1
|
Yang H, Gao J, Wang HY, Ma XM, Liu BY, Song QZ, Cheng H, Li S, Long ZY, Lu XM, Wang YT. The effects and possible mechanisms of whole-body vibration on cognitive function: A narrative review. Brain Res 2024; 1850:149392. [PMID: 39662790 DOI: 10.1016/j.brainres.2024.149392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Whole-body vibration (WBV) is a physical stimulation method that transmits mechanical oscillations to the entire body through a vibration platform or device. Biokinetic and epidemiologic studies have shown that prolonged exposure to high-intensity WBV increases health risks, primarily to the lumbar spine and the nervous system connected to it. There is currently insufficient evidence to demonstrate a quantitative relationship between vibration exposure and risk of health effects. The positive effects of WBV on increasing muscle strength and improving balance and flexibility are well known, but its effects on cognitive function are more complex, with mixed findings, largely related to vibration conditions, including frequency, amplitude, and duration. Studies have shown that short-term low-frequency WBV may have a positive impact on cognitive function, demonstrates potential rehabilitation benefits in enhancing learning and memory, possibly by promoting neuromuscular coordination and enhancing neural plasticity. However, long term exposure to vibration may lead to chronic stress in nerve tissue, affecting nerve conduction efficiency and potentially interfering with neuroprotective mechanisms, thereby having a negative impact on cognitive ability, even causes symptoms such as cognitive decline, mental fatigue, decreased attention, and drowsiness. This literature review aimed to explore the effects of WBV on cognitive function and further to analyze the possible mechanisms. Based on the analysis of literatures, we came to the conclusion that the impact of WBV on cognitive function depends mainly on the frequency and duration of vibration, short-term low-frequency WBV may have a positive impact on cognitive function, while long term exposure to WBV may lead to cognitive decline, and the mechanisms may be involved in neuroinflammation, oxidative stress, synaptic plasticity, and neurotransmitter changes. This review may provide some theoretical foundations and guidance for the prevention and treatment of WBV induced cognitive impairment.
Collapse
Affiliation(s)
- Huan Yang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Gao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xin-Mei Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Bing-Yao Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qian-Zhong Song
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hui Cheng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
2
|
Hamer S, Ćurčić-Blake B, van der Zee EA, van Heuvelen MJG. The acute effects of whole-body vibration exercise on cortical activation in young adults: An fNIRS study. Behav Brain Res 2024; 480:115381. [PMID: 39644997 DOI: 10.1016/j.bbr.2024.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Whole-body vibration (WBV) training has emerged as an alternative exercise modality for individuals unable to participate in regular physical activity. While previous studies demonstrated positive effects of WBV on physical outcomes, its impact on cognition remains relatively unexplored, despite studies suggesting cognitive benefits. This study aims to investigate the cortical activation patterns in the primary somatosensory cortex (S1) and dorsolateral prefrontal cortex (DLPFC) during WBV and a subsequent cognitive task. METHODS Oxygenated hemoglobin (HbO2) levels in the brain were measured using functional near-infrared spectroscopy (fNIRS). Cognitive functioning was assessed using the Stroop Color-Word Interference (CWIT) and Color-Block test (CBT). Twenty-four participants (21.50 ± 1.59 years, 11 female) were randomly assigned to one of twelve balanced orders, involving different frequencies (24 Hz, 12 Hz, control) and postures (sitting or standing) on a side-alternating vibration plate. RESULTS HbO2 levels were lower at 12 and 24 Hz versus control, most prominently in the left DLPFC. During the CWIT, HbO2 levels tended to be higher after WBV versus control. CWIT performance significantly improved after WBV versus control at 12 Hz in sitting posture, and at 12 and 24 Hz in standing posture. CONCLUSION Our results point towards decreased cortical activation during WBV, especially in the left DLPFC, but beneficial effects as a consequence of WBV expressed in increased activation during the CWIT and improved cognitive performance, indicating cognitive readiness. These results underscore the potential efficacy of WBV as a cognitive-enhancing therapy. Replicating these findings in older adults would enhance the study's generalizability and practical implications.
Collapse
Affiliation(s)
- Sanne Hamer
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands.
| | - Branislava Ćurčić-Blake
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, A. Deusinglaan 2, Groningen 9713 AW, the Netherlands.
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands.
| |
Collapse
|
3
|
Oroszi T, Huiting W, Keijser JN, Nyakas C, van Heuvelen MJG, van der Zee EA. Whole-Body Vibration Affects Hippocampal Choline Acetyltransferase and Synaptophysin Expression and Improves Spatial Memory in Young Adult Mice. J Integr Neurosci 2024; 23:173. [PMID: 39344235 DOI: 10.31083/j.jin2309173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 07/02/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Beneficial effects of whole-body vibration (WBV) on brain and musculoskeletal health in mice have been demonstrated, but underlying mechanisms remain relatively unrevealed. WBV improves attention and memory performance in mice, putatively through stimulation of the cholinergic system. Here, we investigated the effects of WBV on the septo-hippocampal cholinergic system. METHODS Young C57BL/6 mice (8 weeks old) were subjected to 10 min WBV/day (mechanical vibration: 30 Hz; ~0.1-μm peak-to-peak displacement), 5X/week for 5 weeks. In Experiment 1, choline acetyltransferase (ChAT)-immunoreactivity in the septum and hippocampus was analyzed either 2 or 24 h after the last WBV session. Pseudo-WBV-treated mice (same handling procedure as WBV, but no vibrations) served as controls. In Experiment 2, the longitudinal profile of ChAT-immunoreactivity was analyzed in the hippocampus after 1, 2, 3, 4, or 5 weeks of WBV. In addition, synaptophysin immunostaining was performed at either 2 and 5 weeks of WBV. Mice housed 1/cage during the entire experiment served as controls. The balance-beam test was used to monitor the functional impact of WBV. In Experiment 3, a Y-maze reference-memory test was performed after 5 weeks of WBV to obtain a functional cognitive outcome measure of WBV. Pseudo-WBV treated mice served as controls. RESULTS In Experiment 1, ChAT-immunoreactivity was significantly enhanced after the last WBV session of the 5-week period. This was found in the septum, Cornu Ammonis 1 (CA1), CA3, and dentate gyrus, and was dependent on layer and time-point (2 or 24 h). Experiment 2 revealed that, ChAT-immunoreactivity was lower after 2 weeks of WBV, whereas it was significantly higher after 5 weeks (similar to in Experiment 1). Immunostaining for synaptophysin, a marker for synaptic density, was also significantly higher after 5 weeks of WBV, but not significantly lower after 2 weeks, as was ChAT. WBV-treated groups performed significantly better than did controls on the balance beam from week 3 onwards. Experiment 3 showed that WBV-treated mice had better spatial-reference memory performance in the Y-maze test than did pseudo-WBV controls. CONCLUSIONS Our results indicate that WBV stimulates the septo-hippocampal cholinergic system in a gradual and dynamic way that may contribute to improved spatial-memory performance. This finding suggests that WBV, by upregulation of the septo-hippocampal cholinergic system, may be considered a valuable therapeutic strategy to enhance brain functions in aging, neurodegenerative, and other brain diseases.
Collapse
Affiliation(s)
- Tamás Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Wouter Huiting
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jan N Keijser
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis University, 1085 Budapest, Hungary
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Ahuja G, Arauz YLA, van Heuvelen MJG, Kortholt A, Oroszi T, van der Zee EA. The effects of whole-body vibration therapy on immune and brain functioning: current insights in the underlying cellular and molecular mechanisms. Front Neurol 2024; 15:1422152. [PMID: 39144715 PMCID: PMC11323691 DOI: 10.3389/fneur.2024.1422152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Whole-body vibration (WBV) therapy is a way of passive exercise in which subjects are exposed to mild and well-controlled mechanical vibrations through a vibrating platform. For a long time, studies have focused on the effects and applications of WBV to enhance musculoskeletal performance in athletes and patients suffering from musculoskeletal disorders. Recent evidence points toward the positive effect of WBV on the brain and its therapeutic potential in brain disorders. Research being done in the field gradually reveals cellular and molecular mechanisms underlying WBV affecting the body and brain. Particularly, the influence of WBV on immune and brain function is a growing field that warrants an up-to-date and integrated review. Immune function is closely intertwined with brain functioning and plays a significant role in various brain disorders. Dysregulation of the immune response is linked to conditions such as neuroinflammation, neurodegenerative diseases, and mood disorders, highlighting the crucial connection between the immune system and the brain. This review aims to explore the impact of WBV on the cellular and molecular pathways involved in immune and brain functions. Understanding the effects of WBV at a cellular and molecular level will aid in optimizing WBV protocols to improve its therapeutic potential for brain disorders.
Collapse
Affiliation(s)
- Gargi Ahuja
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Y. Laurisa Arenales Arauz
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussel, Belgium
| | - Marieke J. G. van Heuvelen
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Tamás Oroszi
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Suk HJ, Buie N, Xu G, Banerjee A, Boyden ES, Tsai LH. Vibrotactile stimulation at gamma frequency mitigates pathology related to neurodegeneration and improves motor function. Front Aging Neurosci 2023; 15:1129510. [PMID: 37273653 PMCID: PMC10233036 DOI: 10.3389/fnagi.2023.1129510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
The risk for neurodegenerative diseases increases with aging, with various pathological conditions and functional deficits accompanying these diseases. We have previously demonstrated that non-invasive visual stimulation using 40 Hz light flicker ameliorated pathology and modified cognitive function in mouse models of neurodegeneration, but whether 40 Hz stimulation using another sensory modality can impact neurodegeneration and motor function has not been studied. Here, we show that whole-body vibrotactile stimulation at 40 Hz leads to increased neural activity in the primary somatosensory cortex (SSp) and primary motor cortex (MOp). In two different mouse models of neurodegeneration, Tau P301S and CK-p25 mice, daily exposure to 40 Hz vibrotactile stimulation across multiple weeks also led to decreased brain pathology in SSp and MOp. Furthermore, both Tau P301S and CK-p25 mice showed improved motor performance after multiple weeks of daily 40 Hz vibrotactile stimulation. Vibrotactile stimulation at 40 Hz may thus be considered as a promising therapeutic strategy for neurodegenerative diseases with motor deficits.
Collapse
Affiliation(s)
- Ho-Jun Suk
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nicole Buie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Guojie Xu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Arit Banerjee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Edward S. Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Media Arts and Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, United States
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Howard Hughes Medical Institute, Cambridge, MA, United States
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
6
|
Oroszi T, Geerts E, Rajadhyaksha R, Nyakas C, van Heuvelen MJG, van der Zee EA. Whole-body vibration ameliorates glial pathological changes in the hippocampus of hAPP transgenic mice, but does not affect plaque load. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:5. [PMID: 36941713 PMCID: PMC10026461 DOI: 10.1186/s12993-023-00208-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the core cause of dementia in elderly populations. One of the main hallmarks of AD is extracellular amyloid beta (Aβ) accumulation (APP-pathology) associated with glial-mediated neuroinflammation. Whole-Body Vibration (WBV) is a passive form of exercise, but its effects on AD pathology are still unknown. METHODS Five months old male J20 mice (n = 26) and their wild type (WT) littermates (n = 24) were used to investigate the effect of WBV on amyloid pathology and the healthy brain. Both J20 and WT mice underwent WBV on a vibration platform or pseudo vibration treatment. The vibration intervention consisted of 2 WBV sessions of 10 min per day, five days per week for five consecutive weeks. After five weeks of WBV, the balance beam test was used to assess motor performance. Brain tissue was collected to quantify Aβ deposition and immunomarkers of astrocytes and microglia. RESULTS J20 mice have a limited number of plaques at this relatively young age. Amyloid plaque load was not affected by WBV. Microglia activation based on IBA1-immunostaining was significantly increased in the J20 animals compared to the WT littermates, whereas CD68 expression was not significantly altered. WBV treatment was effective to ameliorate microglia activation based on morphology in both J20 and WT animals in the Dentate Gyrus, but not so in the other subregions. Furthermore, GFAP expression based on coverage was reduced in J20 pseudo-treated mice compared to the WT littermates and it was significantly reserved in the J20 WBV vs. pseudo-treated animals. Further, only for the WT animals a tendency of improved motor performance was observed in the WBV group compared to the pseudo vibration group. CONCLUSION In accordance with the literature, we detected an early plaque load, reduced GFAP expression and increased microglia activity in J20 mice at the age of ~ 6 months. Our findings indicate that WBV has beneficial effects on the early progression of brain pathology. WBV restored, above all, the morphology of GFAP positive astrocytes to the WT level that could be considered the non-pathological and hence "healthy" level. Next experiments need to be performed to determine whether WBV is also affective in J20 mice of older age or other AD mouse models.
Collapse
Affiliation(s)
- Tamas Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary.
| | - Eva Geerts
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Reuben Rajadhyaksha
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Department of Morphology and Physiology, Health Science Faculty, Semmelweis Univesity, Budapest, Hungary
| | - Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
7
|
Wen J, Leng L, Hu M, Hou X, Huang J. Effects of whole-body vibration training on cognitive function: A systematic review. Front Hum Neurosci 2023; 17:854515. [PMID: 36845880 PMCID: PMC9947405 DOI: 10.3389/fnhum.2023.854515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Background Whole-body vibration (WBV) training is a novel training method that stimulates the human neuromuscular system by the use of vibration, the frequency and amplitude of which are controlled, thereby inducing adaptive changes in the body. WBV training is widely used as a clinical prevention and rehabilitation tool in physical medicine and neuro-rehabilitation as a clinical prevention and rehabilitation tool. Objectives The aim of the present study was to review the effects of WBV on cognitive function, provide an evidence-based foundation for future research on WBV training, and promote additional popularization and use of the methodology in clinical practice. Methods A systematic review of articles extracted from the following six databases was conducted: PubMed, Web of Science, China National Knowledge Infrastructure, Embase, Cochrane, and Scopus. A literature search was performed on articles in which the effects of WBV on cognitive function were evaluated. Results Initially, a total of 340 studies were initially identified, among which 18 articles that satisfied the inclusion criteria were selected for inclusion in the systematic review. Participants were allocated into two groups: patients with cognitive impairment and healthy individuals. The results demonstrated that WBV was both positive and ineffective in its influence on cognitive function. Conclusion The majority of studies suggested that WBV may be a useful strategy for the management of cognitive impairment and should be considered for inclusion in rehabilitation programs. However, the impact of WBV on cognition requires additional, larger, and adequately powered studies. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=376821, identifier CRD42022376821.
Collapse
Affiliation(s)
- Jiayi Wen
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Lu Leng
- School of Foreign Languages, Jinan University, Guangzhou, Guangdong, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Xiaohui Hou
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China,*Correspondence: Junhao Huang,
| |
Collapse
|
8
|
Arenales Arauz YL, van der Zee EA, Kamsma YPT, van Heuvelen MJG. Short-term effects of side-alternating Whole-Body Vibration on cognitive function of young adults. PLoS One 2023; 18:e0280063. [PMID: 36634088 PMCID: PMC9836316 DOI: 10.1371/journal.pone.0280063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Recent research in rodents and humans revealed that Whole-Body Vibration (WBV) is beneficial for cognitive functions. However, the optimal WBV conditions are not established: contrary to vertical WBV, side-alternating WBV was not investigated before. The present study investigated the short-term effects of side-alternating WBV in standing and sitting posture on specific cognitive function of young adults. We used a balanced cross-over design. Sixty healthy young adults (mean age 21.7 ± 2.0 years, 72% female) participated. They were exposed to three bouts of two-minute side-alternating WBV (frequency 27 Hz) and three control conditions in two different sessions. In one session a sitting posture was used and in the other session a standing (semi-squat) posture. After each condition selective attention and inhibition was measured with the incongruent condition of the Stroop Color-Word Interference Test. WBV significantly (p = 0.026) improved selective attention and inhibition in the sitting posture, but not in the standing posture. The sitting posture was perceived as more comfortable, joyous and less exhaustive as compared to the standing posture. This study demonstrated that side-alternating WBV in sitting posture improves selective attention and inhibition in healthy young adults. This indicates that posture moderates the cognitive effect of WBV, although the effects are still small. Future studies should focus on the working mechanisms and further optimization of settings, especially in individuals who are unable to perform active exercise.
Collapse
Affiliation(s)
- Y. Laurisa Arenales Arauz
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Ype P. T. Kamsma
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marieke J. G. van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Tóth K, Oroszi T, Nyakas C, van der Zee EA, Schoemaker RG. Whole-body vibration as a passive alternative to exercise after myocardial damage in middle-aged female rats: Effects on the heart, the brain, and behavior. Front Aging Neurosci 2023; 15:1034474. [PMID: 36960421 PMCID: PMC10028093 DOI: 10.3389/fnagi.2023.1034474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
Background Females with cardiovascular disease seem more vulnerable to develop concomitant mental problems, such as depression and cognitive decline. Although exercise is shown beneficial in cardiovascular disease as well as in mental functions, these patients may be incapable or unmotivated to perform exercise. Whole body vibration (WBV) could provide a passive alternative to exercise. Aim of the present study was to compare WBV to exercise after isoproterenol (ISO)-induced myocardial damage in female rats, regarding effects on heart, brain and behavior. Methods One week after ISO (70 mg/kg s.c., on 2 consecutive days) or saline injections, 12 months old female rats were assigned to WBV (10 minutes daily), treadmill running (30 minutes daily) or pseudo intervention for 5 weeks. During the last 10 days, behavioral tests were performed regarding depressive-like behavior, cognitive function, and motor performance. Rats were sacrificed, brains and hearts were dissected for (immuno)histochemistry. Results Significant ISO-induced cardiac collagen deposition (0.67 ± 0.10 vs 0.18 ± 0.03%) was absent after running (0.45 ± 0.26 vs 0.46 ± 0.08%), but not after WBV (0.83 ± 0.12 vs 0.41 ± 0.05%). However, WBV as well as running significantly reduced hippocampal (CA3) collagen content in ISO-treated rats. Significant regional differences in hippocampal microglia activity and brain derived neurotrophic factor (BDNF) expression were observed. Significant ISO-induced CA1 microglia activation was reduced after WBV as well as running, while opposite effects were observed in the CA3; significant reduction after ISO that was restored by WBV and running. Both WBV and running reversed the ISO-induced increased BDNF expression in the CA1, Dentate gyrus and Hilus, but not in the CA3 area. Whereas running had no significant effect on behavior in the ISO-treated rats, WBV may be associated with short-term spatial memory in the novel location recognition test. Conclusion Although the female rats did not show the anticipated depressive-like behavior or cognitive decline after ISO, our data indicated regional effects on neuroinflammation and BDNF expression in the hippocampus, that were merely normalized by both WBV and exercise. Therefore, apart from the potential concern about the lack of cardiac collagen reduction, WBV may provide a relevant alternative for physical exercise.
Collapse
Affiliation(s)
- Kata Tóth
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Tamás Oroszi
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
- Behavioral Physiology Research Laboratory, Health Science Faculty, Semmelweis University, Budapest, Hungary
| | - Eddy A. van der Zee
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Regien G. Schoemaker
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Regien G. Schoemaker
| |
Collapse
|
10
|
Whole body vibration, an alternative for exercise to improve recovery from surgery? Brain Behav Immun Health 2022; 26:100521. [PMID: 36203743 PMCID: PMC9531049 DOI: 10.1016/j.bbih.2022.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
Although exercise is usually associated with beneficial effects on physical and mental health, patients recovering from surgery may be hampered to perform active exercise. Whole body vibration (WBV) is suggested a passive alternative for physical training. Aim of the present study was to explore the therapeutic potential of WBV compared to physical exercise during early post-surgery recovery. Male three months old Wistar rats underwent major abdominal surgery. Starting the day after surgery, rats were subjected to either daily WBV or exercise (treadmill running) for 15 consecutive days. Control rats underwent pseudo treatment. During the first week after surgery, effects of interventions were obtained from continuous recording of hemodynamic parameters, body temperature and activity (via an implanted transducer). Behavioral tests were performed during the second post-surgical week to evaluate anxiety-like behavior, short and long-term memory functions, cognitive flexibility and motor performance. Animals were sacrificed 15 days after surgery and brain tissue was collected for analysis of hippocampal neuroinflammation and neurogenesis. Surgery significantly impacted all parameters measured during the first post-surgery week, irrespective of the type of surgery. Effect on cognitive performance was limited to cognitive flexibility; both WBV and exercise prevented the surgery-induced decline. Exercise, but not WBV increased anxiety-like behavior and grip strength. WBV as well as exercise prevented the surgery-induced declined neurogenesis, but surgery-associated hippocampal neuroinflammation was not affected. Our results indicated that active exercise and WBV share similar therapeutic potentials in the prevention of surgery induced decline in cognitive flexibility and hippocampal neurogenesis. In contrast to exercise, WBV did not increase anxiety-like behavior. Since neither intervention affected hippocampal neuroinflammation, other mechanisms and/or brain areas may be involved in the behavioral effects. Taken together, we conclude that WBV may provide a relevant alternative to active exercise during the early stage of post-operative recovery. Both whole body vibration (WBV) and running exercise restored the reduced cognitive flexibility caused by surgery. WBV as well as active exercise prevented surgery-induced declined neurogenesis. Active exercise, but not WBV, induced anxiety-like behavior after surgery. Neither WBV nor active exercise affected surgery-induced neuroinflammation. Neither WBV nor active exercise influenced hemodynamic recovery from surgery.
Collapse
|
11
|
Bonanni R, Cariati I, Romagnoli C, D’Arcangelo G, Annino G, Tancredi V. Whole Body Vibration: A Valid Alternative Strategy to Exercise? J Funct Morphol Kinesiol 2022; 7:jfmk7040099. [PMID: 36412761 PMCID: PMC9680512 DOI: 10.3390/jfmk7040099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies agree that mechanical vibration can induce physiological changes at different levels, improving neuromuscular function through postural control strategies, muscle tuning mechanisms and tonic vibration reflexes. Whole-body vibration has also been reported to increase bone mineral density and muscle mass and strength, as well as to relieve pain and modulate proprioceptive function in patients with osteoarthritis or lower back pain. Furthermore, vibratory training was found to be an effective strategy for improving the physical performance of healthy athletes in terms of muscle strength, agility, flexibility, and vertical jump height. Notably, several benefits have also been observed at the brain level, proving to be an important factor in protecting and/or preventing the development of age-related cognitive disorders. Although research in this field is still debated, certain molecular mechanisms responsible for the response to whole-body vibration also appear to be involved in physiological adaptations to exercise, suggesting the possibility of using it as an alternative or reinforcing strategy to canonical training. Understanding these mechanisms is crucial for the development of whole body vibration protocols appropriately designed based on individual needs to optimize these effects. Therefore, we performed a narrative review of the literature, consulting the bibliographic databases MEDLINE and Google Scholar, to i) summarize the most recent scientific evidence on the effects of whole-body vibration and the molecular mechanisms proposed so far to provide a useful state of the art and ii) assess the potential of whole-body vibration as a form of passive training in place of or in association with exercise.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Cristian Romagnoli
- Sport Engineering Lab, Department of Industrial Engineering, “Tor Vergata” University of Rome, Via Politecnico 1, 00133 Rome, Italy
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
12
|
Beneficial effects of whole-body vibration exercise for brain disorders in experimental studies with animal models: a systematic review. Behav Brain Res 2022; 431:113933. [PMID: 35654174 DOI: 10.1016/j.bbr.2022.113933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 12/09/2022]
Abstract
Brain disorders have been a health challenge and is increasing over the years. Early diagnosis and interventions are considered essential strategies to treat patients at risk of brain disease. Physical exercise has shown to be beneficial for patients with brain diseases. A type of exercise intervention known as whole-body vibration (WBV) exercise gained increasing interest. During WBV, mechanical vibrations, produced by a vibrating platform are transmitted, to the body. The purpose of the current review was to summarize the effects of WBV exercise on brain function and behavior in experimental studies with animal models. Searches were performed in EMBASE, PubMed, Scopus and Web of Science including publications from 1960 to July 2021, using the keywords "whole body vibration" AND (animal or mice or mouse or rat or rodent). From 1284 hits, 20 papers were selected. Rats were the main animal model used (75%) followed by mice (20%) and porcine model (5%), 16 studies used males species and 4 females. The risk of bias, accessed with the SYRCLE Risk of Bias tool, indicated that none of the studies fulfilled all methodological criteria, resulting in possible bias. Despite heterogeneity, the results suggest beneficial effects of WBV exercise on brain functioning, mainly related to motor performance, coordination, behavioral control, neuronal plasticity and synapse function. In conclusion, the findings observed in animal studies justifies continued clinical research regarding the effectiveness and potential of WBV for the treatment of various types of brain disorders such as trauma, developmental disorders, neurogenetic diseases and other neurological diseases.
Collapse
|
13
|
Oroszi T, de Boer SF, Nyakas C, Schoemaker RG, van der Zee EA. Chronic whole body vibration ameliorates hippocampal neuroinflammation, anxiety-like behavior, memory functions and motor performance in aged male rats dose dependently. Sci Rep 2022; 12:9020. [PMID: 35637277 PMCID: PMC9151803 DOI: 10.1038/s41598-022-13178-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022] Open
Abstract
AbstractWhole body vibration (WBV) is a form of passive exercise by the stimulation of mechanical vibration platform. WBV has been extensively investigated through clinical studies with main focus on the musculoskeletal system. However, pre-clinical data in the context of behavior, memory and motor functions with aged rodents are limited. The aim of this experiment was to investigate the dose dependent effects of a five weeks long WBV intervention with an aged animal model including anxiety-related behavior, memory and motor functions, as well as markers of (neuro)inflammation. Male Wistar rats (18 months) underwent 5 or 20 min daily vibration exposure or pseudo-treatment (i.e.: being subjected to the same environmental stimuli for 5 or 20 min, but without exposure to vibrations) 5 times per week. After 5 weeks treatment, cognitive functions, anxiety-like behavior and motor performance were evaluated. Finally, brain tissue was collected for immunohistological purposes to evaluate hippocampal (neuro)inflammation. Animals with 20 min daily session of WBV showed a decrease in their anxiety-like behavior and improvement in their spatial memory. Muscle strength in the grip hanging test was only significantly improved by 5 min daily WBV treatments, whereas motor coordination in the balance beam test was not significantly altered. Microglia activation showed a significant decrease in the CA1 and Dentate gyrus subregions by both dose of WBV. In contrast, these effects were less pronounced in the CA3 and Hilus subregions, where only 5 min dose showed a significant effect on microglia activation. Our results indicate, that WBV seems to be a comparable strategy on age-related anxiety, cognitive and motor decline, as well as alleviating age-related (neuro)inflammation.
Collapse
|
14
|
Oroszi T, Geerts E, de Boer SF, Schoemaker RG, van der Zee EA, Nyakas C. Whole Body Vibration Improves Spatial Memory, Anxiety-Like Behavior, and Motor Performance in Aged Male and Female Rats. Front Aging Neurosci 2022; 13:801828. [PMID: 35126091 PMCID: PMC8815031 DOI: 10.3389/fnagi.2021.801828] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Aging is a progressive process leading to functional decline in many domains. Recent studies have shown that physical exercise (PE) has a positive influence on the progression of age-related functional decline, including motor and brain functions. Whole body vibration (WBV) is a form of passive stimulation by mechanical vibration platforms, which offers an alternative for PE interventions, especially for aged individuals. WBV has been demonstrated to mimic the beneficial effects of PE on the musculoskeletal system, as well on the central nervous system. However, preclinical data with aged rodents are very limited. Hence, the purpose of this experiment was to investigate the effects of a 5-week WBV intervention with an aged animal model on memory functions, anxiety-related behavior, and motor performance. The 18-month old male (N = 14) and female (N = 14) Wistar rats were divided into two groups, namely, vibration and pseudo-vibration. Animals underwent a 5-week WBV intervention protocol with low intensity (frequency of 30 Hz and amplitude of 50–200 μm) stimulation. After 5 weeks, the following cognitive and motor tests were administered: open-field, novel and spatial object recognition, grip-hanging, and balance-beam. WBV-treated rats showed a decrease in their anxiety level in the open field test compared with those in the pseudo-treated controls. In addition, WBV-treated male animals showed significantly increased rearing in the open-field test compared to their pseudo controls. Spatial memory was significantly improved by WBV treatment, whereas WBV had no effect on object memory. Regarding motor performance, both grip strength and motor coordination were improved by WBV treatment. Our results indicate that WBV seems to have comparable beneficial effects on age-related emotional, cognitive, and motor decline as what has been reported for active PE. No striking differences were found between the sexes. As such, these findings further support the idea that WBV could be considered as a useful alternative for PE in case active PE cannot be performed due to physical or mental issues.
Collapse
|
15
|
Long-term Effects of Mechanical Vibration Stimulus on the Bone Formation of Wistar Rats: An Assessment Method Based on X-rays Images. Acad Radiol 2021; 28:e240-e245. [PMID: 32624402 DOI: 10.1016/j.acra.2020.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bone is a complex living tissue that adapts itself to the demands of mechanical stimuli such as physical activity and exercise. Whole-body vibration (WBV) is a type of exercise characterized by the transmission of mechanical vibration stimuli produced by a vibrating platform. This study aimed to investigated, in experimental model, the effect of WBV exercise on the bone in different frequencies through X-ray analysis. MATERIALS AND METHODS Wistar rats were divided in three groups: control, exposed to WBV of 10 Hz and exposed to WBV of 20 Hz, during 8-weeks. All procedures to obtain the radiographic images were carried out before and after the experiments. The femur linear size and bone density measurements through radiographic images were performed in all animals. A factor of increase for bone density (FIBD) was determined. RESULTS No differences were observed in the qualitative comparison between the groups, as well as radiographic bone density before the experiment. However, after the experiment the bone density increased in the rats exposed to WBV of 10 Hz and 20 Hz compared to control group. Also, the FIBD was higher in the groups exposed to WBV in comparison with control. CONCLUSION These findings indicate an increase of the bone density dependent of the vibration stimulus frequency. In addition, this increase suggests a possible osteogenic effect to the mechanical vibrations of 10 and 20 Hz.
Collapse
|
16
|
Jalilian H, Gorjizadeh O, Najafi K, Falahati M. Effects of whole body vibration and backrest angle on perceived mental workload and performance. EXCLI JOURNAL 2021; 20:400-411. [PMID: 33746669 PMCID: PMC7975586 DOI: 10.17179/excli2020-2699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/11/2021] [Indexed: 01/10/2023]
Abstract
Mental Workload (MWL) and human performance are widely contributing concepts in human factors. The objective of the current study is to investigate the perceived MWL and human performance during whole-body vibration (WBV) exposure while seated at different backrest angles. Nineteen healthy male participants completed both the NASA-TLX and rating scale mental effort (RSME) after performing two difficulty levels of computerized dual tasks. The participants' performance was measured in these conditions while seated with a backrest angle of 100 and 120 degrees and exposed to WBV (intensity: 0.5 m/s2; frequency 3-20 Hz) for 5 minutes. No significant effect on performance or perceived MWL (p<0.05) was found when changes were made to the backrest angles. Exposure to WBV under two backrest angles increased mental demand (p=0.04), effort (p=0.03) and frustration (p=0.03) and negatively affected human performance (p<0.05). The present study showed that exposure to WBV could be an important variable for designing work environments that require a high level of performance and mental demand while seated. However, the findings exhibited no association between inclining backrest angle and human performance or perceived MWL.
Collapse
Affiliation(s)
- Hamed Jalilian
- Department of Occupational Health Engineering, Research Center for Environmental Pollutants, Faculty of Health, Qom University of Medical Sciences, Qom, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Gorjizadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Najafi
- Student Research Committee, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohsen Falahati
- Department of Occupational Health Engineering, Faculty of Health, Saveh University of Medical Sciences, Saveh, Iran
| |
Collapse
|
17
|
Dincher A, Becker P, Wydra G. Effect of whole-body vibration on freezing and flexibility in Parkinson's disease-a pilot study. Neurol Sci 2020; 42:2795-2801. [PMID: 33159620 PMCID: PMC8275537 DOI: 10.1007/s10072-020-04884-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022]
Abstract
Background Parkinson’s disease is the second most common neurodegenerative disease. Symptoms are treated by medication, physio-, exercise, and occupational therapy. Alternative methods have been used in exercise therapy for a few years now. The effect of whole-body vibration as an alternative training method has been investigated for several symptoms in Parkinson’s disease. Since freezing and flexibility have not yet been investigated, the aim of this study was to evaluate the efficacy of different frequencies of application for these two symptoms. Methods Patients were randomly assigned to a frequency (6, 12, or 18 Hz) or the control group. Before and after the treatment of 5 × 60 s with a rest of 60 s each, the Sit and Reach test (flexibility) and the 360° turn test (freezing) were performed. Results Only the Sit and Reach test showed a significant improvement at 18 Hz (improvement from − 5.75 to − 1.89 cm, F(3,30) = 5.98**). At 360° turn, no significant differences were found. Weak to high effect sizes (standardized mean differences) were determined for the different frequencies, both for the Sit and Reach (from .01 to .64) and for the 360° turn (from − .72 to − 1.25). The highest effect size is observed for 18 Hz and the lowest for 6 Hz. Conclusions Higher frequencies seem to be more effective than lower ones. Freezing, age, and gender also seem to play a role. Therefore, this should be investigated in further studies.
Collapse
Affiliation(s)
- Andrea Dincher
- Sportwissenschaftliches Institut der Universität des Saarlandes, Saarbrücken, Germany
| | - Paula Becker
- Sportwissenschaftliches Institut der Universität des Saarlandes, Saarbrücken, Germany
| | - Georg Wydra
- Sportwissenschaftliches Institut der Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
18
|
Durgut E, Orengul AC, Algun ZC. Comparison of the effects of treadmill and vibration training in children with attention deficit hyperactivity disorder: A randomized controlled trial. NeuroRehabilitation 2020; 47:121-131. [PMID: 32741784 DOI: 10.3233/nre-203040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of this study was to compare the effects of treadmill training (TT) and whole body vibration training (WBVT) on attention, severity of attention deficit hyperactivity disorder (ADHD) symptoms and impairment of executive function behaviors, and quality of life in children with ADHD. METHODS Thirty children (7-11 years of age) with ADHD were randomly assigned to either the 'TT' group or the 'WBVT in addition to TT' group (TT + WBVT). Both groups received TT for 8 weeks (3 days/week). The TT + WBWT group also received WBVT for 15 minutes. Stroop Test TBAG form, Behavior Rating Inventory of Executive Function (BRIEF), Conners' Rating Scale (CRS) and Pediatric Quality of Life Inventory (PedsQL) were applied at baseline and after 8 weeks of training. RESULTS All assessment results significantly improved in both groups at the end of the program compared to baseline values (p < 0,05). There were significant differences between groups regarding improvements in CTRS-R/L and BRIEF-Teacher form in favor of the TT + WBVT group. CONCLUSIONS The findings suggest that exercise training including TT and WBVT might be used in the treatment of ADHD but further research is required to provide evidence of the effectiveness of the whole body vibration training in the management of ADHD.
Collapse
Affiliation(s)
- Elif Durgut
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - A Cahid Orengul
- Department of Child and Adolescent Psychiatry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Z Candan Algun
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
19
|
Oroszi T, van Heuvelen MJ, Nyakas C, van der Zee EA. Vibration detection: its function and recent advances in medical applications. F1000Res 2020; 9:F1000 Faculty Rev-619. [PMID: 32595943 PMCID: PMC7308885 DOI: 10.12688/f1000research.22649.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrations are all around us. We can detect vibrations with sensitive skin mechanoreceptors, but our conscious awareness of the presence of vibrations is often limited. Nevertheless, vibrations play a role in our everyday life. Here, we briefly describe the function of vibration detection and how it can be used for medical applications by way of whole body vibration. Strong vibrations can be harmful, but milder vibrations can be beneficial, although to what extent and how large the clinical relevance is are still controversial. Whole body vibration can be applied via a vibrating platform, used in both animal and human research. Recent findings make clear that the mode of action is twofold: next to the rather well-known exercise (muscle) component, it also has a sensory (skin) component. Notably, the sensory (skin) component stimulating the brain has potential for several purposes including improvements in brain-related disorders. Combining these two components by selecting the optimal settings in whole body vibration has clear potential for medical applications. To realize this, the field needs more standardized and personalized protocols. It should tackle what could be considered the "Big Five" variables of whole body vibration designs: vibration amplitude, vibration frequency, method of application, session duration/frequency, and total intervention duration. Unraveling the underlying mechanisms by translational research can help to determine the optimal settings. Many systematic reviews on whole body vibration end with the conclusion that the findings are promising yet inconclusive. This is mainly because of the large variation in the "Big Five" settings between studies and incomplete reporting of methodological details hindering reproducibility. We are of the opinion that when (part of) these optimal settings are being realized, a much better estimate can be given about the true potential of whole body vibration as a medical application.
Collapse
Affiliation(s)
- Tamás Oroszi
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Marieke J.G. van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Boerema AS, Heesterbeek M, Boersma SA, Schoemaker R, de Vries EFJ, van Heuvelen MJG, Van der Zee EA. Beneficial Effects of Whole Body Vibration on Brain Functions in Mice and Humans. Dose Response 2018; 16:1559325818811756. [PMID: 30574028 PMCID: PMC6299320 DOI: 10.1177/1559325818811756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
The biological consequences of mechanical whole body vibration (WBV) on the brain are not well documented. The aim of the current study was to further investigate the effects of a 5-week WBV intervention on brain functions. Mice (C57Bl/6J males, age 15 weeks) were exposed to 30 Hz WBV sessions (10 minutes per day, 5 days per week, for a period of 5 weeks; n = 10). Controls received the same intervention without the actual vibration (n = 10). Humans (both genders, age ranging from 44-99 years) were also exposed to daily sessions of 30 Hz WBV (4 minutes per day, 4 days per week, for a period of 5 weeks; n = 18). Controls received the same protocol using a 1 Hz protocol (n = 16). Positron emission tomography imaging was performed in the mice, and revealed that glucose uptake was not changed as a consequence of the 5-week WBV intervention. Whole body vibration did, however, improve motor performance and reduced arousal-induced home cage activity. Cognitive tests in humans revealed a selective improvement in the Stroop Color-Word test. Taken together, it is concluded that WBV is a safe intervention to improve brain functioning, although the subtle effects suggest that the protocol is as yet suboptimal.
Collapse
Affiliation(s)
- Ate S. Boerema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Marelle Heesterbeek
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Selma A. Boersma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Regien Schoemaker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marieke J. G. van Heuvelen
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eddy A. Van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
21
|
Téglás T, Dörnyei G, Bretz K, Nyakas C. Whole-body pulsed EMF stimulation improves cognitive and psychomotor activity in senescent rats. Behav Brain Res 2018; 349:163-168. [DOI: 10.1016/j.bbr.2018.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
|