1
|
Samal M, Srivastava V, Khan M, Insaf A, Penumallu NR, Alam A, Parveen B, Ansari SH, Ahmad S. Therapeutic Potential of Polyphenols in Cellular Reversal of Patho-Mechanisms of Alzheimer's Disease Using In Vitro and In Vivo Models: A Comprehensive Review. Phytother Res 2024. [PMID: 39496498 DOI: 10.1002/ptr.8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer's disease (AD) is considered one of the most common neurological conditions associated with memory and cognitive impairment and mainly affects people aged 65 or above. Even with tremendous progress in modern neuroscience, a permanent remedy or cure for this crippling disease is still unattainable. Polyphenols are a group of naturally occurring potent compounds that can modulate the neurodegenerative processes typical of AD. The present comprehensive study has been conducted to find out the preclinical and clinical potential of polyphenols and elucidate their possible mechanisms in managing AD. Additionally, we have reviewed different clinical studies investigating polyphenols as single compounds or cotherapies, including those currently recruiting, completed, terminated, withdrawn, or suspended in AD treatment. Natural polyphenols were systematically screened and identified through electronic databases including Google Scholar, PubMed, and Scopus based on in vitro cell line studies and preclinical data demonstrating their potential for neuroprotection. A total of 63 significant polyphenols were identified. A multimechanistic pathway for polyphenol's mode of action has been proposed in the study. Out of 63, four potent polyphenols have been identified as promising potential candidates, based on their reported clinical efficacy. Polyphenols hold tremendous scope for the development of a future drug molecule as a phytopharmaceutical that may be incorporated as an adjuvant to the therapeutic regime. However, more high-quality studies with novel delivery methods and combinatorial approaches are required to overcome obstacles such as bioavailability and blood-brain barrier crossing to underscore the therapeutic potential of these compounds in AD management.
Collapse
Affiliation(s)
- Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Naveen Reddy Penumallu
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aftab Alam
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shahid Hussain Ansari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Moreira P, Macedo J, Matos P, Bicker J, Fortuna A, Figueirinha A, Salgueiro L, Batista MT, Silva A, Silva S, Resende R, Branco PC, Cruz MT, Pereira CF. Effect of bioactive extracts from Eucalyptus globulus leaves in experimental models of Alzheimer's disease. Biomed Pharmacother 2024; 181:117652. [PMID: 39486370 DOI: 10.1016/j.biopha.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Current therapies for Alzheimer's disease (AD) do not delay its progression, therefore, novel disease-modifying strategies are urgently needed. Recently, an increasing number of compounds from natural origin with protective properties against AD have been identified. Mixtures or extracts obtained from natural products containing several bioactive compounds have multifunctional properties and have drawn the attention because multiple AD pathways can be simultaneously modulated. This study evaluated the in vitro and in vivo effect of the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and an extract obtained from the hydrodistillation residual water (HRW). It was observed that EO and HRW have anti-inflammatory effect in brain immune cells modeling AD, namely lipopolysaccharide (LPS)- and amyloid-beta (Aβ)-stimulated microglia. In cell models that mimic AD-related neuronal dysfunction, HRW attenuated Aβ secretion and Aβ-induced mitochondrial dysfunction. Since the HRW's major components did not cross the blood-brain barrier, both EO and HRW were administered to the APP/PS1 transgenic AD mouse model by an intranasal route, which reduced cortical and hippocampal Aβ levels, and to rescue memory deficits and anxiety-like behaviors. Finally, HRW and EO were found to regulate cholesterol levels in aged mice after intranasal administration, suggesting that these extracts can reduce hypercholesterolemia and avoid risk for AD development. Overall, findings support a protective role of E. globulus extracts against AD‑like pathology and cognitive impairment highlighting the underlying mechanisms. These extracts obtained from underused forest biomass could be useful to develop nutraceutical supplements helpful to avoid AD risk and to prevent its progression.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Jéssica Macedo
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Sónia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; iCBR-Coimbra Institute for Clinical and Biomedical Research, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Pedro Costa Branco
- RAIZ-Forest and Paper Research Institute, Eixo, Aveiro 3800-783, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Cláudia Fragão Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
3
|
Khazani H, Jalali Kondori B, Sahraei H, Meftahi GH. Terminalia chebula attenuates restraint stress-induced memory impairment and synaptic loss in the dentate gyrus of the hippocampus and the basolateral and central nuclei of the amygdala by inhibiting oxidative damage. Brain Res Bull 2024; 213:110975. [PMID: 38734185 DOI: 10.1016/j.brainresbull.2024.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Chronic restraint stress induces cognitive abnormalities through changes in synapses and oxidant levels in the amygdala and hippocampus. Given the neuroprotective effects of fruit of Terminalia chebula (Halileh) in different experimental models, the present investigation aimed to address whether Terminalia chebula is able to reduce chronic restraint stress-induced behavioral, synaptic and oxidant markers in the rat model. Thirty-two male Wistar rats were randomly divided into four groups as follows: control (did not receive any treatment and were not exposed to stress), stress (restraint stress for 2 h a day for 14 consecutive days), Terminalia chebula (received 200 mg/kg hydroalcoholic extract of Terminalia chebula), and stress + Terminalia chebula groups (received 200 mg/kg extract of Terminalia chebula twenty minutes before stress) (n = 8 in each group). We used the shuttle box test to assess learning and memory, Golgi-Cox staining to examine dendritic spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala, and total antioxidant capacity (TAC) and total oxidant status (TOS) in the brain. The shuttle box test results demonstrated that Terminalia chebula treatment had a profound positive effect on memory parameters, including step-through latency (STL) and time spent in the dark room, when compared to the stress group. Daily oral treatment with Terminalia chebula effectively suppressed the loss of neural spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala caused by chronic restraint stress, as demonstrated by Golgi-Cox staining. Additionally, the results indicate that Terminalia chebula significantly reduced the TOS and increased TAC in the brain compared to the stress group. In conclusion, our results suggest that Terminalia chebula improved memory impairment and synaptic loss in the dentate gyrus of the hippocampus and the basolateral and central nuclei of the amygdala induced by restraint stress via inhibiting oxidative damage.
Collapse
Affiliation(s)
- Hossein Khazani
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Balakrishnan R, Jannat K, Choi DK. Development of dietary small molecules as multi-targeting treatment strategies for Alzheimer's disease. Redox Biol 2024; 71:103105. [PMID: 38471283 PMCID: PMC10945280 DOI: 10.1016/j.redox.2024.103105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cognitive dysfunction can occur both in normal aging and age-related neurological disorders, such as mild cognitive impairment and Alzheimer's disease (AD). These disorders have few treatment options due to side effects and limited efficacy. New approaches to slow cognitive decline are urgently needed. Dietary interventions (nutraceuticals) have received considerable attention because they exhibit strong neuroprotective properties and may help prevent or minimize AD symptoms. Biological aging is driven by a series of interrelated mechanisms, including oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy, which function through various signaling pathways. Recent clinical and preclinical studies have shown that dietary small molecules derived from natural sources, including flavonoids, carotenoids, and polyphenolic acids, can modulate oxidative damage, cognitive impairments, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, autophagy dysregulation, and gut microbiota dysbiosis. This paper reviews research on different dietary small molecules and their bioactive constituents in the treatment of AD. Additionally, the chemical structure, effective dose, and specific molecular mechanisms of action are comprehensively explored. This paper also discusses the advantages of using nanotechnology-based drug delivery, which significantly enhances oral bioavailability, safety, and therapeutic effect, and lowers the risk of adverse effects. These agents have considerable potential as novel and safe therapeutic agents that can prevent and combat age-related AD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, South Korea; Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea
| | - Khoshnur Jannat
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, BK21 Program, Konkuk University, Chungju, 27478, South Korea; Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea.
| |
Collapse
|
5
|
Shah HS, Zaib S, Usman F, Sarfraz M, Faiz R, Rehman SA, Khan AA, Alanazi AM, Khan R, Nasrullah U, Nazir I. Synthesis, characterization, pharmacological and computational evaluation of hyaluronic acid modified chebulinic acid encapsulated chitosan nanocomposite for cancer therapy. Int J Biol Macromol 2024; 263:130160. [PMID: 38367777 DOI: 10.1016/j.ijbiomac.2024.130160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The purpose of this study was to produce hyaluronic acid customized nanoparticles with chitosan for the delivery of chebulinic acid (CLA) to enhance its anticancer potential against breast cancer. A significant portion of CLA was encapsulated (89.72 ± 4.38 %) and loaded (43.15 ± 5.61 %) within hybrid nanoparticles. The colloidal hybrid nanoparticles demonstrated a polydispersity index (PDI) of about 0.379 ± 0.112, with zeta capacitance of 32.69 ± 5.12 (mV), and an average size of 115 ± 8 (nm). It was found that CLA-CT-HA-NPs had stronger anticancer effects on MCF-7 cells (IC50 = 8.18 ± 3.02 μM) than pure CLA (IC50 = 17.15 ± 5.11 μM). The initial cytotoxicity findings were supported by additional investigations based on comet assay and flow cytometry analysis. Tumor remission and survival were evaluated in five separate groups of mice. When juxtaposed with pure CLA (3.17 ± 0.419 %), CLA-CT-HA-NPs improved survival rates and reduced tumor burden by 3.76 ± 0.811(%). Furthermore, in-silico molecular docking investigations revealed that various biodegradable polymers had several levels of compatibility with CLA. The outcomes of this study might potentially served as an effective strategy for delivering drugs in the context of breast cancer therapy.
Collapse
Affiliation(s)
- Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates.
| | - Rabia Faiz
- Department of Zoology, University of Education, Bank Road Campus, Lahore, Pakistan.
| | - Saira Abdul Rehman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; M Islam College of Pharmacy, 52230 Gujranwala, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Riffat Khan
- College of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, 54000 Lahore, Pakistan.
| |
Collapse
|
6
|
El-Shamarka MEA, Aboulthana WM, Omar NI, Mahfouz MM. Evaluation of the biological efficiency of Terminalia chebula fruit extract against neurochemical changes induced in brain of diabetic rats: an epigenetic study. Inflammopharmacology 2024; 32:1439-1460. [PMID: 38329710 PMCID: PMC11006788 DOI: 10.1007/s10787-024-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024]
Abstract
Diabetes mellitus (DM) is a chronic and progressive metabolic disorder that can stimulate neuroinflammation and increase oxidative stress in the brain. Therefore, the present study was aimed to assess the efficacy of ethanolic Terminalia chebula extract against the neurochemical and histopathological changes induced in the brains of diabetic rats. The study clarified the reduction in oxidative stress induced in the brains of diabetic rats by the significant (P ≤ 0.05) increase in levels of the antioxidants with decreasing the peroxidation products via ethanolic T. chebula extract at both doses (400 and 600 mg/kg). Moreover, T. chebula extract improved the brain integrity by lowering levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), β-amyloid (Aβ) content, monocyte chemoattractant protein-1 (MCP-1) and acetylcholine esterase (ACHE) significantly (P ≤ 0.05) in a dose dependent manner compared to brain of diabetic rats. Severe nuclear pyknosis and degeneration were noticed in neurons of the cerebral cortex, hippocampus and striatum in brains of diabetic rats. The severity of these alterations decreased with T. chebula extract at a dose of 600 mg/kg compared to the other treated groups. The different electrophoretic protein and isoenzyme assays revealed that the lowest similarity index (SI%) values exist in the brains of diabetic rats compared to the control group. The quantity of the most native proteins and isoenzyme types increased significantly (P ≤ 0.05) in the brains of diabetic rats, and these electrophoretic variations were completely diminished by T. chebula extract. The study concluded that T. chebula extract ameliorated the biochemical, histopathological and electrophoretic abnormalities induced in the brains of diabetic rats when administered at a dose of 600 mg/kg.
Collapse
Affiliation(s)
- Marwa E A El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Nagwa Ibrahim Omar
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Marwa M Mahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Shibīn Al-Kawm, Egypt
| |
Collapse
|
7
|
Sultan MT, Anwar MJ, Imran M, Khalil I, Saeed F, Neelum S, Alsagaby SA, Al Abdulmonem W, Abdelgawad MA, Hussain M, El-Ghorab AH, Umar M, Al Jbawi E. Phytochemical profile and pro-healthy properties of Terminalia chebula: A comprehensive review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2166951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Ijaz Khalil
- Institute of Food and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahzadi Neelum
- Department of Biochemistry, Hamdard University, Karachi, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
8
|
Uzun SG, Altunkaynak BZ, Alkan I. The effects of myricitrin and chebulinic acid on the rat hippocampus exposed to gamma radiation: A stereological, histochemical and biochemical study. J Chem Neuroanat 2023; 132:102305. [PMID: 37442243 DOI: 10.1016/j.jchemneu.2023.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
AIM Gamma radiation, a form of ionizing radiation, is used in many different areas, especially in the health field and in the treatment of cancer. However, gamma radiation used for therapeutic purposes also has numerous harmful effects on human health. This study was planned to investigate the impacts of exposure to gamma radiation on the hippocampal area and the preventive effects of myricitrin and chebulinic acid against that damage. MATERIAL AND METHOD Thirty-six male Wistar albino rats were randomly divided into six groups. The control group was exposed to no treatment. The chebulinic acid and myricitrin groups were injected with the relevant drug at a dosage of 0.033 mg/kg) (vehicle; normal saline) per day. The gamma groups were placed in a plexiglass test setup with their heads positioned close to the source. The subjects were exposed to radiation with a mixed source containing radioactive Cs-137 and Co-60 isotopes obtained from Ondokuz Mayıs University Physics Department Nuclear Physics Laboratory for 1 h. Gamma radiation was applied 16 mGy for one hour per day for 10 days. The gamma radiation+chebulinic acid and the gamma radiation myricitrin groups also received 0.033 mg/kg per day of these drugs via injection. Immediately after the experimental procedure, all animals were subjected to behavioural tests, and perfused brain tissues were analyzed using stereological methods. RESULTS Stereological analysis showed that gamma radiation caused a decrease in the numbers of neurons in the hippocampal area (p < 0.01; One-way ANOVA) and that chebulinic acid and myricitrin reduced this decrease (p < 0.01; One-way ANOVA). Decreases in learning and memory capacity were detected in behavioural tests in rats from the Gamma group. CONCLUSION The study findings showed that that the adverse health effects of Gamma radiation can be ameliorated using myricitrin and chebulinic acid. Myricitrin was more effective in terms of cell proliferation and defence against oxidative stress than chebulinic acid, and exhibited a more neuroprotective effect. However, more detailed analyses should be performed before using either antioxidant for therapeutic purposes.
Collapse
Affiliation(s)
- Sümeyye Gümüş Uzun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Faculty of Medicine, İstanbul Okan University, Istanbul, Turkey.
| | - Işınsu Alkan
- Department of Basic Medical Sciences, Faculty of Dentistry, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| |
Collapse
|
9
|
Li W, Rang Y, Liu H, Liu C. Update on new trends and progress of natural active ingredients in the intervention of Alzheimer's disease, based on understanding of traditional Chinese and Western relevant theories: A review. Phytother Res 2023; 37:3744-3764. [PMID: 37380605 DOI: 10.1002/ptr.7908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurological disorders causing death in the elderly worldwide. As a neurodegenerative disease that is difficult to prevent and cure, the pathogenesis of AD is complex and there is no effective cure. A variety of natural products derived from plants have been reported to have promising anti-AD activities, including flavonoids, terpenes, phenolic acids and alkaloids, which can effectively relieve the symptoms of AD in a variety of ways. This paper mainly reviews the pharmacological activity and mechanisms of natural products against AD. Although the clinical efficacy of these plants still needs to be determined by further high-quality studies, it may also provide a basis for future researchers to study anti-AD in depth.
Collapse
Affiliation(s)
- Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| |
Collapse
|
10
|
Romero-Márquez JM, Navarro-Hortal MD, Orantes FJ, Esteban-Muñoz A, Pérez-Oleaga CM, Battino M, Sánchez-González C, Rivas-García L, Giampieri F, Quiles JL, Forbes-Hernández TY. In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado ( Persea americana Mill.) Honey from Southern Spain. Antioxidants (Basel) 2023; 12:antiox12020404. [PMID: 36829962 PMCID: PMC9952156 DOI: 10.3390/antiox12020404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
There is growing evidence that Alzheimer's disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | | | - Adelaida Esteban-Muñoz
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - Cristina M. Pérez-Oleaga
- Department of Biostatistics, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Biostatistics, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Department of Biostatistics, Universidade Internacional do Cuanza, Cuito 250, Angola
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| |
Collapse
|
11
|
Refaey MS, Shah MA, Fayed MA, Rasul A, Siddiqui MF, Qasim M, Althobaiti NA, Saleem U, Malik A, Blundell R, Eldahshan OA. Neuroprotective effects of steroids. PHYTONUTRIENTS AND NEUROLOGICAL DISORDERS 2023:283-304. [DOI: 10.1016/b978-0-12-824467-8.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Terminalia chebula Medicinal Uses: A Review of in vitro and in vivo Studies. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
14
|
Hassan Bulbul MR, Uddin Chowdhury MN, Naima TA, Sami SA, Imtiaj MS, Huda N, Uddin MG. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz. Heliyon 2022; 8:e10220. [PMID: 36051270 PMCID: PMC9424961 DOI: 10.1016/j.heliyon.2022.e10220] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Terminalia chebula Retz, commonly known as 'Haritaki/Myrobalan,' has been utilised as a traditional medicine for a long time. It has been extensively exercised in various indigenous medicine practices like Unani, Tibb, Ayurveda, and Siddha to remedy human ailments such as bleeding, carminative, dysentery, liver tonic, digestive, antidiarrheal, analgesic, anthelmintic, antibacterial and helpful in skin disorders. Studies on the pharmacological effects of T. chebula and its phytoconstituents documented between January, 1996 and December, 2021 were explored using various electronic databases. During the time mentioned above, several laboratory approaches revealed the biological properties of T. chebula, including antioxidative, antiproliferative, anti-microbial, proapoptotic, anti-diabetic, anti-ageing, hepatoprotective, anti-inflammatory, and antiepileptic. It is also beneficial in glucose and lipid metabolism and prevents atherogenesis and endothelial dysfunction. Different parts of T. chebula such as fruits, seeds, galls, barks extracted with various solvent systems (aqueous, ethanol, methanol, chloroform, ethyl-acetate) revealed major bioactive compounds like chebulic acid, chebulinic acid, and chebulaginic acid, which in turn proved to have valuable pharmacological properties through broad scientific investigations. There is a common link between chebulagic acid and chebulanin with its antioxidant property, antiaging activity, antiinflammatory, antidiabetic activity, and cardioprotective activity. The actions may be through neutralizing the free radicals responsible for producing tissue damage alongside interconnecting many other diseases. The current review summarises the scientifically documented literature on pharmacological potentials and chemical compositions of T. chebula, which is expected to investigate further studies on this subject.
Collapse
Affiliation(s)
| | | | - Taslima Anjum Naima
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md. Shakil Imtiaj
- Department of Chemistry, Government City College, National University, Gazipur, 1708, Bangladesh
| | - Nazmul Huda
- Department of Chemistry, University of Texas at Rio Grande Valley, Edinburg, Texas, 78539, USA
| | - Md. Giash Uddin
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| |
Collapse
|
15
|
Zeng Q, Xiong Q, Lin K, Liang Z, Zhou M, Tian X, Xu C, Ru Q. Terminalia chebula extracts ameliorate methamphetamine-induced memory deficits via activating the ERK and Nrf2 pathway. Brain Res Bull 2022; 184:76-87. [DOI: 10.1016/j.brainresbull.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
|
16
|
Phytotherapeutic Approaches to the Prevention of Age-Related Changes and the Extension of Active Longevity. Molecules 2022; 27:molecules27072276. [PMID: 35408672 PMCID: PMC9000830 DOI: 10.3390/molecules27072276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Maintaining quality of life with an increase in life expectancy is considered one of the global problems of our time. This review explores the possibility of using natural plant compounds with antioxidant, anti-inflammatory, anti-glycation, and anti-neurodegenerative properties to slow down the onset of age-related changes. Age-related changes such as a decrease in mental abilities, the development of inflammatory processes, and increased risk of developing type 2 diabetes have a significant impact on maintaining quality of life. Herbal preparations can play an essential role in preventing and treating neurodegenerative diseases that accompany age-related changes, including Alzheimer’s and Parkinson’s diseases. Medicinal plants have known sedative, muscle relaxant, neuroprotective, nootropic, and antiparkinsonian properties. The secondary metabolites, mainly polyphenolic compounds, are valuable substances for the development of new anti-inflammatory and hypoglycemic agents. Understanding how mixtures of plants and their biologically active substances work together to achieve a specific biological effect can help develop targeted drugs to prevent diseases associated with aging and age-related changes. Understanding the mechanisms of the biological activity of plant complexes and mixtures determines the prospects for using metabolomic and biochemical methods to prolong active longevity.
Collapse
|
17
|
Ambili Unni P, Pillai GG, Sajitha Lulu S. Developing a molecular roadmap to Narasimha Rasayana: A system Polypharmacology approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Banazadeh M, Mehrabani M, Banazadeh N, Dabaghzadeh F, Shahabi F. Evaluating the effect of black myrobalan on cognitive, positive, and negative symptoms in patients with chronic schizophrenia: A randomized, double-blind, placebo-controlled trial. Phytother Res 2021; 36:543-550. [PMID: 34814232 DOI: 10.1002/ptr.7340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/07/2021] [Accepted: 11/07/2021] [Indexed: 11/06/2022]
Abstract
Schizophrenia, as a chronic and disabling mental disorder, causes a wide range of symptoms, including cognitive impairments, positive, negative, and mood symptoms. There are no effective treatments for cognitive symptoms. Black myrobalan (Terminalia chebula Retz.), a medicinal plant of the Combretaceae family, exerts antioxidant, antiacetylcholinesterase, and anti-inflammatory effects. These effects can lessen the symptoms of schizophrenia. So, this study was conducted to evaluate black myrobalan's impact on cognitive impairments and negative/positive symptoms in patients with chronic schizophrenia. This was a randomized, double-blind, placebo-controlled clinical trial in which participants were divided into treatment and placebo groups. They received six 500 mg capsules of black myrobalan or placebo in two divided doses for 4 weeks. Patients' cognitive impairments, positive, negative, depression/anxiety, and excitement/activity symptoms were assessed using the Screen for Cognitive Impairments in Psychiatry (SCIP) and the relevant subscales of the Positive and Negative Syndrome Scale (PANSS) pretreatment and 4 weeks after treatment. Cognitive impairments (SCIP) (p value .004), negative symptoms (PANSS subscale) (p value .017), and excitement/activity (PANSS subscale) (p value .003) were significantly improved in the black myrobalan group compared with the control group after 4 weeks. No serious adverse effects were reported. Black myrobalan could improve cognitive impairments, negative and excitement/activity symptoms in chronic schizophrenic patients.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nabi Banazadeh
- Department of Psychiatry, School of Medicine AND Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Dabaghzadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzad Shahabi
- School of Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
19
|
Impact of Silibinin A on Bioenergetics in PC12APP sw Cells and Mitochondrial Membrane Properties in Murine Brain Mitochondria. Antioxidants (Basel) 2021; 10:antiox10101520. [PMID: 34679655 PMCID: PMC8533090 DOI: 10.3390/antiox10101520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Age-related multifactorial diseases, such as the neurodegenerative Alzheimer’s disease (AD), still remain a challenge to today’s society. One mechanism associated with AD and aging in general is mitochondrial dysfunction (MD). Increasing MD is suggested to trigger other pathological processes commonly associated with neurodegenerative diseases. Silibinin A (SIL) is the main bioactive compound of the Silymarin extract from the Mediterranean plant Silybum marianum (L.) (GAERTN/Compositae). It is readily available as a herbal drug and well established in the treatment of liver diseases as a potent radical scavenger reducing lipid peroxidation and stabilize membrane properties. Recent data suggest that SIL might also act on neurological changes related to MD. PC12APPsw cells produce low levels of human Aβ and thus act as a cellular model of early AD showing changed mitochondrial function. We investigated whether SIL could affect mitochondrial function by measuring ATP, MMP, as well as respiration, mitochondrial mass, cellular ROS and lactate/pyruvate concentrations. Furthermore, we investigated its effects on the mitochondrial membrane parameters of swelling and fluidity in mitochondria isolated from the brains of mice. In PC12APPsw cells, SIL exhibits strong protective effects by rescuing MMP and ATP levels from SNP-induced mitochondrial damage and improving basal ATP levels. However, SIL did not affect mitochondrial respiration and mitochondrial content. SIL significantly reduced cellular ROS and pyruvate concentrations. Incubation of murine brain mitochondria with SIL significantly reduces Ca2+ induced swelling and improves membrane fluidity. Although OXPHOS activity was unaffected at this early stage of a developing mitochondrial dysfunction, SIL showed protective effects on MMP, ATP- after SNP-insult and ROS-levels in APPsw-transfected PC12 cells. Results from experiments with isolated mitochondria imply that positive effects possibly result from an interaction of SIL with mitochondrial membranes and/or its antioxidant activity. Thus, SIL might be a promising compound to improve cellular health when changes to mitochondrial function occur.
Collapse
|
20
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
21
|
Dhage PA, Sharbidre AA, Dakua SP, Balakrishnan S. Leveraging hallmark Alzheimer's molecular targets using phytoconstituents: Current perspective and emerging trends. Biomed Pharmacother 2021; 139:111634. [PMID: 33965726 DOI: 10.1016/j.biopha.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD), a type of dementia, severely distresses different brain regions. Characterized by various neuropathologies, it interferes with cognitive functions and neuropsychiatrical controls. This progressive deterioration has negative impacts not only on an individual's daily activity but also on social and occupational life. The pharmacological approach has always remained in the limelight for the treatment of AD. However, this approach is condemned with several side effects. Henceforth, a change in treatment approach has become crucial. Plant-based natural products are garnering special attention due to lesser side effects associated with their use. The current review emphasizes the anti-AD properties of phytoconstituents, throws light on those under clinical trials, and compiles information on their specific mode of actions against AD-related different neuropathologies. The phytoconstituents alone or in combinations will surely help discover new potent drugs for the effective treatment of AD with lesser side effects than the currently available pharmacological treatment.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sarada P Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
22
|
Fazil M, Nikhat S. Exploring new horizons in health care: A mechanistic review on the potential of Unani medicines in combating epidemics of infectious diseases. Phytother Res 2021; 35:2317-2335. [PMID: 33169913 DOI: 10.1002/ptr.6949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/03/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022]
Abstract
The 20th and 21st centuries have witnessed epidemics and pandemics of various infectious agents. The development of effective antimicrobials in the 20th century has been complemented with the emergence of resistant and mutant strains. In this context, we present a comprehensive overview of the preventive measures described in Unani medicine during epidemics. Unani medicine is a traditional medicine system included in the Indian Systems of Medicine. Unani medicine has an extensive description of epidemic infections and preventive and therapeutic measures for the same. Certain factors like environment, season, and geographical location of a place are known to determine the extent of infections, and their escalation to epidemics. Maintenance of general health, immune-stimulation, and disinfecting of the environment are advised as protective measures, for which many drugs are prescribed. In the case of illness, specific antimicrobial drugs of natural origin are prescribed. Herein we discuss these measures in detail, along with the scientific evidences of anti-microbial, immunomodulatory, and health-protective actions of these drugs.
Collapse
Affiliation(s)
- Mohammad Fazil
- Hakim Ajmal Khan Institute for Literary and Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Jamia Millia Islamia Campus, New Delhi, India
| | - Sadia Nikhat
- Department of Ilaj bit Tadbeer, School of Unani Medical Education and Research, New Delhi, India
| |
Collapse
|
23
|
Protective Effect of Triphala against Oxidative Stress-Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6674988. [PMID: 33898626 PMCID: PMC8052154 DOI: 10.1155/2021/6674988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022]
Abstract
Background Oxidative stress is implicated in the progression of many neurological diseases, which could be induced by various chemicals, such as hydrogen peroxide (H2O2) and acrylamide. Triphala is a well-recognized Ayurvedic medicine that possesses different therapeutic properties (e.g., antihistamine, antioxidant, anticancer, anti-inflammatory, antibacterial, and anticariogenic effects). However, little information is available regarding the neuroprotective effect of Triphala on oxidative stress. Materials and Methods An in vitro H2O2-induced SH-SY5Y cell model and an in vivo acrylamide-induced zebrafish model were established. Cell viability, apoptosis, and proliferation were examined by MTT assay, ELISA, and flow cytometric analysis, respectively. The molecular mechanism underlying the antioxidant activity of Triphala against H2O2 was investigated dose dependently by Western blotting. The in vivo neuroprotective effect of Triphala on acrylamide-induced oxidative injury in Danio rerio was determined using immunofluorescence staining. Results The results indicated that Triphala plays a neuroprotective role against H2O2 toxicity in inhibiting cell apoptosis and promoting cell proliferation. Furthermore, Triphala pretreatment suppressed the phosphorylation of the mitogen-activated protein kinase (MARK) signal pathway (p-Erk1/2, p-JNK1/2, and p-p38), whereas it restored the activities of antioxidant enzymes (superoxide dismutase 1 (SOD1) and catalase) in the H2O2-treated SH-SY5Y cells. Consistently, similar protective effects of Triphala were observed in declining neuroapoptosis and scavenging free radicals in the zebrafish central neural system, possessing a critical neuroprotective property against acrylamide-induced oxidative stress. Conclusion In summary, Triphala is a promising neuroprotective agent against oxidative stress in SH-SY5Y cells and zebrafishes with significant antiapoptosis and antioxidant activities.
Collapse
|
24
|
Das G, Kim DY, Fan C, Gutiérrez-Grijalva EP, Heredia JB, Nissapatorn V, Mitsuwan W, Pereira ML, Nawaz M, Siyadatpanah A, Norouzi R, Sawicka B, Shin HS, Patra JK. Plants of the Genus Terminalia: An Insight on Its Biological Potentials, Pre-Clinical and Clinical Studies. Front Pharmacol 2020; 11:561248. [PMID: 33132909 PMCID: PMC7578430 DOI: 10.3389/fphar.2020.561248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
The evaluation and confirmation of healing properties of several plant species of genus Terminalia based on their traditional uses and the clinical claims are of utmost importance. Genus Terminalia has received more attention to assess and validate the therapeutic potential and clinical approval due to its immense folk medicinal and traditional applications. Various species of Terminalia genus are used in the form of herbal medicine and formulations, in treatment of diseases, including headache, fever, pneumonia, flu, geriatric, cancer, to improve memory, abdominal and back pain, cough and cold, conjunctivitis, diarrhea, heart disorder, leprosy, sexually transmitted diseases, and urinary tract disorders. These are reported to possess numerous biological properties, counting: antibacterial, antifungal, antiinflammatory, antiviral, antiretroviral, antioxidant, and antipa7rasitic. This current research review aims to update the detailed biological activities, pre-clinical and clinical studies of various extracts and secondary metabolites from several plant species under the genus Terminalia, along with information on the traditional uses and chemical composition to develop a promising strategy for their potential applications in the form of medicine or use in modern drug formulations for treating diseases like pneumonia, flu, and other types of viral infections or controlling human contagions.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Do-Yeong Kim
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore, Singapore
| | - Erick P. Gutiérrez-Grijalva
- Laboratorio de Alimentos Funcionales y Nutracéuticos, Cátedras CONACYT–Centro de Investigación en Alimentación y Desarrollo, Culiacán, México
| | - J. Basilio Heredia
- Laboratorio de Alimentos Funcionales y Nutracéuticos, Centro de Investigación en Alimentación y Desarrollo, Culiacán, México
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Research Excellence Center for Innovation and Health Products (RECIHP) and World Union for Herbal Drugs Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- School of Allied Health Sciences, Research Excellence Center for Innovation and Health Products (RECIHP) and World Union for Herbal Drugs Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Barbara Sawicka
- Faculty of Agrobioengineering, Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, Lublin, Poland
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
25
|
Nigam M, Mishra AP, Adhikari-Devkota A, Dirar AI, Hassan MM, Adhikari A, Belwal T, Devkota HP. Fruits of Terminalia chebula Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytother Res 2020; 34:2518-2533. [PMID: 32307775 DOI: 10.1002/ptr.6702] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 11/12/2022]
Abstract
Fruits of Terminalia chebula Retz. (Combretaceae) are widely used as crude drugs in various traditional medicine systems. The aim of this article is to review the available scientific information regarding the traditional uses, bioactive chemical constituents and the pharmacological activities of T. chebula. Numerous researches conducted on T. chebula have confirmed the presence of wide range of the phytochemicals such as flavonoids, tannins, phenolic acids and other bioactive compounds. T. chebula is also widely studied regarding its pharmacological activities such as antioxidant, hepatoprotective, neuroprotective, cytotoxic, antidiabetic, anti-inflammatory activities among others. However, more in vivo and clinical studies for mechanism-based pharmacological evaluation should be conducted in future to provide stronger scientific evidences for their traditional uses.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | - Abhay P Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | | | - Amina Ibrahim Dirar
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Md Mahadi Hassan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuwan University, Kritipur, Nepal
| | - Tarun Belwal
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
Esselun C, Bruns B, Hagl S, Grewal R, Eckert GP. Differential Effects of Silibinin A on Mitochondrial Function in Neuronal PC12 and HepG2 Liver Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1652609. [PMID: 31871539 PMCID: PMC6906813 DOI: 10.1155/2019/1652609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/27/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Abstract
The Mediterranean plant Silybum marianum L., commonly known as milk thistle, has been used for centuries to treat liver disorders. The flavonolignan silibinin represents a natural antioxidant and the main bioactive ingredient of silymarin (silybin), a standard extract of its seeds. Mitochondrial dysfunction and the associated generation of reactive oxygen/nitrogen species (ROS/RNS) are involved in the development of chronic liver and age-related neurodegenerative diseases. Silibinin A (SIL A) is one of two diastereomers found in silymarin and was used to evaluate the effects of silymarin on mitochondrial parameters including mitochondrial membrane potential and ATP production with and without sodium nitroprusside- (SNP-) induced nitrosative stress, oxidative phosphorylation, and citrate synthase activity in HepG2 and PC12 cells. Both cell lines were influenced by SIL A, but at different concentrations. SIL A significantly weakened nitrosative stress in both cell lines. Low concentrations not only maintained protective properties but also increased basal mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) levels. However, these effects could not be associated with oxidative phosphorylation. On the other side, high concentrations of SIL A significantly decreased MMP and ATP levels. Although SIL A did not provide a general improvement of the mitochondrial function, our findings show that SIL A protects against SNP-induced nitrosative stress at the level of mitochondria making it potentially beneficial against neurological disorders.
Collapse
Affiliation(s)
- Carsten Esselun
- Institute for Nutritional Sciences, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Bastian Bruns
- Institute of Pharmacology, Goethe-University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Stephanie Hagl
- Institute of Pharmacology, Goethe-University of Frankfurt am Main, Frankfurt am Main, Germany
| | - Rekha Grewal
- Institute for Nutritional Sciences, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Gunter P. Eckert
- Institute for Nutritional Sciences, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
27
|
The Terminalia laxiflora modulates the neurotoxicity induced by fipronil in male albino rats. Biosci Rep 2019; 39:BSR20181363. [PMID: 30777931 PMCID: PMC6395302 DOI: 10.1042/bsr20181363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/29/2018] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
The extensive use of fipronil (FPN) may trigger hazards to more than insects. The present investigation was carried out to evaluate the abrogating role of Terminalia laxiflora (TL) methanol extract (TLE) against the neurotoxic effects provoked by FPN. Fourty male albino rats were assigned into four equal groups. The first group served as control, the second one was orally administered FPN (10.5 mg/kg BW), the third group was given combination of FPN and TLE) (100 mg/kg BW), and the fourth one was orally given TLE. Our findings highlighted the efficacy of TLE as a neuroprotectant through a significant reduction in malondialdehyde (MDA) content by 25.8%, elevations of the reduced glutathione (GSH) level, catalase (CAT,) and superoxide dismutase (SOD) activities by 30.9, 41.2, and 48.2% respectively. Consequently, the relative mRNA levels of both Bax and caspase-3 were down-regulated by 40.54% and caspase-3 by 30.35% compared with the control group. Moreover, restoration of the pathological tissue injuries were detected. In conclusion, TLE proved to be a potent neuroprotective agent against the FPN-induced toxicity.
Collapse
|
28
|
Rahimi VB, Askari VR, Shirazinia R, Soheili-Far S, Askari N, Rahmanian-Devin P, Sanei-Far Z, Mousavi SH, Ghodsi R. Protective effects of hydro-ethanolic extract of Terminalia chebula on primary microglia cells and their polarization (M1/M2 balance). Mult Scler Relat Disord 2018; 25:5-13. [DOI: 10.1016/j.msard.2018.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/09/2018] [Indexed: 12/29/2022]
|
29
|
Triphala: current applications and new perspectives on the treatment of functional gastrointestinal disorders. Chin Med 2018; 13:39. [PMID: 30034512 PMCID: PMC6052535 DOI: 10.1186/s13020-018-0197-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background Ayurvedic medicine is based on natural healing methods that use herbal medicine to cleanse the body of toxins and to attain physical and mental regeneration. Triphala (TLP) is one of the most important ayurvedic supplements and is believed to have a beneficial effect on the entire gastrointestinal (GI) tract. Purpose We aim to summarize available literature focused on the components of TLP (Terminalia chebula, Terminalia bellerica and Phyllanthus emblica) and discusse their effectiveness and therapeutic value for improving lower GI symptoms in functional GI disorders, particularly irritable bowel syndrome (IBS). Methods This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect databases. Results The components of TLP are believed to cause restoration of the epithelium lining of the digestive tract, and by exhibiting mild laxative properties facilitate passage of stool in the colon. TLP is rich in polyphenols, vitamin C and flavonoids, which provide antioxidant and anti-inflammatory effects. It also contains various types of acids, such as gallic, chebulagic and chebulinic, which additionally possess cytoprotective and antifungal properties. Conclusion Triphala holds potential in improving lower GI symptoms and may be a valuable and effective addition to standard treatment of IBS. Supplementation of TLP herbal formulations alone or along with other probiotics can be recommended in ongoing clinical studies.
Collapse
|
30
|
Firdaus F, Zafeer MF, Waseem M, Anis E, Hossain MM, Afzal M. Ellagic acid mitigates arsenic-trioxide-induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. J Biochem Mol Toxicol 2018; 32. [PMID: 29314450 DOI: 10.1002/jbt.22024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/04/2017] [Accepted: 12/09/2017] [Indexed: 11/08/2022]
Abstract
In the current study, neuroprotective significance of ellagic acid (EA, a polyohenol) was explored by primarily studying its antioxidant and antiapoptotic potential against arsenic trioxide (As2 O3 )-induced toxicity in SH-SY5Y human neuroblastoma cell lines. The mitigatory effects of EA with particular reference to cell viability and cytotoxicity, the generation of reactive oxygen species, DNA damage, and mitochondrial dynamics were studied. Pretreatment of SH-SY5Y cells with EA (10 and 20 μM) for 60 min followed by exposure to 2 μM As2 O3 protected the SH-SY5Y cells against the harmful effects of the second. Also, EA pre-treated groups expressed improved viability, repaired DNA, reduced free radical generation, and maintained altered mitochondrial membrane potential than those exposed to As2 O3 alone. EA supplementation also inhibited As2 O3 -induced cytochrome c expression that is an important hallmark for determining mitochondrial dynamics. Thus, the current investigations are more convinced for EA as a promising candidate in modulating As2 O3 -induced mitochondria-mediated neuronal toxicity under in vitro system.
Collapse
Affiliation(s)
- Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | | - Ehraz Anis
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Afzal
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|