1
|
Mendes S, Gonçalves MCP, Aiex VAP, Batista RD, Zorzete P, Leite LCC, Gonçalves VM. Comparison Between Simple Batch and Fed-Batch Bioreactor Cultivation of Recombinant BCG. Pharmaceutics 2024; 16:1433. [PMID: 39598556 PMCID: PMC11597571 DOI: 10.3390/pharmaceutics16111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Tuberculosis continues to be a significant global health concern, causing 1.3 million deaths in 2022, particularly affecting children under 5 years old. The Bacillus Calmette-Guérin (BCG) vaccine, developed in 1921, remains the primary defense against tuberculosis but requires modernized production methods. The recombinant BCG-pertussis strain shows potential in providing dual protection against tuberculosis and whooping cough, especially for vulnerable newborns, and enhanced efficacy against bladder cancer. Implementing submerged cultivation techniques for rBCG-pertussis production can offer increased productivity and standardization. Methods: This study explores a fed-batch cultivation strategy with pH-stat control to feed L-glutamic acid through the acid pump into 1 L bioreactor. Three pH values were evaluated for fed-batch and a simple batch without pH control was done for comparison. The viable cell concentration was compared before and after freeze-drying samples harvested during the cultures. Results: L-glutamic acid was identified as the preferred substrate for rBCG-pertussis. While the fed-batch strategy did not enhance the maximum specific growth rate compared to simple batch cultivation, it did improve the specific growth rate after day 4 in the pH 7.4-controlled fed-batch cultures, thereby reducing the cultivation time. Fed-batch cultures controlled at three pH levels exhibited lower optical density than the simple batch, although the viable cell counts were similar. Notably, samples harvested after day 8 from the simple batch cultures showed a reduction in CFU/mL after freeze-drying, whereas all fed-batch samples exhibited high recovery of viable cell counts post lyophilization. Conclusions: The additional glutamate supplied to the fed-batch cultures may have protected the cells during the lyophilization process.
Collapse
Affiliation(s)
- Sarah Mendes
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
- Interunits Graduate Program in Biotechnology (PPIB), University of São Paulo, São Paulo 05508-220, Brazil
| | - Maria C. P. Gonçalves
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| | - Vitoria A. P. Aiex
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| | - Ryhára D. Batista
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
- Interunits Graduate Program in Biotechnology (PPIB), University of São Paulo, São Paulo 05508-220, Brazil
| | - Patrícia Zorzete
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| | - Luciana C. C. Leite
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| | - Viviane M. Gonçalves
- Instituto Butantan, São Paulo 05503-900, Brazil; (S.M.); (M.C.P.G.); (V.A.P.A.); (P.Z.); (L.C.C.L.)
| |
Collapse
|
2
|
Narayan VM, Meeks JJ, Jakobsen JS, Shore ND, Sant GR, Konety BR. Mechanism of action of nadofaragene firadenovec-vncg. Front Oncol 2024; 14:1359725. [PMID: 38559556 PMCID: PMC10979480 DOI: 10.3389/fonc.2024.1359725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
Effective bladder-preserving therapeutic options are needed for patients with bacillus Calmette-Guérin unresponsive non-muscle-invasive bladder cancer. Nadofaragene firadenovec-vncg (Adstiladrin®) was approved by the US Food and Drug Administration as the first gene therapy in urology and the first intravesical gene therapy indicated for the treatment of adult patients with high-risk bacillus Calmette-Guérin-unresponsive non-muscle-invasive bladder cancer with carcinoma in situ with or without papillary tumors. The proposed mechanism of action underlying nadofaragene firadenovec efficacy is likely due to the pleiotropic nature of interferon-α and its direct and indirect antitumor activities. Direct activities include cell death and the mediation of an antiangiogenic effect, and indirect activities are those initiated through immunomodulation of the innate and adaptive immune responses. The sustained expression of interferon-α that results from this treatment modality contributes to a durable response. This review provides insight into potential mechanisms of action underlying nadofaragene firadenovec efficacy.
Collapse
Affiliation(s)
| | - Joshua J. Meeks
- Department of Urology, Northwestern University, Chicago, IL, United States
| | - Jørn S. Jakobsen
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Neal D. Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, United States
| | - Grannum R. Sant
- Department of Urology, Tufts University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
3
|
Salman FG, Kankaya D, Özakıncı H, Şahin Y, Kubilay E, Süer E, Hayme S, Baltacı S. Role of PD-1/PD-L1-mediated tumour immune escape mechanism and microsatellite instability in the BCG failure of high-grade urothelial carcinomas. Turk J Med Sci 2022; 52:1802-1813. [PMID: 36945968 PMCID: PMC10390201 DOI: 10.55730/1300-0144.5526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Intravesical BCG treatment fails inexplicably in 30%-45% of patients for high-grade nonmuscle-invasive bladder cancer (NMIBC). We aimed to investigate the role of PD-1/PD-L1 interaction on BCG failure of high-grade NMIBC and to identify biomarkers for predicting BCG responsive cases. METHODS Thirty BCG responsive and 29 nonresponsive NMIBCs were included in the study. Expressions of PDL1(SP-263), MSH2, MSH6, PMS2, and MLH1 were evaluated on pre- and post-BCG transurethral resection (TUR-B) specimens by immunohistochemistry. PD-L1(SP-263) expression was categorised as negative/low, high. DNA mismatch repair protein (MMR) expressions were classified as "reduced" if ≤30% of nuclei stained, "preserved" if >30% of nuclei stained. Microsatellite instability (MSI) testing was performed by PCR using five mononucleotide markers. RESULTS Reduced DNA MMR protein expression was found to be significantly higher in the pretreatment biopsies of BCG-responsive group than the BCG nonresponsive tumour group (p = 0.022). PD-L1 expression did not show any significant difference between the pre- and posttreatment TUR-B specimens of the BCG nonresponsive tumour group or between the pretreatment TUR-B specimens of BCG nonresponsive and the BCG responsive groups (p = 0.508, p = 0.708, respectively). DISCUSSION Immune escape of tumour cells by PD-1/PD-L1 interaction does not seem to have any role in BCG failure of NMIBCs. Reduced MMR expression may help to determine cases that will respond well to BCG therapy. A better antitumour activity of BCG in NMIBCs with reduced MMR expression may be related to the ongoing accumulation of cancer neoantigens in correlation with increased tumour mutation load as a result of DNA repair defects.
Collapse
Affiliation(s)
- Fadime Gül Salman
- Department of Pathology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Duygu Kankaya
- Department of Pathology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Hilal Özakıncı
- Department of Pathology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yasemin Şahin
- Department of Pathology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Eralp Kubilay
- Department of Urology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Evren Süer
- Department of Urology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Serhat Hayme
- Department of Biostatistics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sümer Baltacı
- Department of Urology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Shih KW, Chen WC, Chang CH, Tai TE, Wu JC, Huang AC, Liu MC. Non-Muscular Invasive Bladder Cancer: Re-envisioning Therapeutic Journey from Traditional to Regenerative Interventions. Aging Dis 2021; 12:868-885. [PMID: 34094648 PMCID: PMC8139208 DOI: 10.14336/ad.2020.1109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Non-muscular invasive bladder cancer (NMIBC) is one of the most common cancer and major cause of economical and health burden in developed countries. Progression of NMIBC has been characterized as low-grade (Ta) and high grade (carcinoma in situ and T1). The current surgical intervention for NMIBC includes transurethral resection of bladder tumor; however, its recurrence still remains a challenge. The BCG-based immunotherapy is much effective against low-grade NMIBC. BCG increases the influx of T cells at bladder cancer site and inhibits proliferation of bladder cancer cells. The chemotherapy is another traditional approach to address NMIBC by supplementing BCG. Notwithstanding, these current therapeutic measures possess limited efficacy in controlling NMIBC, and do not provide comprehensive long-term relief. Hence, biomaterials and scaffolds seem an effective medium to deliver therapeutic agents for restructuring bladder post-treatment. The regenerative therapies such as stem cells and PRP have also been explored for possible solution to NMIBC. Based on above-mentioned approaches, we have comprehensively analyzed therapeutic journey from traditional to regenerative interventions for the treatment of NMIBC.
Collapse
Affiliation(s)
- Kuan-Wei Shih
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Wei-Chieh Chen
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,2Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hsin Chang
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,4Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11031, Taiwan
| | - Ting-En Tai
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jeng-Cheng Wu
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,5Department of Education, Taipei Medical University Hospital, Taipei 11031, Taiwan.,6Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Andy C Huang
- 8Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei,11221, Taiwan.,9Department of Urology, Department of Surgery, Taipei City Hospital Ren-Ai Branch, Taipei 10629, Taiwan
| | - Ming-Che Liu
- 1Department of Urology, Taipei Medical University Hospital, Taipei 11031, Taiwan.,2Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,3TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan.,7Clinical Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.,10School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Rius-Rocabert S, Llinares Pinel F, Pozuelo MJ, García A, Nistal-Villan E. Oncolytic bacteria: past, present and future. FEMS Microbiol Lett 2020; 366:5521890. [PMID: 31226708 DOI: 10.1093/femsle/fnz136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
More than a century ago, independent groups raised the possibility of using bacteria to selectively infect tumours. Such treatment induces an immune reaction that can cause tumour rejection and protect the patient against further recurrences. One of the first holistic approximations to use bacteria in cancer treatment was performed by William Coley, considered the father of immune-therapy, at the end of XIX century. Since then, many groups have used different bacteria to test their antitumour activity in animal models and patients. The basis for this reactivity implies that innate immune responses activated upon bacteria recognition, also react against the tumour. Different publications have addressed several aspects of oncolytic bacteria. In the present review, we will focus on revisiting the historical aspects using bacteria as oncolytic agents and how they led to the current clinical trials. In addition, we address the molecules present in oncolytic bacteria that induce specific toxic effects against the tumors as well as the activation of host immune responses in order to trigger antitumour immunity. Finally, we discuss future perspectives that could be considered in the different fields implicated in the implementation of this kind of therapy in order to improve the current use of bacteria as oncolytic agents.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Francisco Llinares Pinel
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Maria Jose Pozuelo
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Faculty of Pharmacy, San Pablo-CEU University, Boadilla del Monte, E-28668 Madrid, Spain
| | - Estanislao Nistal-Villan
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| |
Collapse
|
6
|
Amin HAA, Kobaisi MH, Samir RM. Schistosomiasis and Bladder Cancer in Egypt: Truths and Myths. Open Access Maced J Med Sci 2019; 7:4023-4029. [PMID: 32165946 PMCID: PMC7061397 DOI: 10.3889/oamjms.2019.857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The gathered archeopathological evidence has confirmed that Schistosomiasis has been endemic in Ancient Egypt for over 500 decades. The association between Schistosoma hematobium and increase bladder cancer risk is also well acknowledged. However, over the years, there is a proved changing pattern of bladder cancer that needs to be investigated. AIM We aim to discuss the truths and myths about bladder cancer and its association with Schistosomiasis in Egypt. METHODS A cross-sectional, case-control study was performed to collect recent data on the topic. RESULTS Of the reported cancer cases, 79.3% were transitional cell carcinoma (TCC), an additional 6% showed associated squamous features. Squamous cell carcinoma (SCC) constituted only 13.8% of cancer cases. Schistosomiasis was histologically confirmed in 19 cancer cases, only one was SCC. The relative frequency of TCC is increasing, while SCC is decreasing. There is no evidence that this pattern is related to smoking or environmental factors, as the incidence of lung cancer, is not proportionately increasing. CONCLUSION The old concept that Schistosomiasis is associated with SCC should be revaluated as most cases are associated with TCC. Relying on the histopathology for confirmation of Schistosomiasis in our research studies appears to be non-accurate and leads to irrelevant results.
Collapse
|
7
|
Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. PLoS One 2019; 14:e0223689. [PMID: 31639124 PMCID: PMC6804961 DOI: 10.1371/journal.pone.0223689] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/25/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose Two-dimensional (2D) cell culture is a valuable method for cell-based research but can provide unpredictable, misleading data about in vivo responses. In this study, we created a three-dimensional (3D) cell culture environment to mimic tumor characteristics and cell-cell interactions to better characterize the tumor formation response to chemotherapy. Materials and methods We fabricated the 3D cell culture samples using a 3D cell bio printer and the bladder cancer cell line 5637. T24 cells were used for 2D cell culture. Then, rapamycin and Bacillus Calmette-Guérin (BCG) were used to examine their cancer inhibition effects using the two bladder cancer cell lines. Cell-cell interaction was measured by measuring e-cadherin and n-cadherin secreted via the epithelial-mesenchymal transition (EMT). Results We constructed a 3D cell scaffold using gelatin methacryloyl (GelMA) and compared cell survival in 3D and 2D cell cultures. 3D cell cultures showed higher cancer cell proliferation rates than 2D cell cultures, and the 3D cell culture environment showed higher cell-to-cell interactions through the secretion of E-cadherin and N-cadherin. Assessment of the effects of drugs for bladder cancer such as rapamycin and BCG showed that the effect in the 2D cell culture environment was more exaggerated than that in the 3D cell culture environment. Conclusions We fabricated 3D scaffolds with bladder cancer cells using a 3D bio printer, and the 3D scaffolds were similar to bladder cancer tissue. This technique can be used to create a cancer cell-like environment for a drug screening platform.
Collapse
|
8
|
Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol 2019; 103:7903-7916. [PMID: 31402426 DOI: 10.1007/s00253-019-10057-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonnemann Bender
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Rodriguez D, Goulart C, Pagliarone AC, Silva EP, Cunegundes PS, Nascimento IP, Borra RC, Dias WO, Tagliabue A, Boraschi D, Leite LCC. In vitro Evidence of Human Immune Responsiveness Shows the Improved Potential of a Recombinant BCG Strain for Bladder Cancer Treatment. Front Immunol 2019; 10:1460. [PMID: 31297119 PMCID: PMC6607967 DOI: 10.3389/fimmu.2019.01460] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
The live attenuated mycobacterial strain BCG, in use as vaccine against tuberculosis, is considered the gold standard for primary therapy of carcinoma in situ of the bladder. Despite its limitations, to date it has not been surpassed by any other treatment. Our group has developed a recombinant BCG strain expressing the detoxified S1 pertussis toxin (rBCG-S1PT) that proved more effective than wild type BCG (WT-BCG) in increasing survival time in an experimental mouse model of bladder cancer, due to the well-known adjuvant properties of pertussis toxin. Here, we investigated the capacity of rBCG-S1PT to stimulate human immune responses, in comparison to WT-BCG, using an in vitro stimulation assay based on human whole blood cells that allows for a comprehensive evaluation of leukocyte activation. Blood leukocytes stimulated with rBCG-S1PT produced increased levels of IL-6, IL-8, and IL-10 as compared to WT-BCG, but comparable levels of IL-1β, IL-2, IFN-γ, and TNF-α. Stimulation of blood cells with the recombinant BCG strain also enhanced the expression of CD25 and CD69 on human CD4+ T cells. PBMC stimulated with rBCG-S1PT induced higher cytotoxicity to MB49 bladder cancer cells than WT-BCG-stimulated PBMC. These results suggest that the rBCG-S1PT strain is able to activate an immune response in human leukocytes that is higher than that induced by WT-BCG for parameters linked to better prognosis in bladder cancer (regulation of immune and early inflammatory responses), while fully comparable to WT-BCG for classical inflammatory parameters. This establishes rBCG-S1PT as a new highly effective candidate as immunotherapeutic agent against bladder cancer.
Collapse
Affiliation(s)
- Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Cibelly Goulart
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Ana C. Pagliarone
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Eliane P. Silva
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia USP-I.Butantan-IPT, São Paulo, Brazil
| | - Priscila S. Cunegundes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia USP-I.Butantan-IPT, São Paulo, Brazil
| | - Ivan P. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Ricardo C. Borra
- Laboratório de Imunologia Aplicada, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Waldely O. Dias
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Aldo Tagliabue
- Institute of Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
10
|
Su H, Jiang H, Tao T, Kang X, Zhang X, Kang D, Li S, Li C, Wang H, Yang Z, Zhang J, Li C. Hope and challenge: Precision medicine in bladder cancer. Cancer Med 2019; 8:1806-1816. [PMID: 30907072 PMCID: PMC6488142 DOI: 10.1002/cam4.1979] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is a complex disease and could be classified into nonmuscle‐invasive BC (NMIBC) or muscle‐invasive BC (MIBC) subtypes according to the distinct genetic background and clinical prognosis. Until now, the golden standard and confirmed diagnosis of BC is cystoscopy and the major problems of BC are the high rate of recurrence and high costs in the clinic. Recent molecular and genetic studies have provided perspectives on the novel biomarkers and potential therapeutic targets of BC. In this article, we provided an overview of the traditional diagnostic approaches of BC, and introduced some new imaging, endoscopic, and immunological diagnostic technology in the accurate diagnosis of BC. Meanwhile, the minimally invasive precision treatment technique, immunotherapy, chemotherapy, gene therapy, and targeted therapy of BC were also included. Here, we will overview the diagnosis and therapy methods of BC used in clinical practice, focusing on their specificity, efficiency, and safety. On the basis of the discussion of the benefits of precision medicine in BC, we will also discuss the challenges and limitations facing the non‐invasive methods of diagnosis and precision therapy of BC. The molecularly targeted and immunotherapeutic approaches, and gene therapy methods to BC treatment improved the prognosis and overall survival of BC patients.
Collapse
Affiliation(s)
- Hongwei Su
- Department of Urology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Haitao Jiang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, China
| | - Tao Tao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Xing Kang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Danyue Kang
- Michigan State University, East Lansing, Michigan
| | - Shucheng Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengxi Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Haifeng Wang
- Department of Urology, The Second Affliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jinku Zhang
- Department of pathology, First Central Hospital of Baoding, Baoding, Hebei, China
| | - Chong Li
- Department of Urology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.,Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Beijing Jianlan Institute of Medicine, Beijing, China
| |
Collapse
|
11
|
Golla V, Lenis AT, Faiena I, Chamie K. Intravesical Therapy for Non-muscle Invasive Bladder Cancer-Current and Future Options in the Age of Bacillus Calmette-Guerin Shortage. Rev Urol 2019; 21:145-153. [PMID: 32071562 PMCID: PMC7020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-muscle invasive bladder cancer (NMIBC) is a common and burdensome malignancy. A substantial proportion of patients with intermediate- and high-risk disease will progress to invasive bladder cancer and are at a significant risk for metastasis and death. Bacillus Calmette-Guerin (BCG) therapy for selected cases has been the standard of care for nearly 40 years. Unfortunately, a world-wide shortage has made BCG challenging to obtain. Furthermore, recurrences and progressions do occur. With the US Food and Drug Administration creating a clear path to drug approval for novel treatments, many therapies have been tested, including intravesical cytotoxic chemotherapy, intravesical immunotherapy, systemic immunotherapy, and novel agents, such as gene therapy and targeted therapy. In this review, we highlight ongoing clinical trials.
Collapse
Affiliation(s)
- Vishnukamal Golla
- Department of Urology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Andrew T Lenis
- Department of Urology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Izak Faiena
- Department of Urology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Karim Chamie
- Department of Urology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
12
|
Rayn KN, Hale GR, Grave GPL, Agarwal PK. New therapies in nonmuscle invasive bladder cancer treatment. Indian J Urol 2018; 34:11-19. [PMID: 29343907 PMCID: PMC5769243 DOI: 10.4103/iju.iju_296_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction: Nonmuscle invasive bladder cancer (NMIBC) remains a very challenging disease to treat with high rates of recurrence and progression associated with current therapies. Recent technological and biological advances have led to the development of novel agents in NMIBC therapy. Methods: We reviewed existing literature as well as currently active and recently completed clinical trials in NMIBC by querying PubMed.gov and clinicaltrials.gov. Results: A wide variety of new therapies in NMIBC treatment are currently being developed, utilizing recent developments in the understanding of immune therapies and cancer biology. Conclusion: The ongoing efforts to develop new therapeutic approaches for NMIBC look very promising and are continuing to evolve.
Collapse
Affiliation(s)
- Kareem N Rayn
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Graham R Hale
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|