1
|
Khan J, Sadie-Van Gijsen H, Kotzé-Hörstmann LM, Kotze SH, Layman-Lemphane JI. Characterisation of the influence of dietary fat and sugar on bone health utilising densitometry, micro-computed tomography and histomorphometry. Bone 2024; 192:117380. [PMID: 39710129 DOI: 10.1016/j.bone.2024.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Obesogenic feeding can affect systemic metabolism and impact bone health and microarchitecture, but the findings of published studies often appear contradictory. This study aimed to compare the effects of a medium-fat/high-sugar (MF/HS) and a high-fat/high-fructose (HF/Fr) diet on the femora of weanling male Wistar rats, examining bone mineral content and density (BMC, BMD), cortical and cancellous bone microarchitecture and the cell populations within bone. Furthermore, we explored the correlations between circulating bone-targeting factors (in particular leptin, adiponectin and insulin) and bone parameters. Rats were assigned to one of three dietary groups (control: CON; MF/HS: OB1; HF/Fr: OB2; n = 12 each) for 17 weeks. Right-hand side femora were subjected to densitometry to measure BMC and BMD, and micro-computed tomography (μCT) was utilised to assess cortical and cancellous bone. Osteoblast (N.Ob), osteoclast (N.Oc), adipocyte (N.Ad) and chondrocyte numbers (N.Ch) were quantified histomorphometrically. Diet OB1 was largely beneficial to bone, while diet OB2 exerted detrimental effects on BMC, BMD, bone microarchitecture and bone cell populations. In cortical bone, N.Ob was positively correlated with BMD, cortical area and serum leptin. In cancellous bone, N.Ob was positively correlated with serum leptin and BMD, while N.Oc was negatively correlated with serum leptin. Overall, these findings support a role for endogenous circulating leptin in promoting bone formation. We conclude that the impact of different obesogenic diets may be driven by individual dietary effects on circulating factors, which may partly explain the contradictory reports in existing literature on the impact of HF and HS diets on bone.
Collapse
Affiliation(s)
- J Khan
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa.
| | - H Sadie-Van Gijsen
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa.
| | - L M Kotzé-Hörstmann
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa; Division of Sport and Exercise Medicine (DiSEM), Department of Exercise, Sport and Lifestyle Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa.
| | - S H Kotze
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - J I Layman-Lemphane
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
2
|
Freitas L, Bezerra A, Boppre G, Amorim T, Fernandes RJ, Fonseca H. Does Swimming Exercise Impair Bone Health? A Systematic Review and Meta-Analysis Comparing the Evidence in Humans and Rodent Models. Sports Med 2024; 54:2373-2394. [PMID: 38900358 DOI: 10.1007/s40279-024-02052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The effect of swimming on bone health remains unclear, namely due to discrepant findings between studies in humans and animal models. OBJECTIVE The aim of this systematic review and meta-analysis is to identify the available evidence on the effects of swimming on bone mass, geometry and microarchitecture at the lumbar spine, femur and tibia in both humans and rodent animal models. METHODS The study followed PRISMA guidelines and was registered at PROSPERO (CRD4202236347 and CRD42022363714 for human and animal studies). Two different systematic literature searches were conducted in PubMed, Scopus and Web of Science, retrieving 36 and 16 reports for humans and animal models, respectively. RESULTS In humans, areal bone mineral density (aBMD) was similar between swimmers and non-athletic controls at the lumbar spine, hip and femoral neck. Swimmers' tibia diaphysis showed a higher cross-sectional area but lower cortical thickness. Inconsistent findings at the femoral neck cortical thickness were found. Due to the small number of studies, trabecular microarchitecture in human swimmers was not assessed. In rodent models, aBMD was found to be lower at the tibia, but similar at the femur. Inconsistent findings in femur diaphysis cross-sectional area were observed. No differences in femur and tibia trabecular microarchitecture were found. CONCLUSION Swimming seems to affect bone health differently according to anatomical region. Studies in both humans and rodent models suggest that tibia cortical bone is negatively affected by swimming. There was no evidence of a negative effect of swimming on other bone regions, both in humans and animal models.
Collapse
Affiliation(s)
- Laura Freitas
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Andrea Bezerra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Giorjines Boppre
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Nucleus of Research in Human Movement Science, Universidad Adventista de Chile, Chillán, Chile
| | - Tânia Amorim
- Fame Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Ricardo J Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
3
|
Ma H, Cai X, Hu J, Song S, Zhu Q, Zhang Y, Ma R, Shen D, Yang W, Zhou P, Zhang D, Luo Q, Hong J, Li N. Association of systemic inflammatory response index with bone mineral density, osteoporosis, and future fracture risk in elderly hypertensive patients. Postgrad Med 2024; 136:406-416. [PMID: 38753519 DOI: 10.1080/00325481.2024.2354158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES This study sought to investigate the relationship between the systemic inflammatory response index (SIRI) and bone mineral density (BMD), osteoporosis, and future fracture risk in elderly hypertensive patients. METHODS Elderly hypertensive patients (age ≥60 years) who attended our hospital between January 2021 and December 2023 and completed BMD screening were included in the study. Analyses were performed with multivariate logistic and linear regression. RESULTS The multiple linear regression indicated that SIRI levels were significantly negatively correlated with lumbar 1 BMD (β = -0.15, 95% CI: -0.24, -0.05), lumbar 2 BMD (β = -0.15, 95% CI: -0.24, -0.05), lumbar 3 BMD (β = -1.35, 95% CI: -0.23, -0.02), lumbar 4 BMD (β = -0.11, 95% CI: -0.30, -0.10), femur neck BMD (β = -0.11, 95% CI: -0.18, -0.05) and Ward's triangle BMD (β = -0.12, 95% CI: -0.20, -0.05) among elderly hypertensive patients, after fully adjusting for confounders. Furthermore, we observed that SIRI was positively associated with future fracture risk in elderly hypertensive patients. Specifically, SIRI was associated with an increased risk of major osteoporotic fractures (β = 0.33) and hip fractures (β = 0.25). The logistic regression analysis indicated that there is an association between the SIRI level and an increased risk of osteoporosis (OR = 1.60, 95% CI = 1.37, 1.87), after fully adjusting for confounders. CONCLUSIONS Our findings indicate a potential association between SIRI and BMD, osteoporosis, and the risk of future fractures in elderly hypertensive patients. However, further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Huimin Ma
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Xintian Cai
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Junli Hu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Shuaiwei Song
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Qing Zhu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Yingying Zhang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Rui Ma
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Di Shen
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Wenbo Yang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Pan Zhou
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Delian Zhang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Qin Luo
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Jing Hong
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, China
| |
Collapse
|
4
|
Bezerra A, Freitas L, Maciel L, Fonseca H. Bone Tissue Responsiveness To Mechanical Loading-Possible Long-Term Implications of Swimming on Bone Health and Bone Development. Curr Osteoporos Rep 2022; 20:453-468. [PMID: 36401774 DOI: 10.1007/s11914-022-00758-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW To revisit the bone tissue mechanotransduction mechanisms behind the bone tissue response to mechanical loading and, within this context, explore the possible negative influence of regular swimming practice on bone health, particularly during the growth and development period. RECENT FINDINGS Bone is a dynamic tissue, responsive to mechanical loading and unloading, being these adaptative responses more intense during the growth and development period. Cross-sectional studies usually report a lower bone mass in swimmers compared to athletes engaged in weigh-bearing sports. However, studies with animal models show contradictory findings about the effect of swimming on bone health, highlighting the need for longitudinal studies. Due to its microgravity characteristics, swimming seems to impair bone mass, but mostly at the lower limbs. It is unkown if there is a causal relationship between swimming and low BMD or if other confounding factors, such as a natural selection whithin the sport, are the cause.
Collapse
Affiliation(s)
- Andréa Bezerra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal.
| | - Laura Freitas
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| | - Leonardo Maciel
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
- Department of Physiotherapy, Federal University of Sergipe, Campus Lagarto, Lagarto, Brazil
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto (FADE/UP), 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| |
Collapse
|
5
|
Zalaqi Z, Ghazalian F, Khodayar MJ, Raesi Vanani A, Khorsandi L, Shushizadeh MR. Swimming training combined with chitosan supplementation reduces the development of obesity and oxidative stress in high-fat diet-fed mice. Br J Nutr 2022; 127:837-846. [PMID: 33902761 DOI: 10.1017/s0007114521001379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Obesity is often introduced as one of the metabolic disorders caused by imbalance between energy consumption and metabolisable energy intake. Experts in the field considered obesity as one of the robust risk factors for the lifestyle-associated diseases. The present research examined interventional effects of marine chitosan (CS), swimming training (ST) and combination of CS and ST (CS + ST) in the mice fed with high-fat diets (HFD). In this study, sample size was considered more than three in groups. Forty mice were randomly divided into five groups (n 8 per group) including control group (received the standard diet), HFD group (received high-fat food with 20 % fat), HFD + CS group (treated with high-fat food with 5 % CS), HFD + ST group (treated with HFD and ST) and HFD + CS + ST group (treated with high-fat food with 5 % CS and ST). After 8 weeks, the blood glucose, oxidative stress (OS) and lipid profile were measured. The results showed that CS + ST group has more effects in the control of body weight with the increased concentration of HDL-cholesterol, OS inhibition via enhancing the body antioxidant capacity in comparison with the ST or CS alone in HFD-fed mice. Moreover, lipid profile was improved in CS + ST-treated mice compared with HFD-treated mice, and OS inhibition correlated with the greater activities of the antioxidant enzyme enhances the lipid oxidation, cholesterol and fatty acid homoeostasis. The results suggested that a dietary intervention with a combined ST and CS can be a feasible supplementary for human prevention of obesity.
Collapse
Affiliation(s)
- Zahra Zalaqi
- Department of Physical Education, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshad Ghazalian
- Department of Physical Education, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Raesi Vanani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Shushizadeh
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Radchenko V, Ashukina N, Maltseva V, Skidanov M, Nikolchenko O, Danyshchuk Z, Skidanov A. MODELS OF PARASPINAL MUSCLE DEGENERATION IN RATS: HIGH-FAT DIET AND PROLONGED COMPRESSION. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2280-2285. [PMID: 36378709 DOI: 10.36740/wlek202209218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The aim: To study the structural features of the lumbar m. multifidus and the m. psoas after keeping rats on a high-fat diet (obesity) or compressing their lumbar paraspinal muscles by binding the muscles using non-absorbable sutures. PATIENTS AND METHODS Materials and methods: The study was performed on 2-month-old male rats (n=15) into three groups of 5: control group (normal diet without any surgical interventions), high-fat diet (model I: 40-45% kcal fat), and paraspinal muscles compression (model II: paraspinal muscles were tied from L2 to S1 with non-absorbable sutures Nurolon® 3). The experiment lasted for 90 days, after those fragments of the lumbar m. multifidus and m. psoas removed and histomorphometry analysis performed. RESULTS Results: 12 weeks from the beginning of the experiment, the high-fat diet rats weighed, on average, 22% (p=0.001) more than the control group rats. Similar degenerative changes such as uneven muscle fibre width and sarcoplasm colouring, 'wavy' and swollen fibres, loss of striation, karyopyknosis were observed in the lumbar paraspinal muscles in both models. In high-fat diet group the fat area (%) in the m. multifidus was 1.8 times larger (р<0.001) and in the m. psoas was greater by 2.2 times (р<0.001) than in the control. Fibrous tissue replaced muscle fibres in m. multifidus in model II and was 12.66%. CONCLUSION Conclusions: The relevance of the models is proven: after 3 months, it is possible to obtain degenerative changes in the muscle tissue that are extremely similar to those observed in the muscles of patients with degenerative spine diseases.
Collapse
Affiliation(s)
| | | | | | - Mykyta Skidanov
- SYTENKO INSTITUTE OF SPINE AND JOINT PATHOLOGY, KHARKIV, UKRAINE
| | - Olga Nikolchenko
- SYTENKO INSTITUTE OF SPINE AND JOINT PATHOLOGY, KHARKIV, UKRAINE
| | | | - Artem Skidanov
- SYTENKO INSTITUTE OF SPINE AND JOINT PATHOLOGY, KHARKIV, UKRAINE
| |
Collapse
|
7
|
Ju YI, Sone T. Effects of Different Types of Mechanical Loading on Trabecular Bone Microarchitecture in Rats. J Bone Metab 2021; 28:253-265. [PMID: 34905673 PMCID: PMC8671029 DOI: 10.11005/jbm.2021.28.4.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Mechanical loading is generally considered to have a positive impact on the skeleton; however, not all types of mechanical loading have the same beneficial effect. Many researchers have investigated which types of mechanical loading are more effective for improving bone mass and strength. Among the various mechanical loads, high-impact loading, such as jumping, appears to be more beneficial for bones than low-impact loadings such as walking, running, or swimming. Therefore, the different forms of mechanical loading exerted by running, swimming, and jumping exercises may have different effects on bone adaptations. However, little is known about the relationships between the types of mechanical loading and their effects on trabecular bone structure. The purpose of this article is to review the recent reports on the effects of treadmill running, jumping, and swimming on the trabecular bone microarchitecture in small animals. The effects of loading on trabecular bone architecture appear to differ among these different exercises, as several reports have shown that jumping increases the trabecular bone mass by thickening the trabeculae, whereas treadmill running and swimming add to the trabecular bone mass by increasing the trabecular number, rather than the thickness. This suggests that different types of exercise promote gains in trabecular bone mass through different architectural patterns in small animals.
Collapse
Affiliation(s)
- Yong-In Ju
- Department of Health and Sports Sciences, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Teruki Sone
- Department of Nuclear Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
8
|
Swimming Training Does Not Affect the Recovery of Femoral Midshaft Structural and Mechanical Properties in Growing Diabetic Rats Treated with Insulin. Life (Basel) 2021; 11:life11080786. [PMID: 34440530 PMCID: PMC8398667 DOI: 10.3390/life11080786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The effects of swimming training associated with insulin treatment on the cortical bone health in young rats with severe type 1 diabetes remain unclear, although there is evidence of such effects on the cancellous bone. This study examined the effects of swimming training combined with insulin therapy on the femoral midshaft structural and mechanical properties in growing rats with type 1 diabetes. Methods: Male Wistar rats were divided into six groups (n = 10): control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary plus insulin and diabetic exercise plus insulin. Diabetic rats received an injection (60 mg/kg body weight) of streptozotocin (STZ). Exercised animals underwent a swimming program for eight weeks. Results: Diabetes induced by STZ decreased the bone mineral content (BMC) and density (BMD), and cortical thickness and maximum load and tenacity in the femoral midshaft. Insulin treatment partially counteracted the damages induced by diabetes on BMC, BMD and cortical thickness and tenacity. Swimming training did not affect the femoral structural and mechanical properties in diabetic rats. The combination of treatments did not potentiate the insulin effects. In conclusion, swimming training does not affect the benefits of insulin treatment on the femoral midshaft structural and mechanical properties in growing rats with severe type 1 diabetes.
Collapse
|
9
|
Zhou Y, Chen X, Zhu Z, Bi D, Ma S. MiR-133a delivery to osteoblasts ameliorates mechanical unloading-triggered osteopenia progression in vitro and in vivo. Int Immunopharmacol 2021; 97:107613. [PMID: 33962226 DOI: 10.1016/j.intimp.2021.107613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 01/19/2023]
Abstract
Mechanical unloading-induced bone loss is a clinical challenge, and deep understanding for this disease is necessary for developing novel and effective therapies. MicroRNAs (miRNAs) are small non-coding RNAs, and involved in bone remodeling. In the study, we attempted to explore the potential of miR-133a in regulating osteoblast activation and its anti-osteopenia function both in vitro and in vivo. Our in vitro studies at first showed that miR-133a could significantly promote the expression of osteocalcin (OCN), Collagen I, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and osterix (Osx), promoting the activation and mineralization of osteoblasts. Then, hindlimb unloading (HU)-challenged mice were established with or without intravenous injection of agomir-miR-133a using an osteoblast-targeting delivery system. We found that miR-133a in osteoblasts significantly alleviated the bone loss, microstructural, and biomechanical property in mice with mechanical unloading, contributing to osteopenia alleviation. Furthermore, both in vitro and in vivo experiments showed that miR-133a could restrain osteoclastogenesis via tartrate-resistant acid phosphatase (TRAP) staining. In conclusion, our results suggested that miR-133a may be a promising factor in mediating the occurrence and progression of osteopenia caused by mechanical unloading, and thus targeting miR-133a could be considered as an effective therapeutic strategy for the suppression of pathological osteopenia.
Collapse
Affiliation(s)
- Youlong Zhou
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China.
| | - Xing Chen
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| | - Zemin Zhu
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| | - Daochi Bi
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| | - Shuyun Ma
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| |
Collapse
|
10
|
Jensen VFH, Mølck AM, Dalgaard M, McGuigan FE, Akesson KE. Changes in bone mass associated with obesity and weight loss in humans: Applicability of animal models. Bone 2021; 145:115781. [PMID: 33285255 DOI: 10.1016/j.bone.2020.115781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
Abstract
The implications of obesity and weight loss for human bone health are not well understood. Although the bone changes associated with weight loss are similar in humans and rodents, that is not the case for obesity. In humans, obesity is generally associated with increased bone mass, an outcome which is exacerbated by advanced age and menopause. In rodents, by contrast, bone mass decreases in proportion to severity and duration of obesity, and is influenced by sex, age and mechanical load. Despite these discrepancies, rodents are frequently used to model the situation in humans. In this review, we summarise the existing knowledge of the effects of obesity and weight loss on bone mass in humans and rodents, focusing on the translatability of findings from animal models. We then describe how animal models should be used to broaden the understanding of the relationship between obesity, weight loss, and skeletal health in humans. Specifically, we highlight the aspects of study design that should be considered to optimise translatability of the rodent models of obesity and weight loss. Notably, the sex, age, and nutritional status of the animals should ideally match those of interest in humans. With these caveats in mind, and depending on the research question asked, our review underscores that animal models can provide valuable information for obesity and weight-management research.
Collapse
Affiliation(s)
- Vivi F H Jensen
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden.
| | - Anne-Marie Mølck
- Novo Nordisk A/S, Department of Safety Sciences, Imaging & Data Management, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Majken Dalgaard
- Novo Nordisk A/S, Department of Safety Sciences, Imaging & Data Management, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Fiona E McGuigan
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden
| | - Kristina E Akesson
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden
| |
Collapse
|
11
|
Tang X, Ma S, Li Y, Sun Y, Zhang K, Zhou Q, Yu R. Evaluating the Activity of Sodium Butyrate to Prevent Osteoporosis in Rats by Promoting Osteal GSK-3β/Nrf2 Signaling and Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6588-6603. [PMID: 32459091 DOI: 10.1021/acs.jafc.0c01820] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress (OS) and mitochondrial dysfunction are key pathophysiological features of osteoporosis and obesity. Sodium butyrate (NaB), produced by fermentation by the gut microbiota of the large intestine, has been demonstrated to protect against OS by improving specific antioxidant enzymes and to regulate mitochondria redox homeostasis in vivo. Here, in an unblinded study, we identified femur mitochondria as the main target of the beneficial effects of NaB, consisting of reversion of bone loss and body-weight gain in obesity-prone rats. In particular, NaB promoted the activity of mitochondrial antioxidant enzymes and energy metabolism, preserved the bone microstructure and calcium homeostasis, and activated bone metabolism, as shown by increased Nrf2/GSK-3β signaling and the upregulation of PGC-1α and TFAM. In vitro experiments showed that moderate NaB treatment prevented H2O2-induced oxidative damage in MC3T3-E1 cells, improved osteoblast mineralization and differentiation, and maintained the balance in bone metabolism by enhancing intracellular antioxidant enzyme activity and ATP production and decreasing the ROS level. In conclusion, NaB promoted the Nrf2/GSK-3β signaling pathway and mitochondrial function and is a potential new therapeutic strategy for obesity and osteoporosis.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuhua Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingrui Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongjuan Sun
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kai Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| |
Collapse
|
12
|
Colditz J, Picke AK, Hofbauer LC, Rauner M. Contributions of Dickkopf-1 to Obesity-Induced Bone Loss and Marrow Adiposity. JBMR Plus 2020; 4:e10364. [PMID: 32537550 PMCID: PMC7285751 DOI: 10.1002/jbm4.10364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/08/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022] Open
Abstract
Low bone strength in overweight individuals is a significant medical problem. One important determinant of mesenchymal stem cell fate into osteoblasts or adipocytes is the Wnt signaling pathway. We recently showed that Dickkopf‐1 (DKK1), a potent Wnt inhibitor, is upregulated in obese mice. In this study, we investigated the role of DKK1 in the pathogenesis of obesity‐induced bone loss using global and tissue‐specific KO mice. Obesity was induced in 8‐week‐old male mice with an inducible global (Rosa26‐CreERT2) or osteoprogenitor‐ (Osx–Cre‐) specific deletion of Dkk1 with a high‐fat diet (HFD) containing 60% fat. After 12 weeks, body weight, bone volume, bone fat mass, and bone turnover were assessed. Dkk1fl/fl;Rosa26‐CreERT2 mice experienced a similar increase in body weight and white fat pads as control mice. A HFD significantly reduced trabecular bone mass and the bone formation rate in Cre‐ mice and Dkk1fl/fl;Rosa26‐CreERT2 mice. Interestingly, Dkk1fl/fl;Rosa26‐CreERT2 mice were protected from HFD‐induced cortical bone loss. Furthermore, a HFD was associated with increased bone marrow fat in the femur, which was less pronounced in Dkk1fl/fl;Rosa26‐CreERT2 mice. Mice with an osteoprogenitor‐specific Dkk1 deletion showed similar results as the global knockout, showing a protection against HFD‐induced cortical bone loss and an accumulation of bone marrow fat, but a similar decrease in trabecular bone volume. In summary, DKK1 appears to contribute distinctly to cortical, but not trabecular bone loss in obesity. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juliane Colditz
- Department of Medicine III, Center for Healthy Aging Technische Universität Dresden Dresden Germany
| | - Ann-Kristin Picke
- Department of Medicine III, Center for Healthy Aging Technische Universität Dresden Dresden Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Center for Healthy Aging Technische Universität Dresden Dresden Germany
| | - Martina Rauner
- Department of Medicine III, Center for Healthy Aging Technische Universität Dresden Dresden Germany
| |
Collapse
|
13
|
Pezhman L, Sheikhzadeh Hesari F, Ghiasi R, Alipour MR. Swim training affects bone canonical Wnt pathway in type 2 diabetes induced by high fat diet and low dose of streptozotocin in male rats. Arch Physiol Biochem 2019; 125:465-469. [PMID: 29950115 DOI: 10.1080/13813455.2018.1484770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: Susceptibility to diabetes-induced bone complication has been linked to Wnt signaling, which plays an important role in bone development and remodeling. In this study, the effect of swim training on Wnt pathway in T2DM was investigated. Materials and methods: Forty male rats were assigned to groups: control (C), diabetic (D), exercised control (E) and diabetic exercised (DE). One week after the induction of diabetes, animals were subjected to swim. At the end of training, bone gene and protein levels of SOST, RUNX2 and RANKL/OPG ratio were measured. Results: Diabetes could significantly increase bone sclerostin expression levels, while decreased RUNX2 mRNA and protein. Bone RANKL/OPG ratio was significantly lower in diabetic rats compared to control group. Swim training significantly increased this ratio in DE compared to D group. Conclusion: Swim training could partially compensate the diabetes-associated changes of Wnt pathway possibly by moderating sclerostin or blood sugar.
Collapse
Affiliation(s)
- Laleh Pezhman
- Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Rafighe Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | | |
Collapse
|
14
|
High Impact Exercise Improves Bone Microstructure and Strength in Growing Rats. Sci Rep 2019; 9:13128. [PMID: 31511559 PMCID: PMC6739374 DOI: 10.1038/s41598-019-49432-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Physical activity is beneficial for skeletal development. However, impact sports during adolescence, leading to bone growth retardation and/or bone quality improvement, remains unexplained. This study investigated the effects of in vivo low (LI), medium (MI), and high (HI) impact loadings applied during puberty on bone growth, morphometry and biomechanics using a rat model. 4-week old rats (n = 30) were divided into control, sham, LI, MI, and HI groups. The impact was applied on the right tibiae, 5 days/week for 8 weeks mimicking walking (450 µε), uphill running (850 µε) and jumping (1250 µε) conditions. Trabecular and cortical parameters were determined by micro-CT, bone growth rate by calcein labeling and toluidine blue staining followed by histomorphometry. Bio-mechanical properties were evaluated from bending tests. HI group reduced rat body weight and food consumption compared to shams. Bone growth rate also decreased in MI and HI groups despite developing thicker hypertrophic and proliferative zone heights. HI group showed significant increment in bone mineral density, trabecular thickness, cortical and total surface area. Ultimate load and stiffness were also increased in MI and HI groups. We conclude that impact loading during adolescence reduces bone growth moderately but improves bone quality and biomechanics at the end of the growing period.
Collapse
|
15
|
McCabe LR, Irwin R, Tekalur A, Evans C, Schepper JD, Parameswaran N, Ciancio M. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone 2019; 118:20-31. [PMID: 29604350 PMCID: PMC6163087 DOI: 10.1016/j.bone.2018.03.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
Abstract
High fat diets can have detrimental effects on the skeleton as well as cause intestinal dysbiosis. Exercise prevents high fat (HF) diet-induced obesity and also improves bone density and prevents the intestinal dysbiosis that promotes energy storage. Previous studies indicate a link between intestinal microbial balance and bone health. Therefore, we examined whether exercise could prevent HF-induced bone pathology in male mice and determined whether benefits correlate to changes in host intestinal microbiota. Male C57Bl/6 mice were fed either a low fat diet (LF; 10 kcal% fat) or a HF diet (60 kcal% fat) and put under sedentary or voluntary exercise conditions for 14 weeks. Our results indicated that HF diet reduced trabecular bone volume, when corrected for differences in body weight, of both the tibia (40% reduction) and vertebrae (25% reduction) as well and increased marrow adiposity (44% increase). More importantly, these effects were prevented by exercise. Exercise also had a significant effect on several cortical bone parameters and enhanced bone mechanical properties in LF but not HF fed mice. Microbiome analyses indicated that exercise altered the HF induced changes in microbial composition by reducing the Firmicutes/Bacteriodetes ratio. This ratio negatively correlated with bone volume as did levels of Clostridia and Lachnospiraceae. In contrast, the abundance of several Actinobacteria phylum members (i.e., Bifidobacteriaceae) were positively correlated with bone volume. Taken together, exercise can prevent many of the negative effects of a high fat diet on male skeletal health. Exercise induced changes in microbiota composition could represent a novel mechanism that contributes to exercise induced benefits to bone health.
Collapse
Affiliation(s)
- Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, United States; Department of Radiology, Michigan State University, East Lansing, MI, United States; Biomedical Imaging Research Center, Michigan State University, East Lansing, MI, United States.
| | - Regina Irwin
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Arjun Tekalur
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Christian Evans
- Physical Therapy Program, Midwestern University, Downers Grove, IL, United States
| | - Jonathan D Schepper
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | | | - Mae Ciancio
- Biomedical Sciences Program, Midwestern University, Downers Grove, IL, United States.
| |
Collapse
|
16
|
de Jesus Gomes G, Carlo RJD, da Silva MF, da Cunha DNQ, da Silva E, da Silva KA, Carneiro-Junior MA, Prímola-Gomes TN, Natali AJ. Swimming training potentiates the recovery of femoral neck strength in young diabetic rats under insulin therapy. Clinics (Sao Paulo) 2019; 74:e829. [PMID: 31038563 PMCID: PMC6474315 DOI: 10.6061/clinics/2019/e829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/09/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To test whether swimming training benefits femoral neck strength in young diabetic rats under insulin therapy. METHODS A total of 60 male Wistar rats (age: 40 days) were divided equally into the following six groups: control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary plus insulin and diabetic exercise plus insulin. Diabetes was induced with a unique intraperitoneal injection (60 mg/kg body weight) of streptozotocin. Seven days after the injection and after 12 hours of fasting, the animals with blood glucose levels ≥300 mg/dL were considered diabetic. Seven days after the induction of diabetes, the animals in the exercise groups were subjected to progressive swimming training (final week: 90 min/day; 5 days/week; 5% load) for eight weeks. The animals in the insulin groups received a daily dose of insulin (2-4 U/day) for the same period. RESULTS Severe streptozotocin-induced diabetes reduced the structural properties of the femoral neck (trabecular bone volume, trabecular thickness and collagen fiber content). The femoral neck mechanical properties (maximum load and tenacity) were also impaired in the diabetic rats. Insulin therapy partially reversed the damage induced by diabetes on the structural properties of the bone and mitigated the reductions in the mechanical properties of the bone. The combination of therapies further increased the femoral neck trabecular bone volume (∼30%), trabecular thickness (∼24%), collagen type I (∼19%) and type III (∼13%) fiber contents, maximum load (∼25%) and tenacity (∼14%). CONCLUSIONS Eight weeks of swimming training potentiates the recovery of femoral neck strength in young rats with severe streptozotocin-induced diabetes under insulin therapy.
Collapse
Affiliation(s)
- Gilton de Jesus Gomes
- Departamento de Educacao Fisica, Universidade Federal de Vicosa, Vicosa, MG, BR
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, BR
| | | | | | | | - Edson da Silva
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, BR
| | - Karina Ana da Silva
- Departamento de Educacao Fisica, Universidade Federal de Vicosa, Vicosa, MG, BR
| | | | | | - Antônio José Natali
- Departamento de Educacao Fisica, Universidade Federal de Vicosa, Vicosa, MG, BR
- Corresponding author. E-mail:
| |
Collapse
|
17
|
Picke AK, Sylow L, Møller LLV, Kjøbsted R, Schmidt FN, Steejn MW, Salbach-Hirsch J, Hofbauer C, Blüher M, Saalbach A, Busse B, Rauner M, Hofbauer LC. Differential effects of high-fat diet and exercise training on bone and energy metabolism. Bone 2018; 116:120-134. [PMID: 30036679 DOI: 10.1016/j.bone.2018.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/25/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022]
Abstract
Bone microarchitecture and strength are impaired by obesity and physical inactivity, but the underlying molecular regulation of bone metabolism in response to these factors is not well understood. Therefore, we analyzed bone and energy metabolism in male mice fed a high-fat or standard chow diet for 12 weeks with or without free access to running wheels. High-fat diet (HFD) mimicked the human condition of obesity and insulin resistance, including symptoms such as elevated serum glucose and insulin levels and reduced insulin-stimulated glucose uptake into muscle and adipose tissue. Interestingly, HFD also decreased (-44%) glucose uptake into bone marrow. Bone mass was reduced (-45%) by HFD due to a diminished (-45%) bone remodeling rate. Bone matrix quality aspects, such as biomechanical stability, were additionally decreased. Concurrently, the bone marrow adiposity increased (+63%) in response to a HFD. Further, we detected elevated expression of the Wnt signaling inhibitor dickkopf-1 (Dkk-1, +42%) in mice fed a HFD, but this was not reflected in serum samples obtained from obese humans. In mice, exercise attenuated the adverse effects of HFD by reversing the glucose uptake into bone marrow, improving the bone mass and bone matrix quality while decreasing the bone marrow adiposity. This data shows that exercise prevents some, but not all of the negative effects of HFD on bone health and suggests that insulin signaling in bone marrow and Dkk-1 signaling may be involved in the pathogenesis of bone loss induced by HFD.
Collapse
Affiliation(s)
- Ann-Kristin Picke
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Lisbeth L V Møller
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Mikkel Wermer Steejn
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Christine Hofbauer
- University Center of Orthopedics and Traumatology, Technische Universität Dresden, Germany
| | | | - Anja Saalbach
- Department of Dermatology, Venerology and Allergology of Medical Faculty of Leipzig University, Leipzig, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany.
| |
Collapse
|
18
|
Jang Y, Lee B, Kim EK, Shim WS, Yang YD, Kim SM. Involuntary swimming exercise in pregnant rats disturbs ERK1/2 signaling in embryonic neurons through increased cortisol in the amniotic fluid. Biochem Biophys Res Commun 2018; 495:1208-1213. [DOI: 10.1016/j.bbrc.2017.11.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022]
|