1
|
Emamalipour M, Shamdani S, Mansoori B, Uzan G, Naserian S. The implications of the TNFα-TNFR2 immune checkpoint signaling pathway in cancer treatment: From immunoregulation to angiogenesis. Int J Cancer 2025; 156:7-19. [PMID: 39140321 DOI: 10.1002/ijc.35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Despite the tremendous advances that have been made in biomedical research, cancer remains one of the leading causes of death worldwide. Several therapeutic approaches have been suggested and applied to treat cancer with impressive results. Immunotherapy based on targeting immune checkpoint signaling pathways proved to be one of the most efficient. In this review article, we will focus on the recently discovered TNFα-TNFR2 signaling pathway, which controls the immunological and pro-angiogenic properties of many immunoregulatory and pro-angiogenic cells such as endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and regulatory T cells (Tregs). Due to their biological properties, these cells can play a major role in cancer progression and metastasis. Therefore, we will discuss the advantages and disadvantages of an anti-TNFR2 treatment that could carry two faces under one hood. It interrupts the immunosuppressive and pro-angiogenic behaviors of the above-mentioned cells and interferes with tumor growth and survival.
Collapse
Affiliation(s)
| | - Sara Shamdani
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, Pennsylvania, USA
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sina Naserian
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
2
|
Li L, Ye R, Li Y, Pan H, Han S, Lu Y. Targeting TNFR2 for cancer immunotherapy: recent advances and future directions. J Transl Med 2024; 22:812. [PMID: 39223671 PMCID: PMC11367783 DOI: 10.1186/s12967-024-05620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is the leading cause of death worldwide, accounting for nearly 10 million deaths every year. Immune checkpoint blockade approaches have changed the therapeutic landscape for many tumor types. However, current immune checkpoint inhibitors PD-1 or CTLA-4 are far from satisfactory, due to high immune-related adverse event incident (up to 60%) and the inefficiency in cases of "cold" tumor microenvironment. TNFR2, a novel hopeful tumor immune target, was initially proposed in 2017. It not only promotes tumor cell proliferation, but also correlates with the suppressive function of Treg cells, implicating in the development of an immunosuppressive tumor microenvironment. In preclinical studies, TNFR2 antibody therapy has demonstrated efficacy alone or a potential synergistic effect when combined with classical PD-1/ CTLA-4 antibodies. The focus of this review is on the characteristics, functions, and recent advancements in TNFR2 therapy, providing a new direction for the next generation of anti-tumor alternative therapy.
Collapse
Affiliation(s)
- Linxue Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Ruiwei Ye
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Yingying Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Hanyu Pan
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China
| | - Sheng Han
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| | - Yiming Lu
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai, 201908, China.
| |
Collapse
|
3
|
Wu Y, Chen D, Gao Y, Xu Q, Zhou Y, Ni Z, Na M. Immunosuppressive regulatory cells in cancer immunotherapy: restrain or modulate? Hum Cell 2024; 37:931-943. [PMID: 38814516 DOI: 10.1007/s13577-024-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Immunosuppressive regulatory cells (IRCs) play important roles in negatively regulating immune response, and are mainly divided into myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Large numbers of preclinical and clinical studies have shown that inhibition or reduction of IRCs could effectively elevate antitumor immune responses. However, several studies also reported that excessive inhibition of IRCs function is one of the main reasons causing the side effects of cancer immunotherapy. Therefore, the reasonable regulation of IRCs is crucial for improving the safety and efficiency of cancer immunotherapy. In this review, we summarised the recent research advances in the cancer immunotherapy by regulating the proportion of IRCs, and discussed the roles of IRCs in regulating tumour immune evasion and drug resistance to immunotherapies. Furthermore, we also discussed how to balance the potential opportunities and challenges of using IRCs to improve the safety of cancer immunotherapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Manli Na
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China.
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Ge S, Zhao Y, Liang J, He Z, Li K, Zhang G, Hua B, Zheng H, Guo Q, Qi R, Shi Z. Immune modulation in malignant pleural effusion: from microenvironment to therapeutic implications. Cancer Cell Int 2024; 24:105. [PMID: 38475858 PMCID: PMC10936107 DOI: 10.1186/s12935-024-03211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/03/2024] [Indexed: 03/14/2024] Open
Abstract
Immune microenvironment and immunotherapy have become the focus and frontier of tumor research, and the immune checkpoint inhibitors has provided novel strategies for tumor treatment. Malignant pleural effusion (MPE) is a common end-stage manifestation of lung cancer, malignant pleural mesothelioma and other thoracic malignancies, which is invasive and often accompanied by poor prognosis, affecting the quality of life of affected patients. Currently, clinical therapy for MPE is limited to pleural puncture, pleural fixation, catheter drainage, and other palliative therapies. Immunization is a new direction for rehabilitation and treatment of MPE. The effusion caused by cancer cells establishes its own immune microenvironment during its formation. Immune cells, cytokines, signal pathways of microenvironment affect the MPE progress and prognosis of patients. The interaction between them have been proved. The relevant studies were obtained through a systematic search of PubMed database according to keywords search method. Then through screening and sorting and reading full-text, 300 literatures were screened out. Exclude irrelevant and poor quality articles, 238 literatures were cited in the references. In this study, the mechanism of immune microenvironment affecting malignant pleural effusion was discussed from the perspectives of adaptive immune cells, innate immune cells, cytokines and molecular targets. Meanwhile, this study focused on the clinical value of microenvironmental components in the immunotherapy and prognosis of malignant pleural effusion.
Collapse
Affiliation(s)
- Shan Ge
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China
| | - Yuwei Zhao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Jun Liang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zhongning He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Kai Li
- Beijing Shijitan Hospital, No.10 Yangfangdiantieyilu, Haidian District, Beijing, 100038, China
| | - Guanghui Zhang
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
5
|
Rath B, Stickler S, Hochmair MJ, Hamilton G. Expression of cytokines in pleural effusions and corresponding cell lines of small cell lung cancer. Transl Lung Cancer Res 2024; 13:5-15. [PMID: 38405004 PMCID: PMC10891412 DOI: 10.21037/tlcr-23-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Background Small cell lung cancer (SCLC) is a neuroendocrine aggressive tumor with a dismal prognosis due to the lack of curative therapeutic modalities. Approximately 11% of these patients show a malignant pleural effusion (MPE) that increase in frequency with progression of the disease. In MPE, fluid accumulates due to leaky vessels and mesothelial surfaces as well as impaired removal of fluid due to impaired drainage. Methods For this investigation, three SCLC MPE samples and supernatants of the corresponding isolated cell lines were analyzed for the content of 105 cytokines, chemokines, and growth factors. Overexpressed pathways including these cytokines were identified using Reactome analysis tools. Results A large range of cytokines, including vascular endothelial growth factor A (VEGFA), were found to be expressed in the MPEs and conditioned media of the corresponding cell line. These mediators are involved in pathways such as interleukin (IL) signaling, growth factor stimulation, modulation of cell adhesion molecules and proliferative cell signaling. Cytokine expression by the corresponding SCLC cell lines revealed the specific contributions of the tumor cells and included high expression of VEGFA, tumor-promoting factors and mediators exerting immunosuppressive and protumor effects. MPEs used here showed marked stimulation of the proliferation of four permanent SCLC cell lines. Conclusions MPEs comprise a large number of cytokines with mixed activities on tumor cells and the invading SCLC cells release a number of protumor mediators and induce an immunosuppressive pleural environment.
Collapse
Affiliation(s)
- Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian J. Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Tong Q, Ling Y. A prognostic model based on regulatory T-cell-related genes in gastric cancer: Systematic construction and validation. Int J Exp Pathol 2023; 104:226-236. [PMID: 37350375 PMCID: PMC10500170 DOI: 10.1111/iep.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
Human gastrointestinal tumours have been shown to contain massive numbers of tumour infiltrating regulatory T cells (Tregs), the presence of which are closely related to tumour immunity. This study was designed to develop new Treg-related prognostic biomarkers to monitor the prognosis of patients with gastric cancer (GC). Treg-related prognostic genes were screened from Treg-related differentially expressed genes in GC patients by using Cox regression analysis, based on which a prognostic model was constructed. Then, combined with RiskScore, survival curve, survival status assessment and ROC analysis, these genes were used to verify the accuracy of the model, whose independent prognostic ability was also evaluated. Six Treg-related prognostic genes (CHRDL1, APOC3, NPTX1, TREML4, MCEMP1, GH2) in GC were identified, and a 6-gene Treg-related prognostic model was constructed. Survival analysis revealed that patients had a higher survival rate in the low-risk group. Combining clinicopathological features, we performed univariate and multivariate regression analyses, with results establishing that the RiskScore was an independent prognostic factor. Predicted 1-, 3- and 5-year survival rates of GC patients had a good fit with the actual survival rates according to nomogram results. In addition patients in the low-risk group had higher tumour mutational burden (TMB) values. Gene Set Enrichment Analysis (GSEA) demonstrated that genes in the high-risk group were significantly enriched in pathways related to immune inflammation, tumour proliferation and migration. In general, we constructed a 6-gene Treg-associated GC prognostic model with good prediction accuracy, where RiskScore could act as an independent prognostic factor. This model is expected to provide a reference for clinicians to estimate the prognosis of GC patients.
Collapse
Affiliation(s)
- Qin Tong
- Department of Gastrointestinal SurgeryJinhua Guangfu HospitalJinhuaChina
| | - Yingjie Ling
- Department of Gastrointestinal SurgeryJinhua Guangfu HospitalJinhuaChina
| |
Collapse
|
7
|
Engku Abd Rahman ENS, Irekeola AA, Shueb RH, Mat Lazim N, Mohamud R, Chen X, Ghazali L, Awang NMSH, Haron A, Chan YY. Aberrant frequency of TNFR2-expressing CD4+ FoxP3+ regulatory T cells in nasopharyngeal carcinoma patients. Cytokine 2023; 170:156341. [PMID: 37657236 DOI: 10.1016/j.cyto.2023.156341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
TNFR2 is a surface marker of highly suppressive subset of CD4+ FoxP3+ regulatory T cells (Tregs) in humans and mice. This study examined the TNFR2 expression by Tregs of nasopharyngeal carcinoma (NPC) patients and healthy controls. The proliferation, migration, survival of TNFR2+ Tregs, and association with clinicopathological characteristics were assessed. The expression levels of selected cytokines were also determined. The results demonstrated that in both peripheral blood (PB) (10.45 ± 5.71%) and tumour microenvironment (TME) (54.38 ± 16.15%) of NPC patients, Tregs expressed TNFR2 at noticeably greater levels than conventional T cells (Tconvs) (3.91 ± 2.62%, p < 0.0001), akin to healthy controls. Expression of TNFR2 (1.06 ± 0.99%) was correlated better than CD25+ (0.40 ± 0.46%) and CD127-/low (1.00 ± 0.83% ) with FoxP3 expression in NPC PB (p = 0.0005). Though there was no significant association between TNFR2 expression with the functional capacity (proliferation, migration and survival) of Tregs (p > 0.05), the proportions of PB and TME TNFR2+ Tregs in NPC patients showed more proliferative, higher migration capacity, and better survival ability, as compared to those in healthy controls. Furthermore, TNFR2+ Tregs from NPC patients expressed significantly higher amounts of IL-6 (p = 0.0077), IL-10 (p = 0.0001), IFN-γ (p = 0.0105) and TNF-α (p < 0.0001) than those from healthy controls. Most significantly, TNFR2 expression in maximally suppressive Tregs population were linked to WHO Type III histological type, distant metastasis, progressive disease status, and poor prognosis for NPC patients. Hence, our research implies that TNFR2 expression by PB and TME Tregs may be a useful predictive indicator in NPC patients.
Collapse
Affiliation(s)
- Engku Nur Syafirah Engku Abd Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, PMB 4412, Offa Kwara State, Nigeria
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078 Macau
| | - Liyana Ghazali
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nik Mohd Syahrul Hafizzi Awang
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ali Haron
- Department of Otorhinolaryngology, Hospital Raja Perempuan Zainab II, Jalan Hospital, 15200 Kota Bharu, Kelantan, Malaysia
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Chen Y, Jiang M, Chen X. Therapeutic potential of TNFR2 agonists: a mechanistic perspective. Front Immunol 2023; 14:1209188. [PMID: 37662935 PMCID: PMC10469862 DOI: 10.3389/fimmu.2023.1209188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
TNFR2 agonists have been investigated as potential therapies for inflammatory diseases due to their ability to activate and expand immunosuppressive CD4+Foxp3+ Treg cells and myeloid-derived suppressor cells (MDSCs). Despite TNFR2 being predominantly expressed in Treg cells at high levels, activated effector T cells also exhibit a certain degree of TNFR2 expression. Consequently, the role of TNFR2 signaling in coordinating immune or inflammatory responses under different pathological conditions is complex. In this review article, we analyze possible factors that may determine the therapeutic outcomes of TNFR2 agonism, including the levels of TNFR2 expression on different cell types, the biological properties of TNFR2 agonists, and disease status. Based on recent progress in the understanding of TNFR2 biology and the study of TNFR2 agonistic agents, we discuss the future direction of developing TNFR2 agonists as a therapeutic agents.
Collapse
Affiliation(s)
- Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Mengmeng Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, Macau SAR, China
| |
Collapse
|
9
|
Zhang S, Peng W, Wang H, Xiang X, Ye L, Wei X, Wang Z, Xue Q, Chen L, Su Y, Zhou Q. C1q + tumor-associated macrophages contribute to immunosuppression through fatty acid metabolic reprogramming in malignant pleural effusion. J Immunother Cancer 2023; 11:e007441. [PMID: 37604643 PMCID: PMC10445384 DOI: 10.1136/jitc-2023-007441] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Although immune checkpoint blockade (ICB) therapy has shown remarkable benefits in cancers, a subset of patients with cancer exhibits unresponsiveness or develop acquired resistance due to the existence of abundant immunosuppressive cells. Tumor-associated macrophages (TAMs), as the dominant immunosuppressive population, impede the antitumor immune response; however, the underlying mechanisms have not been fully elucidated yet. METHODS Single-cell RNA sequencing analysis was performed to portray macrophage landscape and revealed the underlying mechanism of component 1q (C1q)+ TAMs. Malignant pleural effusion (MPE) of human and mouse was used to explore the phenotypes and functions of C1q+ TAMs. RESULTS C1q+ TAMs highly expressed multiple inhibitory molecules and their high infiltration was significantly correlated with poor prognosis. C1q+ TAMs promote MPE immunosuppression through impairing the antitumor effects of CD8+ T cells. Mechanistically, C1q+ TAMs enhance fatty acid binding protein 5 (FABP5)-mediated fatty acid metabolism, which activate transcription factor peroxisome proliferator-activated receptor-gamma, increasing the gene expression of inhibitory molecules. A high-fat diet increases the expression of inhibitory molecules in C1q+ TAMs and the immunosuppression of MPE microenvironment, whereas a low-fat diet ameliorates these effects. Moreover, FABP5 inhibition represses the expression of inhibitory molecules in TAMs and tumor progression, while enhancing the efficacy of ICB therapy in MPE and lung cancer. CONCLUSIONS C1q+ TAMs impede antitumor effects of CD8+ T cells promoting MPE immunosuppression. Targeting C1q+ TAMs effectively alleviates the immunosuppression and enhances the efficacy of ICB therapy. C1q+ TAMs subset has great potential to be a therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Su
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
TNFR2 antagonistic antibody induces the death of tumor infiltrating CD4 +Foxp3 + regulatory T cells. Cell Oncol (Dordr) 2023; 46:167-177. [PMID: 36369606 DOI: 10.1007/s13402-022-00742-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND TNFR2 expression is a characteristic of highly potent immunosuppressive tumor infiltrating CD4+Foxp3+ regulatory T cells (Tregs). There is compelling evidence that TNF through TNFR2 preferentially stimulates the activation and expansion of Tregs. We and others, therefore, proposed that targeting TNFR2 may provide a novel strategy in cancer immunotherapy. Several studies have shown the effect of TNFR2 antagonistic antibodies in different tumor models. However, the exact action of the TNFR2 antibody on Tregs remained understood. METHOD TY101, an anti-murine TNFR2 antibody, was used to examine the effect of TNFR2 blockade on Treg proliferation and viability in vitro. The role of TNFR2 on Treg viability was further validated by TNFR2 knockout mice and in the TY101 antagonistic antibody-treated mouse tumor model. RESULTS In this study, we found that an anti-mouse TNFR2 antibody TY101 could inhibit TNF-induced proliferative expansion of Tregs, indicative of an antagonistic property. To examine the effect of TY101 antagonistic antibody on Treg viability, we treated unfractionated lymph node (L.N.) cells with Dexamethasone (Dex) which was known to induce T cell death. The result showed that TY101 antagonistic antibody treatment further promoted Treg death in the presence of Dex. This led us to find that TNFR2 expression was crucial for the survival of Tregs. In the mouse EG7 lymphoma model, treatment with TY101 antagonistic antibody potently inhibited tumor growth, resulting in complete regression of the tumor in 60% of mice. The treatment with TY101 antagonistic antibody elicited potent antitumor immune responses in this model, accompanied by enhanced death of Tregs. CONCLUSION This study, therefore, provides clear experimental evidence that TNFR2 antagonistic antibody, TY101, can promote the death of Tregs, and this effect may be attributable to the antitumor effect of TNFR2 antagonistic antibody.
Collapse
|
11
|
Chen FY, Geng CA, Chou CK, Zheng JB, Yang Y, Wang YF, Li TZ, Li P, Chen JJ, Chen X. Distepharinamide, a novel dimeric proaporphine alkaloid from Diploclisia glaucescens, inhibits the differentiation and proliferative expansion of CD4 +Foxp3 + regulatory T cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154482. [PMID: 36202057 DOI: 10.1016/j.phymed.2022.154482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND CD4+Foxp3+ regulatory T cells (Tregs) represent the primary cellular mechanism of tumor immune evasion. Elimination of Treg activity by the pharmacological agent may enhance anti-tumor immune responses. However, Treg-eliminating agents, especially those with small molecules, are rarely reported. PURPOSE To identify small molecule inhibitors of Treg cells from natural products. METHODS Compounds from Diploclisia glaucescens were isolated by column chromatography, and structures were identified by spectroscopic evidence and quantum calculations. The tet-On system for Foxp3-GFP expression in Jurkat T cells was generated to screen Treg inhibitors based on Foxp3 expression. The effect of the compound on TNF-induced proliferative expansion of naturally occurring Tregs (nTregs) and TGF-β-induced generation of Tregs (iTregs) from naive CD4+ Tcells was further examined. RESULTS A novel dimeric proaporphine alkaloid, designated as distepharinamide (DSA) with a symmetric structure isolated from the stems of D. glaucescens, restrained the doxycycline (Doxy)-induced Foxp3-tGFP expression, decreased the half-life of Foxp3 mRNA as well as reduced the mRNA levels of chemokine receptors (CCR4, CCR8 and CCR10) in Jurkat T cells with inducible Foxp3-tGFP expression. In lymphocytes or purified Tregs from wild-type C57BL/6 mice or from C57BL/6-Tg(Foxp3-DTR/EGFP)23.2Spar/Mmjax mice, DSA markedly inhibited TNF-induced proliferative expansion of Tregs present in the unfractionated CD4+ T cells, accompanied by the down-regulation of TNFR2, CD25 and CTLA4 expression on Tregs. Furthermore, DSA potently inhibited TGF-β-induced differentiation of Foxp3-expressing iTregs. Importantly, the expression of Foxp3 mRNA by both nTregs and iTregs was decreased by DSA treatment. Nevertheless, DSA at the same concentrations did not inhibit the proliferation of conventional CD4+ and CD8+ T cells stimulated by anti-CD3/CD28 antibodies. CONCLUSION DSA, a novel dimeric proaporphine alkaloid, potently inhibited the expansion of nTregs and generation of iTregs. Therefore, DSA or its analogs may merit further investigation as novel immunotherapeutic agents.
Collapse
Affiliation(s)
- Feng-Yang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chon-Kit Chou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Jing-Bin Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Yi-Fei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China.
| |
Collapse
|
12
|
Kartikasari AER, Cassar E, Razqan MAM, Szydzik C, Huertas CS, Mitchell A, Plebanski M. Elevation of circulating TNF receptor 2 in cancer: A systematic meta-analysis for its potential as a diagnostic cancer biomarker. Front Immunol 2022; 13:918254. [PMID: 36466914 PMCID: PMC9708892 DOI: 10.3389/fimmu.2022.918254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/27/2022] [Indexed: 08/18/2023] Open
Abstract
High Tumor Necrosis Factor Receptor 2 (TNFR2) expression is characteristic of diverse malignant cells during tumorigenesis. The protein is also expressed by many immunosuppressive cells during cancer development, allowing cancer immune escape. A growing body of evidence further suggests a correlation between the circulating form of this protein and cancer development. Here we conducted a systematic meta-analysis of cancer studies published up until 1st October 2022, in which the circulating soluble TNFR2 (sTNFR2) concentrations in patients with cancers were recorded and their association with cancer risk was assessed. Of the 14,615 identified articles, 44 studies provided data on the correlation between cancer risk and the level of circulating sTNFR2. The pooled means comparison showed a consistently significant increase in the levels of sTNFR2 in diverse cancers when compared to healthy controls. These included colorectal cancer, ovarian cancer, breast cancer, non-Hodgkin's lymphoma, Hodgkin's lymphoma, lung cancer, hepatocarcinoma, and glioblastoma. In a random-effect meta-analysis, the cancer-specific odd ratios (OR) showed significant correlations between increased circulating sTNFR2 levels and the risk of colorectal cancer, non-Hodgkin's lymphoma, and hepatocarcinoma at 1.59 (95% CI:1.20-2.11), 1.98 (95% CI:1.49-2.64) and 4.32 (95% CI:2.25-8.31) respectively. The overall result showed an association between circulating levels of sTNFR2 and the risk of developing cancer at 1.76 (95% CI:1.53-2.02). This meta-analysis supports sTNFR2 as a potential diagnostic biomarker for cancer, albeit with different predictive strengths for different cancer types. This is consistent with a potential key role for TNFR2 involvement in cancer development.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Emily Cassar
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Mohammed A. M. Razqan
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Crispin Szydzik
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Zhao J, Liu B, Liu N, Zhang B, He X, Ma Q, Wang Y. The role of angiogenesis in malignant pleural effusion: from basic research to clinical application. Am J Cancer Res 2022; 12:4879-4891. [PMID: 36504886 PMCID: PMC9729901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural effusion (MPE) is associated with advanced stages of various malignant diseases, especially lung cancer, and is a poor prognostic indicator in these patients. However, the management of MPE remains palliative. A better understanding of the pathogenesis of MPE may lead to the development of new and more effective therapeutic options. Here, we shed light on recent advances in the mechanisms of MPE formation and provide an overview of current targeted therapies for the vascular endothelial growth factor pathway. We also retrospectively enrolled 19 patients with lung adenocarcinoma from the West China Hospital to analyze the efficacy of bevacizumab for MPE using different routes of administration.
Collapse
Affiliation(s)
- Jian Zhao
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Bin Liu
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of ChinaPeople’s South Road, Section 4, Number 55, Chengdu 610041, Sichuan, China
| | - Ning Liu
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Benxia Zhang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Xia He
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Qizhi Ma
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Yongsheng Wang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China,Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| |
Collapse
|
14
|
Deichaite I, Sears TJ, Sutton L, Rebibo D, Morgan K, Nelson T, Rose B, Tamayo P, Ferrara N, Asimakopoulos F, Carter H. Differential regulation of TNFα and IL-6 expression contributes to immune evasion in prostate cancer. J Transl Med 2022; 20:527. [PMID: 36371231 PMCID: PMC9652804 DOI: 10.1186/s12967-022-03731-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The role of the inflammatory milieu in prostate cancer progression is not well understood. Differences in inflammatory signaling between localized and metastatic disease may point to opportunities for early intervention. METHODS We modeled PCa disease progression by analyzing RNA-seq of localized vs. metastatic patient samples, followed by CIBERSORTx to assess their immune cell populations. The VHA CDW registry of PCa patients was analyzed for anti-TNF clinical outcomes. RESULTS We observed statistically significant opposing patterns of IL-6 and TNFα expression between localized and metastatic disease. IL-6 was robustly expressed in localized disease and downregulated in metastatic disease. The reverse was observed with TNFα expression. Metastatic disease was also characterized by downregulation of adhesion molecule E-selectin, matrix metalloproteinase ADAMTS-4 and a shift to M2 macrophages whereas localized disease demonstrated a preponderance of M1 macrophages. Treatment with anti-TNF agents was associated with earlier stage disease at diagnosis. CONCLUSIONS Our data points to clearly different inflammatory contexts between localized and metastatic prostate cancer. Primary localized disease demonstrates local inflammation and adaptive immunity, whereas metastases are characterized by immune cold microenvironments and a shift towards resolution of inflammation and tissue repair. Therapies that interfere with these inflammatory networks may offer opportunities for early intervention in monotherapy or in combination with immunotherapies and anti-angiogenic approaches.
Collapse
Affiliation(s)
- Ida Deichaite
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Timothy J Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Leisa Sutton
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniel Rebibo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kylie Morgan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tyler Nelson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Brent Rose
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Urology, University of California San Diego, La Jolla, CA, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Fotis Asimakopoulos
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Medler J, Kucka K, Wajant H. Tumor Necrosis Factor Receptor 2 (TNFR2): An Emerging Target in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14112603. [PMID: 35681583 PMCID: PMC9179537 DOI: 10.3390/cancers14112603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the great success of TNF blockers in the treatment of autoimmune diseases and the identification of TNF as a factor that influences the development of tumors in many ways, the role of TNFR2 in tumor biology and its potential suitability as a therapeutic target in cancer therapy have long been underestimated. This has been fundamentally changed with the identification of TNFR2 as a regulatory T-cell (Treg)-stimulating factor and the general clinical breakthrough of immunotherapeutic approaches. However, considering TNFR2 as a sole immunosuppressive factor in the tumor microenvironment does not go far enough. TNFR2 can also co-stimulate CD8+ T-cells, sensitize some immune and tumor cells to the cytotoxic effects of TNFR1 and/or acts as an oncogene. In view of the wide range of cancer-associated TNFR2 activities, it is not surprising that both antagonists and agonists of TNFR2 are considered for tumor therapy and have indeed shown overwhelming anti-tumor activity in preclinical studies. Based on a brief summary of TNFR2 signaling and the immunoregulatory functions of TNFR2, we discuss here the main preclinical findings and insights gained with TNFR2 agonists and antagonists. In particular, we address the question of which TNFR2-associated molecular and cellular mechanisms underlie the observed anti-tumoral activities of TNFR2 agonists and antagonists.
Collapse
|
16
|
Tumor-Associated Regulatory T Cells in Non-Small-Cell Lung Cancer: Current Advances and Future Perspectives. J Immunol Res 2022; 2022:4355386. [PMID: 35497874 PMCID: PMC9054468 DOI: 10.1155/2022/4355386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most threatening malignant tumors to human health, with the overall 5-year survival rate being less than 30%. Regulatory T cells (Tregs), a functional subset of T cells, maintain immunologic immunological self-tolerance and homeostasis. Accumulating evidence has uncovered their implicated roles in various cancers in recent years. In NSCLC, they are associated with staging, therapeutic efficacy, and prognosis by infiltrating in tissues and thereby attenuating immunologic anticancer effects in patients. Tumor-associated Tregs display distinct immune signatures in NSCLC compared to thymus-derived Tregs, playing an important role in remodeling the tumor microenvironment (TME). Targeting Tregs has become a novel direction for NSCLC patients, such as disrupting their immune-suppressive functions, blocking their trafficking into tumors, and inhibiting their development and/or activation. This review is aimed at elucidating the molecular mechanisms of tumor-associated Tregs in NSCLC and providing therapeutic targets relevant to Tregs.
Collapse
|
17
|
Niu Y, Zhou Q. Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion. Cell Mol Life Sci 2022; 79:194. [PMID: 35298721 PMCID: PMC11072909 DOI: 10.1007/s00018-022-04227-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
Malignant pleural effusion (MPE) is an exudative effusion caused by primary or metastatic pleural carcinosis. Th17 cells and their cytokines are critical components in various disease including MPE. In this review, we summarize current published articles regarding the multifunctional roles of Th17 cells and their related cytokines in MPE. Th17 cells are accumulated in MPE compared with paired serum via certain manners. The upregulation of Th17 cells and the interactions between Th17 cells and other immune cells, such as Th1 cells, Th9 cells, regulatory T cells and B cells, are reported to be involved in the formation and development of MPE. In addition, cytokines, which are elaborated by Th17 cells, including IL-17A, IL-17F, IL-21, IL-22, IL-26, GM-CSF, or associated with Th17 cells differentiation, including IL-1β, IL-6, IL-23, TGF-β, are linked to the pathogenesis of MPE through exerting pro- or anti-tumorigenic functions on their own as well as regulating the generation and differentiation of Th17 cells in MPE. Based on these findings, we proposed that Th17 cells and their cytokines might be diagnostic or prognostic tools and potential therapeutic targets for MPE.
Collapse
Affiliation(s)
- Yiran Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Chen Y, Jia M, Wang S, Xu S, He N. Antagonistic Antibody Targeting TNFR2 Inhibits Regulatory T Cell Function to Promote Anti-Tumor Activity. Front Immunol 2022; 13:835690. [PMID: 35251028 PMCID: PMC8889907 DOI: 10.3389/fimmu.2022.835690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Infiltration of regulatory T cells (Tregs) in the tumor microenvironment suppresses anti-tumor immune response, and promotes tumor progression. Tumor necrosis factor receptor-2 (TNFR2), which is highly expressed on Tregs, activates Tregs through nuclear factor kappa B (NF-κB) pathway. Moreover, TNFR2+ Tregs have been shown to be most suppressive among all Tregs populations in tumor. Due to the unique expression pattern and function of TNFR2 on Tregs, a TNFR2 blocking antibody is expected to compromise Tregs function, relieve Tregs-mediated immunosuppression, and hence to enhance anti-tumor immune response. AN3025 is an antagonistic anti-human TNFR2 (hTNFR2) antibody that is currently under preclinical development. This study investigates the immunomodulatory and anti-tumor activity of AN3025. AN3025 was generated through rabbit immunization with extracellular domain of human TNFR2 and subsequent humanization by complementarity-determining regions (CDRs) grafting. AN3025 binds to the extracellular domain of both human and cynomolgus with sub-nanomolar affinity and specificity, but not mouse or rat TNFR2. AN3025 inhibited tumor necrosis factor alpha (TNFα) induced cell death of hTNFR2-overexpressing Jurkat cells by competing with TNFα for binding to hTNFR2. In the Tregs/T effector co-culture assay, AN3025 increased T effector proliferation and enhanced interferon gamma (IFNγ) production. As a monotherapy, AN3025 significantly inhibited MC38 tumor growth in TNFR2 humanized mouse model. Subsequent flow cytometry (FACS) and immunohistochemistry (IHC) analysis revealed that administration of AN3025 led to decreased Tregs population, increased CD4+ and CD8+ T cell numbers in the tumor. The anti-tumor activity of AN3025 was dependent on the existence of CD4+ and CD8+ T cells, as depletion of CD4+ and CD8+ T cells abolished the anti-tumor activity of AN3025. In addition, AN3025 in combination with anti-PD-1 antibody demonstrated stronger in-vivo anti-tumor activity. The potent anti-tumor efficacy of AN3025, either as a monotherapy or in combination with anti-PD-1 antibody, supports its further clinical development for the treatment of various human tumors.
Collapse
Affiliation(s)
- Yonglin Chen
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| | - Manxue Jia
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| | - Sharon Wang
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| | - Sherry Xu
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| | - Nanhai He
- Department of Biosciences, Adlai Nortye USA Inc., North Brunswick, NJ, United States
| |
Collapse
|
19
|
Okuzono Y, Muraki Y, Sato S. TNFR2 pathways are fully active in cancer regulatory T cells. Biosci Biotechnol Biochem 2022; 86:351-361. [PMID: 35015831 DOI: 10.1093/bbb/zbab226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Tumor necrosis factor receptor 2 (TNFR2), a membrane-bound tumor necrosis factor receptor expressed by regulatory T cells (Tregs), participates in Treg proliferation. Although a specific TNFR2 pathway has been reported, the signaling mechanism has not been completely elucidated. This study sought to clarify TNFR2 signaling in human Tregs using amplicon sequencing and single-cell RNA sequencing to assess Tregs treated with a TNFR2 agonist antibody. Pathway enrichment analysis based on differentially expressed genes highlighted tumor necrosis factor α signaling via nuclear factor kappa B, interleukin-2 signal transducer and activator of transcription 5 signaling, interferon-γ response, and cell proliferation-related pathways in Tregs after TNFR2 activation. TNFR2-high Treg-focused analysis found that these pathways were fully activated in cancer Tregs, showing high TNFR2 expression. Collectively, these findings suggest that TNFR2 orchestrates multiple pathways in cancer Tregs, which could help cancer cells escape immune surveillance, making TNFR2 signaling a potential anticancer therapy target.
Collapse
Affiliation(s)
- Yuumi Okuzono
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Yo Muraki
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Shuji Sato
- Immunology Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|