p38 signaling pathway in PDLC differentiation. Results The suppression effect of Pg on PDLC differentiation was demonstrated. CKIP-1 increased in the PDL of AP mice and Pg-induced PDLCs, and decreased gradually during PDLC differentiation. Increased OSX and RUNX2 expression in PDL were observed in CKIP-1 KO mice. Also, CKIP-1 silencing facilitated and rescued Pg-inhibited PDLC differentiation. Inhibitor for p38 signaling pathway blocked CKIP-1 silencing-facilitated PDLC differentiation. Conclusions CKIP-1 mediated the osteogenic/cementogenic differentiation of PDLCs partially through p38 signaling pathway, which may provide evidence for the regeneration of periodontal hard tissues damaged by Pg.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol 2022; 71. [PMID: 35451943 DOI: 10.1099/jmm.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is initiated by hyper-inflammatory responses in the periodontal tissues that generate dysbiotic ecological changes within the microbial communities. As a result, supportive tissues of the tooth are damaged and periodontal attachment is lost. Gingival recession, formation of periodontal pockets with the presence of bleeding, and often suppuration and/or tooth mobility are evident upon clinical examination. These changes may ultimately lead to tooth loss. Mesenchymal stem cells (MSCs) are implicated in controlling periodontal disease progression and have been shown to play a key role in periodontal tissue homeostasis and regeneration. Evidence shows that MSCs interact with subgingival microorganisms and their by-products and modulate the activity of immune cells by either paracrine mechanisms or direct cell-to-cell contact. The aim of this review is to reveal the interactions that take place between microbes and in particular periodontal pathogens and MSCs in order to understand the factors and mechanisms that modulate the regenerative capacity of periodontal tissues and the ability of the host to defend against putative pathogens. The clinical implications of these interactions in terms of anti-inflammatory and paracrine responses of MSCs, anti-microbial properties and alterations in function including their regenerative potential are critically discussed based on literature findings. In addition, future directions to design periodontal research models and study ex vivo the microbial-stem cell interactions are introduced.
Collapse
Affiliation(s)
- Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Pierre Layrolle
- INSERM, ToNIC, Pavillon Baudot, CHU Purpan, University of Toulouse, Toulouse, UMR 1214, France
| | - Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Chen X, Dou J, Fu Z, Qiu Y, Zou L, Huang D, Tan X. Macrophage M1 polarization mediated via the IL-6/STAT3 pathway contributes to apical periodontitis induced by Porphyromonas gingivalis. J Appl Oral Sci 2022; 30:e20220316. [DOI: 10.1590/1678-7757-2022-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
|
5
|
Yu J, Chen S, Lei S, Li F, Wang Y, Shu X, Xu W, Tang X. The Effects of Porphyromonas gingivalis on Inflammatory and Immune Responses and Osteogenesis of Mesenchymal Stem Cells. Stem Cells Dev 2021; 30:1191-1201. [PMID: 34628938 DOI: 10.1089/scd.2021.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are increasingly used in tissue regeneration, not only because of their multilineage differentiation ability, but also because of their immunomodulatory function, which allows them to play a role in the inflammatory milieu, especially in periodontitis. Porphyromonas gingivalis (P. gingivalis) is an important pathogen associated with the progression of periodontitis. Heterogeneous MSC sources show differences in their inflammatory-immune responsiveness and osteogenesis capabilities when exposed to P. gingivalis and its virulence factors. This article reviews the promoted inflammatory and immune responses of periodontal ligament stem cells, which are potential pitfalls in bone regeneration. MSCs from other sources showed contradictory inflammatory and immune reactions in the few studies on this topic. We also summarize the mechanisms involved in the inflammatory, immune responses and osteogenic potential of MSCs exposed to P. gingivalis and its virulence factors to inform an improved utilization of MSCs in regenerative therapies for periodontitis.
Collapse
Affiliation(s)
- Jingjun Yu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shuangshuang Chen
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shuang Lei
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fulong Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiufang Shu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wanlin Xu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaolin Tang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
6
|
Stolf CS, Sacramento CM, Paz HES, Machado RA, Ramos LP, de Oliveira LD, Cogo-Müller K, Santamaria MP, Ruiz KGS, Casarin RCV. IL10 promoter rs6667202 polymorphism is functional in health but not in grade c periodontitis patients: A pilot study. J Periodontal Res 2021; 57:85-93. [PMID: 34611908 DOI: 10.1111/jre.12940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Previous studies have demonstrated an association between the IL10 promoter rs6667202 (C > A) single-nucleotide polymorphism (SNP) and grade C, stage 3 or 4 periodontitis (Perio4C) in the Brazilian population, where the altered A allele was detected more frequently in these patients. However, no functional analysis of this variation has yet been performed. Thus, the objective of this preliminary study was to evaluate the functionality of rs6667202 in gingival fibroblasts (GFs) of individuals with Perio4C and with periodontal health (PH) stimulated with Aggregatibacter actinomycetencomitans protein extract (AaPE). METHODS Patients with PH and Perio4C were segregated according to their genotype (AA, AC, or CC), and a biopsy was performed to establish the culture of the GFs. After GFs exposure to AaPE at 5 µg/ml for 1.5 h, RNA was extracted to analyze IL10 expression by qPCR. Aliquots of the cell's supernatant were subjected to immunoenzymatic analysis (MAGpix) to detect interleukin-10 (IL-10). RESULTS In PH, the genotypes AA and AC are related to less expression of IL10 (p = 0.027 and p < 0.0001) and less production of IL-10 (p = 0.002 and p = 0.001), when compared to CC. In Perio4C, there was no statistical difference between the genotypes (p > 0.05), although a lower IL-10 expression and release compared with PH CC was seen (p = 0.033 and p < 0.001). CONCLUSION The rs6667202 SNP is functional in PH, as it decreases the expression and production of IL-10. In Perio4C, other factors may be masking its action by altering the IL-10's response.
Collapse
Affiliation(s)
- Camila S Stolf
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Catharina M Sacramento
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Hélvis E S Paz
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Renato A Machado
- Oral Pathology Division, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Lucas P Ramos
- Microbiology and Immunology Division, Department of Biosciences and Oral Biopathology, São José dos Campos School of Dentistry, São Paulo State University, São José dos Campos, Brazil
| | - Luciane D de Oliveira
- Microbiology and Immunology Division, Department of Biosciences and Oral Biopathology, São José dos Campos School of Dentistry, São Paulo State University, São José dos Campos, Brazil
| | - Karina Cogo-Müller
- Pharmacology, Anesthesiology and Therapeutics Division, Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Mauro P Santamaria
- Periodontics Division, Department of Diagnosis and Surgery, São José dos Campos School of Dentistry, São Paulo State University, São José dos Campos, Brazil
| | - Karina G S Ruiz
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Renato C V Casarin
- Periodontics Division, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
7
|
Misawa MYO, Silvério Ruiz KG, Nociti FH, Albiero ML, Saito MT, Nóbrega Stipp R, Condino-Neto A, Holzhausen M, Palombo H, Villar CC. Periodontal ligament-derived mesenchymal stem cells modulate neutrophil responses via paracrine mechanisms. J Periodontol 2019; 90:747-755. [PMID: 30644104 DOI: 10.1002/jper.18-0220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mesenchymal stem cells differentiate into distinct mesenchymal cell lineages and regulate the immune response. The aim of this study was to determine whether periodontal ligament-derived mesenchymal stem cells (PDLSCs) have the ability to modulate neutrophil responses via paracrine mechanisms. METHODS CD105-enriched PDLSCs were seeded for 24 h and challenged with Porphyromonas gingivalis total protein extract (PgPE) (0 or 2 ug/mL) for 3 h. Cells were then washed and further cultured for 18 h and the supernatants were collected and stored. Next, neutrophil-differentiated human promyelocytic leukemia HL-60 cells (HL60D) were treated with PDLSCs supernatants and HL-60D activation and functional responses were determined. RESULTS PgPE treatment induced higher secretion of inflammatory markers and chemokines by PDLSCs, including RANTES, eotaxin, interferon (IFN)-γ- inducible protein 10 (IP-10), monocyte chemoattractant protein-1 (MCP-1), IFN-γ, interleukin (IL)-6, IL-8 and IL-1ra (P < 0.05). HL-60D recruitment rate was increased by 4.7 ± 1.09-fold when exposed to PgPE-treated PDLSCs supernatants. PgPE-treated PDLSCs supernatants promoted a 1.78 ± 1.04-fold increase in the production of intracellular reactive oxygen species (ROS) by PMA-stimulated HL-60D, whereas PgPE-untreated PDLSCs supernatants led to a 16% reduction in intracellular ROS. In sharp contrast, neither PgPE-untreated nor PgPE-treated PDLSCs supernatants altered tumor necrosis factor (TNF)-α and IL-1β secretion by HL-60D cells. CONCLUSION Together, these findings suggest an important role of PDLSCs in the recognition of P. gingivalis, paracrine recruitment and activation of antimicrobial mechanisms in innate immune cells, without interfering in cytokine responses.
Collapse
Affiliation(s)
- Mônica Yuri Orita Misawa
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Karina Gonzales Silvério Ruiz
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco Humberto Nociti
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Mayra Laino Albiero
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Miki Taketomi Saito
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Rafael Nóbrega Stipp
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Antônio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marinella Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Henrique Palombo
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil.,Department of Periodontics, UTHSC, San Antonio Dental School, San Antonio, TX, USA
| |
Collapse
|
8
|
Zhou J, Zhang Y, Li L, Fu H, Yang W, Yan F. Human β-defensin 3-combined gold nanoparticles for enhancement of osteogenic differentiation of human periodontal ligament cells in inflammatory microenvironments. Int J Nanomedicine 2018; 13:555-567. [PMID: 29416335 PMCID: PMC5790078 DOI: 10.2147/ijn.s150897] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective It is a great challenge to absorb and conduct biophysicochemical interactions at the nano-bio interface. Peptides are emerging as versatile materials whose function can be programmed to perform specific tasks. Peptides combined nanoparticles might be utilized as a new approach of treatment. Human β-defensin 3 (hBD3), possesses both antimicrobial and proregeneration properties. Gold nanoparticles (AuNPs) have shown promising applications in the field of tissue engineering. However, the coordinating effects of AuNPs and hBD3 on human periodontal ligament cells (hPDLCs) remain unknown. In this study, we systematically investigated whether AuNPs and hBD3 would be able to coordinate and enhance the osteogenic differentiation of hPDLCs in inflammatory microenvironments, and the underlying mechanisms was explored. Methods hPDLCs were stimulated with E. coli-LPS, hBD3 and AuNPs. Alkaline phosphatase (ALP) and alizarin red S staining were used to observe the effects of hBD3 and AuNPs on the osteogenic differentiation of hPDLCs. Real-time PCR and western blot were performed to evaluate the osteogenic differentiation and Wnt/β-catenin signaling pathway related gene and protein expression. Results In the inflammatory microenvironments stimulated by E. coli-LPS, we found that AuNPs and hBD3 increased the proliferation of hPDLCs slightly. In addition, hBD3-combined AuNPs could significantly enhance ALP activities and mineral deposition in vitro. Meanwhile, we observed that the osteogenic differentiation-related gene and protein expressions of ALP, collagenase-I (COL-1) and runt-related transcription factor 2 (Runx-2) were remarkably upregulated in the presence of hBD3 and AuNPs. Moreover, hBD3-combined AuNPs strongly activated the Wnt/β-catenin signaling pathway and upregulated the gene and protein expression of β-catenin and cyclin D1. Furthermore, hBD3-combined AuNPs induced osteogenesis, which could be reversed by the Wnt/β-catenin signaling pathway inhibitor (ICG-001). Conclusion The present study demonstrated that hBD3 combined AuNPs could significantly promote the osteogenic differentiation of hPDLCs in inflammatory microenvironments via activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jing Zhou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Lingjun Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Huangmei Fu
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|