1
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
2
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
3
|
Pasdelou MP, Byelyayeva L, Malmström S, Pucheu S, Peytavy M, Laullier H, Hodges DB, Tzafriri AR, Naert G. Ototoxicity: a high risk to auditory function that needs to be monitored in drug development. Front Mol Neurosci 2024; 17:1379743. [PMID: 38756707 PMCID: PMC11096496 DOI: 10.3389/fnmol.2024.1379743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Hearing loss constitutes a major global health concern impacting approximately 1.5 billion people worldwide. Its incidence is undergoing a substantial surge with some projecting that by 2050, a quarter of the global population will experience varying degrees of hearing deficiency. Environmental factors such as aging, exposure to loud noise, and the intake of ototoxic medications are implicated in the onset of acquired hearing loss. Ototoxicity resulting in inner ear damage is a leading cause of acquired hearing loss worldwide. This could be minimized or avoided by early testing of hearing functions in the preclinical phase of drug development. While the assessment of ototoxicity is well defined for drug candidates in the hearing field - required for drugs that are administered by the otic route and expected to reach the middle or inner ear during clinical use - ototoxicity testing is not required for all other therapeutic areas. Unfortunately, this has resulted in more than 200 ototoxic marketed medications. The aim of this publication is to raise awareness of drug-induced ototoxicity and to formulate some recommendations based on available guidelines and own experience. Ototoxicity testing programs should be adapted to the type of therapy, its indication (targeting the ear or part of other medications classes being potentially ototoxic), and the number of assets to test. For multiple molecules and/or multiple doses, screening options are available: in vitro (otic cell assays), ex vivo (cochlear explant), and in vivo (in zebrafish). In assessing the ototoxicity of a candidate drug, it is good practice to compare its ototoxicity to that of a well-known control drug of a similar class. Screening assays provide a streamlined and rapid method to know whether a drug is generally safe for inner ear structures. Mammalian animal models provide a more detailed characterization of drug ototoxicity, with a possibility to localize and quantify the damage using functional, behavioral, and morphological read-outs. Complementary histological measures are routinely conducted notably to quantify hair cells loss with cochleogram. Ototoxicity studies can be performed in rodents (mice, rats), guinea pigs and large species. However, in undertaking, or at the very least attempting, all preclinical investigations within the same species, is crucial. This encompasses starting with pharmacokinetics and pharmacology efficacy studies and extending through to toxicity studies. In life read-outs include Auditory Brainstem Response (ABR) and Distortion Product OtoAcoustic Emissions (DPOAE) measurements that assess the activity and integrity of sensory cells and the auditory nerve, reflecting sensorineural hearing loss. Accurate, reproducible, and high throughput ABR measures are fundamental to the quality and success of these preclinical trials. As in humans, in vivo otoscopic evaluations are routinely carried out to observe the tympanic membrane and auditory canal. This is often done to detect signs of inflammation. The cochlea is a tonotopic structure. Hair cell responsiveness is position and frequency dependent, with hair cells located close to the cochlea apex transducing low frequencies and those at the base transducing high frequencies. The cochleogram aims to quantify hair cells all along the cochlea and consequently determine hair cell loss related to specific frequencies. This measure is then correlated with the ABR & DPOAE results. Ototoxicity assessments evaluate the impact of drug candidates on the auditory and vestibular systems, de-risk hearing loss and balance disorders, define a safe dose, and optimize therapeutic benefits. These types of studies can be initiated during early development of a therapeutic solution, with ABR and otoscopic evaluations. Depending on the mechanism of action of the compound, studies can include DPOAE and cochleogram. Later in the development, a GLP (Good Laboratory Practice) ototoxicity study may be required based on otic related route of administration, target, or known potential otic toxicity.
Collapse
|
4
|
Lue PY, Oliver MH, Neeff M, Thorne PR, Suzuki-Kerr H. Sheep as a large animal model for hearing research: comparison to common laboratory animals and humans. Lab Anim Res 2023; 39:31. [PMID: 38012676 PMCID: PMC10680324 DOI: 10.1186/s42826-023-00182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Sensorineural hearing loss (SNHL), caused by pathology in the cochlea, is the most common type of hearing loss in humans. It is generally irreversible with very few effective pharmacological treatments available to prevent the degenerative changes or minimise the impact. Part of this has been attributed to difficulty of translating "proof-of-concept" for novel treatments established in small animal models to human therapies. There is an increasing interest in the use of sheep as a large animal model. In this article, we review the small and large animal models used in pre-clinical hearing research such as mice, rats, chinchilla, guinea pig, rabbit, cat, monkey, dog, pig, and sheep to humans, and compare the physiology, inner ear anatomy, and some of their use as model systems for SNHL, including cochlear implantation surgeries. Sheep have similar cochlear anatomy, auditory threshold, neonatal auditory system development, adult and infant body size, and number of birth as humans. Based on these comparisons, we suggest that sheep are well-suited as a potential translational animal model that bridges the gap between rodent model research to the clinical use in humans. This is especially in areas looking at changes across the life-course or in specific areas of experimental investigation such as cochlear implantation and other surgical procedures, biomedical device development and age-related sensorineural hearing loss research. Combined use of small animals for research that require higher throughput and genetic modification and large animals for medical translation could greatly accelerate the overall translation of basic research in the field of auditory neuroscience from bench to clinic.
Collapse
Affiliation(s)
- Po-Yi Lue
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
| | - Mark H Oliver
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Ngapouri Research Farm Laboratory, University of Auckland, Waiotapu, New Zealand
| | - Michel Neeff
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Surgery, Auckland District Health Board, Auckland, New Zealand
| | - Peter R Thorne
- Department of Physiology, The University of Auckland, Auckland, New Zealand
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand
- Section of Audiology, The University of Auckland, Auckland, New Zealand
| | - Haruna Suzuki-Kerr
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
- Eisdell Moore Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Tisi A, Palaniappan S, Maccarrone M. Advanced Omics Techniques for Understanding Cochlear Genome, Epigenome, and Transcriptome in Health and Disease. Biomolecules 2023; 13:1534. [PMID: 37892216 PMCID: PMC10605747 DOI: 10.3390/biom13101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced genomics, transcriptomics, and epigenomics techniques are providing unprecedented insights into the understanding of the molecular underpinnings of the central nervous system, including the neuro-sensory cochlea of the inner ear. Here, we report for the first time a comprehensive and updated overview of the most advanced omics techniques for the study of nucleic acids and their applications in cochlear research. We describe the available in vitro and in vivo models for hearing research and the principles of genomics, transcriptomics, and epigenomics, alongside their most advanced technologies (like single-cell omics and spatial omics), which allow for the investigation of the molecular events that occur at a single-cell resolution while retaining the spatial information.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Sakthimala Palaniappan
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
6
|
Domarecka E, Szczepek AJ. Universal Recommendations on Planning and Performing the Auditory Brainstem Responses (ABR) with a Focus on Mice and Rats. Audiol Res 2023; 13:441-458. [PMID: 37366685 DOI: 10.3390/audiolres13030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Translational audiology research aims to transfer basic research findings into practical clinical applications. While animal studies provide essential knowledge for translational research, there is an urgent need to improve the reproducibility of data derived from these studies. Sources of variability in animal research can be grouped into three areas: animal, equipment, and experimental. To increase standardization in animal research, we developed universal recommendations for designing and conducting studies using a standard audiological method: auditory brainstem response (ABR). The recommendations are domain-specific and are intended to guide the reader through the issues that are important when applying for ABR approval, preparing for, and conducting ABR experiments. Better experimental standardization, which is the goal of these guidelines, is expected to improve the understanding and interpretation of results, reduce the number of animals used in preclinical studies, and improve the translation of knowledge to the clinic.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
7
|
Kim M, Park DH, Choi H, Song I, Lim KH, Yoon HS, Rah YC, Choi J. A Multicenter Cohort Study on the Association between Metformin Use and Hearing Loss in Patients with Type 2 Diabetes Mellitus Using a Common Data Model. J Clin Med 2023; 12:jcm12093145. [PMID: 37176586 PMCID: PMC10179543 DOI: 10.3390/jcm12093145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
We attempted to explore the association between metformin use and hearing loss in in a large-scale study. This retrospective multicenter cohort study assessed the data of patients with type 2 diabetes mellitus (DM) aged over 40 years using the Observational Health Data Science and Informatics open-source software and the Common Data Model database from 1 January 2002 to 31 December 2019. Each participant was selected using the ICD-10-CM diagnosis code E11 for type 2 DM with sensorineural hearing loss. The participants were divided into metformin and non-metformin users. The outcome measure was the first occurrence of hearing loss after the diagnosis of DM as measured by the CDM cohort study. A total of 80,596 patients, including 46,152 metformin users and 34,444 non-metformin users from three hospitals were assessed. After calibration, we compared the risk of hearing loss using Kaplan-Meier curves, and found significant differences between the groups. The calibrated hazard ratio in the three hospitals (0.79 [95% confidence interval, 0.57-1.12]) was summarized. These findings suggest that the probability of hearing loss-free survival in the metformin user group is higher than that in the non-metformin user group.
Collapse
Affiliation(s)
- Minjin Kim
- Department of Biostatistics, Korea University College of Medicine, Seoul 02842, Republic of Korea
- Medical Science Research Center, Korea University Ansan Hospital, Ansan 15355, Republic of Korea
| | - Dong Heun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Hangseok Choi
- Department of Biostatistics, Korea University College of Medicine, Seoul 02842, Republic of Korea
- Medical Science Research Center, Korea University Ansan Hospital, Ansan 15355, Republic of Korea
| | - Insik Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Kang Hyeon Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Hee Soo Yoon
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
- Department of Medical Informatics, Korea University College of Medicine, Seoul 02842, Republic of Korea
| |
Collapse
|
8
|
Freyer DR, Orgel E, Knight K, Krailo M. Special considerations in the design and implementation of pediatric otoprotection trials. J Cancer Surviv 2023; 17:4-16. [PMID: 36637630 DOI: 10.1007/s11764-022-01312-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE Cisplatin-induced hearing loss (CIHL) is a common late effect after childhood cancer treatment having profound, lifelong consequences that lower quality of life. The recent identification of intravenous sodium thiosulfate (STS) as an effective agent for preventing pediatric CIHL represents a paradigm shift that has created new opportunities for expanding STS usage and developing additional otoprotectants. The purpose of this paper is to discuss key considerations and recommendations for the design and implementation of future pediatric otoprotection trials. METHODS An approach synthesizing published data and collective experience was used. RESULTS Key issues were identified in the categories of translational research, trial designs for systemic and intratympanic agents, measurement of ototoxicity, and biostatistical challenges. CONCLUSIONS Future pediatric otoprotection trials should emphasize (1) deep integration of preclinical and early-phase studies; (2) an embedded or free-standing design for systemic agents based on mechanistic considerations; (3) use of suitable audiologic testing batteries for children, SIOP grading criteria, and submission of raw audiologic data for central review; and (4) novel endpoints and innovative study designs that maximize trial efficiency for limited sample sizes. Additional recommendations include routine collection of DNA specimens for assessing modifying effects of genetic susceptibility and meaningful inclusion of patient/family advocates for informing trial development. IMPLICATIONS FOR CANCER SURVIVORS Changing the historical paradigm from acceptance to prevention of pediatric CIHL through expanded research with existing and emerging otoprotectants will dramatically improve quality of life for future childhood cancer survivors exposed to cisplatin.
Collapse
Affiliation(s)
- David R Freyer
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Departments of Pediatrics, Medicine, and Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Etan Orgel
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kristin Knight
- Department of Audiology, Doernbecher Children's Hospital, Portland, OR, USA
- Oregon Health and Science University, Portland, OR, USA
| | - Mark Krailo
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Wu K, Lan L, Shi W, Li J, Xie L, Xiong F, Wang H, Wang Q. The audiological characteristics of infant auditory neuropathy patients without otoacoustic emission. Laryngoscope Investig Otolaryngol 2022; 7:2095-2102. [PMID: 36544924 PMCID: PMC9764789 DOI: 10.1002/lio2.978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
Objective To explore the audiological characteristics of infant auditory neuropathy (AN) patients with cochlear microphonic (CM) recorded but absent otoacoustic emission (OAE), clinically reducing the rate of missed diagnosis of AN. Methods We retrospectively analyzed the audiological characteristics of infant AN patients in our medical center between 2003 and 2020. A total of 18 infant AN patients were OAE absent group, with CM present and distortion product otoacoustic emission (DPOAE) absent in both ears. A total of 44 infant AN patients were OAE present group, with CM and DPOAE present in both ears. Results (1) The found age in OAE absent group was 0.9 (0.02) years old, which was younger than 1.11 (1.63) years old in OAE present group (p = .041). (2) The CM threshold of OAE absent group was 80 (10) dB nHL, which was significantly higher (p < .001) than OAE present group. CM amplitude were smaller (p < .05), and CM duration were shorter (p < .05) in OAE absent group. (3) The thresholds of auditory steady-state response (ASSR) at 0.5, 1, 2, and 4 kHz were 94 (10), 94 (10), 87 (20), and 81 (10) dB HL cg, respectively in OAE absent group, which were higher than those in OAE present group (p < .01). Conclusions Infant AN patients with CM present and OAE absent showed earlier detection and different audiological performance, which was manifested in ASSR thresholds, audiometric configurations and CM performance. CM thresholds were increased, amplitude and duration were decreased, non-linearity of I/O function was reduced. Level of Evidence 4.
Collapse
Affiliation(s)
- Kaili Wu
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhouChina
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck SurgeryChinese PLA General Hospital, Medical School of Chinese PLABeijingChina
| | - Lan Lan
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck SurgeryChinese PLA General Hospital, Medical School of Chinese PLABeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesChinese PLA General HospitalBeijingChina
| | - Wei Shi
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck SurgeryChinese PLA General Hospital, Medical School of Chinese PLABeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesChinese PLA General HospitalBeijingChina
| | - Jin Li
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck SurgeryChinese PLA General Hospital, Medical School of Chinese PLABeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesChinese PLA General HospitalBeijingChina
| | - Linyi Xie
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck SurgeryChinese PLA General Hospital, Medical School of Chinese PLABeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesChinese PLA General HospitalBeijingChina
| | - Fen Xiong
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck SurgeryChinese PLA General Hospital, Medical School of Chinese PLABeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesChinese PLA General HospitalBeijingChina
| | - Hongyang Wang
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck SurgeryChinese PLA General Hospital, Medical School of Chinese PLABeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesChinese PLA General HospitalBeijingChina
| | - Qiuju Wang
- Department of Audiology and Vestibular Medicine, Senior Department of Otolaryngology, Head and Neck SurgeryChinese PLA General Hospital, Medical School of Chinese PLABeijingChina
- National Clinical Research Center for Otolaryngologic DiseasesChinese PLA General HospitalBeijingChina
| |
Collapse
|
10
|
Zou M, Huang M, Zhang J, Chen R. Exploring the effects and mechanisms of organophosphorus pesticide exposure and hearing loss. Front Public Health 2022; 10:1001760. [PMID: 36438228 PMCID: PMC9692084 DOI: 10.3389/fpubh.2022.1001760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many environmental factors, such as noise, chemicals, and heavy metals, are mostly produced by human activities and easily induce acquired hearing loss. Organophosphorus pesticides (OPs) constitute a large variety of chemicals and have high usage with potentiate damage to human health. Moreover, their metabolites also show a serious potential contamination of soil, water, and air, leading to a serious impact on people's health. Hearing loss affects 430 million people (5.5% of the global population), bringing a heavy burden to individual patients and their families and society. However, the potential risk of hearing damage by OPs has not been taken seriously. In this study, we summarized the effects of OPs on hearing loss from epidemiological population studies and animal experiments. Furthermore, the possible mechanisms of OP-induced hearing loss are elucidated from oxidative stress, DNA damage, and inflammatory response. Overall, this review provides an overview of OP exposure alone or with noise that leads to hearing loss in human and experimental animals.
Collapse
|
11
|
Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:cells11203331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
|
12
|
Ren H, Hu B, Jiang G. Advancements in prevention and intervention of sensorineural hearing loss. Ther Adv Chronic Dis 2022; 13:20406223221104987. [PMID: 35782345 PMCID: PMC9243368 DOI: 10.1177/20406223221104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
The inner ear is a complex and difficult organ to study, and sensorineural hearing loss (SNHL) is a multifactorial sensorineural disorder with characteristics of impaired speech discrimination, recognition, sound detection, and localization. Till now, SNHL is recognized as an incurable disease because the potential mechanisms underlying SNHL have not been elucidated. The risk of developing SNHL is no longer viewed as primarily due to environmental factors. Instead, SNHL seems to result from a complicated interplay of genetic and environmental factors affecting numerous fundamental cellular processes. The complexity of SNHL is presented as an inability to make an early diagnosis at the earliest stages of the disease and difficulties in the management of symptoms during the process. To date, there are no treatments that slow the neurodegenerative process. In this article, we review the recent advances about SHNL and discuss the complexities and challenges of prevention and intervention of SNHL.
Collapse
Affiliation(s)
- Hongmiao Ren
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Bing Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guangli Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|