1
|
Antonelli A, Battaglia AM, Sacco A, Petriaggi L, Giorgio E, Barone S, Biamonte F, Giudice A. Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward. FRONTIERS IN ORAL HEALTH 2024; 5:1461022. [PMID: 39296524 PMCID: PMC11408306 DOI: 10.3389/froh.2024.1461022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
2
|
He Y, Xu H, Liu Y, Kempa S, Vechiatto C, Schmidt R, Yilmaz EY, Heidemann L, Schnorr J, Metzkow S, Schellenberger E, Häckel A, Patzak A, Müller DN, Savic LJ. The Effects of Hypoxia on the Immune-Metabolic Interplay in Liver Cancer. Biomolecules 2024; 14:1024. [PMID: 39199411 PMCID: PMC11352590 DOI: 10.3390/biom14081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
M2-like macrophages promote tumor growth and cancer immune evasion. This study used an in vitro model to investigate how hypoxia and tumor metabolism affect macrophage polarization. Liver cancer cells (HepG2 and VX2) and macrophages (THP1) were cultured under hypoxic (0.1% O2) and normoxic (21% O2) conditions with varying glucose levels (2 g/L or 4.5 g/L). Viability assays and extracellular pH (pHe) measurements were conducted over 96 hours. Macrophages were exposed to the tumor-conditioned medium (TCM) from the cancer cells, and polarization was assessed using arginase and nitrite assays. GC-MS-based metabolic profiling quantified TCM meta-bolites and correlated them with M2 polarization. The results showed that pHe in TCMs decreased more under hypoxia than normoxia (p < 0.0001), independent of glucose levels. The arginase assay showed hypoxia significantly induced the M2 polarization of macrophages (control group: p = 0.0120,0.1%VX2-TCM group: p = 0.0149, 0.1%HepG2-TCM group: p < 0.0001, 0.1%VX2-TCMHG group: p = 0.0001, and 0.1%HepG2-TCMHG group: p < 0.0001). TCMs also induced M2 polarization under normoxic conditions, but the strongest M2 polarization occurred when both tumor cells and macrophages were incubated under hypoxia with high glucose levels. Metabolomics revealed that several metabolites, particularly lactate, were correlated with hypoxia and M2 polarization. Under normoxia, elevated 2-amino-butanoic acid (2A-BA) strongly correlated with M2 polarization. These findings suggest that targeting tumor hypoxia could mitigate immune evasion in liver tumors. Lactate drives acidity in hypoxic tumors, while 2A-BA could be a therapeutic target for overcoming immunosuppression in normoxic conditions.
Collapse
Affiliation(s)
- Yubei He
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Han Xu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Yu Liu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Carolina Vechiatto
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Robin Schmidt
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Emine Yaren Yilmaz
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Luisa Heidemann
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Jörg Schnorr
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Susanne Metzkow
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Eyk Schellenberger
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Akvile Häckel
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Dominik N. Müller
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Lynn Jeanette Savic
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
3
|
Chai F, Zhang J, Fu T, Jiang P, Huang Y, Wang L, Yan S, Yan X, Yu L, Xu Z, Wang R, Xu B, Du X, Jiang Y, Zhang J. Identification of SLC2A3 as a prognostic indicator correlated with the NF-κB/EMT axis and immune response in head and neck squamous cell carcinoma. Channels (Austin) 2023; 17:2208928. [PMID: 37134043 PMCID: PMC10158547 DOI: 10.1080/19336950.2023.2208928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
SLC2A3 is an important member of the glucose transporter superfamily. It has been recently suggested that upregulation of SLC2A3 is associated with poor survival and acts as a prognostic marker in a variety of tumors. Unfortunately, the prognostic role of SLC2A3 in head and neck squamous cell carcinoma (HNSC) is less known. In the present study, we analyzed SLC2A3 expression in HNSC and its correlation with prognosis using TCGA and GEO databases. The results showed that SLC2A3 mRNA expression was higher in HNSC compared with adjacent normal tissues, which was validated with our 9 pairs of HNSC specimens. Moreover, high SLC2A3 expression predicted poor prognosis in HNSC patients. Mechanistically, GSEA revealed that high expression of SLC2A3 was enriched in epithelial-mesenchymal transition (EMT) and NF-κB signaling. In HNSC cell lines, SLC2A3 knockdown inhibited cell proliferation and migration. In addition, NF-κB P65 and EMT-related gene expression was suppressed upon SLC2A3 knockdown, indicating that SLC2A3 may play a preeminent role in the progression of HNSC through the NF-κB/EMT axis. Meanwhile, the expression of SLC2A3 was negatively correlated with immune cells, suggesting that SLC2A3 may be involved in the immune response in HNSC. The correlation between SLC2A3 expression and drug sensitivity was further assessed. In conclusion, our study demonstrated that SLC2A3 could predict the prognosis of HNSC patients and mediate the progression of HNSC via the NF-κB/EMT axis and immune responses.
Collapse
Affiliation(s)
- Fangyu Chai
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jingfang Zhang
- Department of Pathology, Shandong First Medical University, Jinan, Shandong, China
| | - Tao Fu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peng Jiang
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yichuan Huang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shu Yan
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xudong Yan
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Longgang Yu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ruohuang Wang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bingqing Xu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoyun Du
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jisheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Liu L, Han L, Dong L, He Z, Gao K, Chen X, Guo JC, Zhao Y. The hypoxia-associated genes in immune infiltration and treatment options of lung adenocarcinoma. PeerJ 2023; 11:e15621. [PMID: 37576511 PMCID: PMC10414028 DOI: 10.7717/peerj.15621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 08/15/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a common lung cancer with a poor prognosis under standard chemotherapy. Hypoxia is a crucial factor in the development of solid tumors, and hypoxia-related genes (HRGs) are closely associated with the proliferation of LUAD cells. Methods In this study, LUAD HRGs were screened, and bioinformatics analysis and experimental validation were conducted. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were used to gather LUAD RNA-seq data and accompanying clinical information. LUAD subtypes were identified by unsupervised cluster analysis, and immune infiltration analysis of subtypes was conducted by GSVA and ssGSEA. Cox regression and LASSO regression analyses were used to obtain prognosis-related HRGs. Prognostic analysis was used to evaluate HRGs. Differences in enrichment pathways and immunotherapy were observed between risk groups based on GSEA and the TIDE method. Finally, RT-PCR and in vitro experiments were used to confirm prognosis-related HRG expression in LUAD cells. Results Two hypoxia-associated subtypes of LUAD were distinguished, demonstrating significant differences in prognostic analysis and immunological characteristics between subtypes. A prognostic model based on six HRGs (HK1, PDK3, PFKL, SLC2A1, STC1, and XPNPEP1) was developed for LUAD. HK1, SLC2A1, STC1, and XPNPEP1 were found to be risk factors for LUAD. PDK3 and PFKL were protective factors in LUAD patients. Conclusion This study demonstrates the effect of hypoxia-associated genes on immune infiltration in LUAD and provides options for immunotherapy and therapeutic strategies in LUAD.
Collapse
Affiliation(s)
- Liu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lina Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihao He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Cheng Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Research Center for Ubiquitous Computing Systems (CUbiCS), Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Noda Y, Ishida M, Yamaka R, Ueno Y, Sakagami T, Fujisawa T, Iwai H, Tsuta K. MMP14 expression levels accurately predict the presence of extranodal extensions in oral squamous cell carcinoma: a retrospective cohort study. BMC Cancer 2023; 23:142. [PMID: 36765296 PMCID: PMC9921360 DOI: 10.1186/s12885-023-10595-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Extranodal extension (ENE) is an adverse prognostic factor for oral squamous cell carcinoma (OSCC), and patients with OSCC along with ENE require neck dissection. In this study, we developed a novel ENE histology-based pathological predictor using MMP14 expression patterns in small biopsy specimens. METHODS A total of 71 surgically resected tissue, 64 dissected lymph node (LN), and 46 biopsy specimens were collected from 71 patients with OSCC. Immunohistochemical analyses of total MMP14 expression in the tumour nest and cancer-associated fibroblasts (CAFs) were performed using the MMP14 co-scoring system (high- or low-risk). The association analysis of MMP14 expression in metastatic LNs was performed with respect to the presence and absence of ENE. Clinicopathological analyses and multivariate examinations were performed to assess the risks of metastasis and ENE presence. The predictive value of ENE and the impact of ENE and MMP14 expression on 5-year overall survival were examined. RESULTS High-risk MMP14 expression was detected in metastatic LN specimens with ENE. MMP14 expression in tumour nests and CAFs and its overexpression at the tumour-stromal interface significantly correlated with the presence of ENE. The MMP14 co-scoring system was an independent risk predictor for ENE, with sensitivity, specificity, and accuracy of over 80% in biopsy samples; patients with a high risk in the MMP14 co-scoring system had significantly worse prognoses in both resections and biopsies. CONCLUSION The MMP14 co-scoring system accurately predicted ENE presence and poor prognosis via immunohistochemical evaluation of small biopsies. This system is a simple, accurate, and inexpensive immunohistochemical approach that can be used in routine pathological diagnosis for effective treatment planning.
Collapse
Affiliation(s)
- Yuri Noda
- Department of Pathology and Laboratory Medicine, Kansai Medical University Hospital, 2-3-1 Shin-machi, 573-1191, Hirakata, Osaka, Japan. .,Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, 573- 1010, Hirakata, Osaka, Japan.
| | - Mitsuaki Ishida
- Department of Pathology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, 569-8686 Takatsuki, Osaka Japan
| | - Ryosuke Yamaka
- grid.410783.90000 0001 2172 5041Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, 573- 1010 Hirakata, Osaka Japan
| | - Yasuhiro Ueno
- grid.410783.90000 0001 2172 5041Department of Radiology, Kansai Medical University Hospital, 2-3-1 Shinmachi, 573-1191 Hirakata, Osaka Japan
| | - Tomofumi Sakagami
- grid.410783.90000 0001 2172 5041Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, 2-3-1 Shinmachi, 573-1191 Hirakata, Osaka Japan
| | - Takuo Fujisawa
- grid.410783.90000 0001 2172 5041Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, 2-3-1 Shinmachi, 573-1191 Hirakata, Osaka Japan
| | - Hiroshi Iwai
- grid.410783.90000 0001 2172 5041Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, 2-3-1 Shinmachi, 573-1191 Hirakata, Osaka Japan
| | - Koji Tsuta
- grid.410783.90000 0001 2172 5041Department of Pathology and Laboratory Medicine, Kansai Medical University Hospital, 2-3-1 Shin-machi, 573-1191 Hirakata, Osaka Japan ,grid.410783.90000 0001 2172 5041Department of Pathology, Kansai Medical University, 2-5-1 Shin-machi, 573- 1010 Hirakata, Osaka Japan
| |
Collapse
|
6
|
Huang G, Chen S, Washio J, Paka Lubamba G, Takahashi N, Li C. Glycolysis-Related Gene Analyses Indicate That DEPDC1 Promotes the Malignant Progression of Oral Squamous Cell Carcinoma via the WNT/β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:ijms24031992. [PMID: 36768316 PMCID: PMC9916831 DOI: 10.3390/ijms24031992] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Increasing evidence suggests that aerobic glycolysis is related to the progression of oral squamous cell carcinoma (OSCC). Hence, we focused on glycolysis-related gene sets to screen for potential therapeutic targets for OSCC. The expression profiles of OSCC samples and normal controls were obtained from The Cancer Genome Atlas (TCGA). Then, the differentially expressed gene sets were selected from the official GSEA website following extraction of the differentially expressed core genes (DECGs). Subsequently, we tried to build a risk model on the basis of DECGs to predict the prognosis of OSCC patients via Cox regression analysis. Furthermore, crucial glycolysis-related genes were selected to explore their biological roles in OSCC. Two active glycolysis-related pathways were acquired and 66 DECGs were identified. Univariate Cox regression analysis showed that six genes, including HMMR, STC2, DDIT4, DEPDC1, SLC16A3, and AURKA, might be potential prognostic factors. Subsequently, a risk formula consisting of DEPDC1, DDIT4, and SLC16A3 was established on basis of the six molecules. Furthermore, DEPDC1 was proven to be related to advanced stage cancer and lymph node metastasis. Moreover, functional experiments suggested that DEPDC1 promoted the aerobic glycolysis, migration, and invasion of OSCC via the WNT/β-catenin pathway. The risk score according to glycolysis-related gene expression might be an independent prognostic factor in OSCC. In addition, DEPDC1 was identified as playing a carcinogenic role in OSCC progression, suggesting that DEPDC1 might be a novel biomarker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Guangzhao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Su Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Grace Paka Lubamba
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Chunjie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Correspondence:
| |
Collapse
|
7
|
Pan S, Li Y, He H, Cheng S, Li J, Pathak JL. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis. Front Pharmacol 2023; 13:1098851. [PMID: 36686646 PMCID: PMC9852864 DOI: 10.3389/fphar.2022.1098851] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Periodontitis is a chronic inflammatory oral disease that destroys soft and hard periodontal support tissues. Multiple cell death modes including apoptosis, necroptosis, pyroptosis, and ferroptosis play a crucial role in the pathogenicity of inflammatory diseases. This study aimed to identify genes associated with ferroptosis, necroptosis, and pyroptosis in different cells present in the periodontium of periodontitis patients. Methods: Gingival tissues' mRNA sequencing dataset GSE173078 of 12 healthy control and 12 periodontitis patients' and the microarray dataset GSE10334 of 63 healthy controls and 64 periodontitis patients' were obtained from Gene Expression Omnibus (GEO) database. A total of 910 differentially expressed genes (DEGs) obtained in GSE173078 were intersected with necroptosis, pyroptosis, and ferroptosis-related genes to obtain the differential genes associated with cell death (DCDEGs), and the expression levels of 21 differential genes associated with cell death were verified with dataset GSE10334. Results: Bioinformatic analysis revealed 21 differential genes associated with cell death attributed to ferroptosis, pyroptosis, and necroptosis in periodontitis patients compared with healthy controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that 21 differential genes associated with cell death were related to various cellular and immunological pathways including inflammatory responses, necroptosis, and osteoclast differentiation. Additionally, the single-cell RNA (scRNA) sequencing data GSE171213 of 4 healthy controls and 5 periodontitis patients' periodontal tissue was analyzed to obtain cell clustering and cell types attributed to differential genes associated with cell death. We found that among 21 DCDEGs, SLC2A3, FPR2, TREM1, and IL1B were mainly upregulated in neutrophils present in the periodontium of periodontitis patients. Gene overlapping analysis revealed that IL-1B is related to necroptosis and pyroptosis, TREM1 and FPR2 are related to pyroptosis, and SLC2A3 is related to ferroptosis. Finally, we utilized the CIBERSORT algorithm to assess the association between DCDEGs and immune infiltration phenotypes, based on the gene expression profile of GSE10334. The results revealed that the upregulated SLC2A3, FPR2, TREM1, and IL1B were positively correlated with neutrophil infiltration in the periodontium. Discussion: The findings provide upregulated SLC2A3, FPR2, TREM1, and IL1B in neutrophils as a future research direction on the mode and mechanism of cell death in periodontitis and their role in disease pathogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Jiang Li
- *Correspondence: Janak L. Pathak, ; Jiang Li,
| | | |
Collapse
|
8
|
He Y, Yang D, Li Y, Xiang J, Wang L, Wang Y. Circular RNA-related CeRNA network and prognostic signature for patients with oral squamous cell carcinoma. Front Pharmacol 2022; 13:949713. [PMID: 36532732 PMCID: PMC9753980 DOI: 10.3389/fphar.2022.949713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/15/2022] [Indexed: 08/10/2023] Open
Abstract
Background: Circular RNA (circRNA) has an important influence on oral squamous cell carcinoma (OSCC) progression as competing endogenous RNAs (ceRNAs). However, the link between ceRNAs and the OSCC immune microenvironment is unknown. The research aimed to find circRNAs implicated in OSCC carcinogenesis and progression and build a circRNA-based ceRNA network to create a reliable OSCC risk prediction model. Methods: The expression profiles of circRNA in OSCC tumors and normal tissues were assessed through RNA sequencing. From the TCGA database, clinicopathological data and expression patterns of microRNAs (miRNAs) and mRNAs were obtained. A network of circRNA-miRNA-mRNA ceRNA was prepared according to these differentially expressed RNAs and was analyzed through functional enrichment. Subsequently, based on the mRNA in the ceRNA network, the influence of the model on prognosis was then evaluated using a risk prediction model. Finally, considering survival, tumor-infiltrating immune cells (TICs), clinicopathological features, immunosuppressive molecules, and chemotherapy efficacy were analyzed. Results: Eleven differentially expressed circRNAs were found in cancer tissues relative to healthy tissues. We established a network of circRNA-miRNA-mRNA ceRNA, and the ceRNA network includes 123 mRNAs, six miRNAs, and four circRNAs. By the assessment of Genomes pathway and Kyoto Encyclopedia of Genes, it is found that in the cellular senescence, PI3K-AKT and mTOR signaling pathway mRNAs were mainly enrichment. An immune-related signature was created utilizing seven immune-related genes in the ceRNA network after univariate and multivariate analysis. The receiver operating characteristic of the nomogram exhibited satisfactory accuracy and predictive potential. According to a Kaplan-Meier analysis, the high-risk group's survival rate was signally lower than the group with low-risk. In addition, risk models were linked to clinicopathological characteristics, TICs, immune checkpoints, and antitumor drug susceptibility. Conclusion: The profiles of circRNAs expression of OSCC tissues differ significantly from normal tissues. Our study established a circRNA-associated ceRNA network associated with OSCC and identified essential prognostic genes. Furthermore, our proposed immune-based signature aims to help research OSCC etiology, prognostic marker screening, and immune response evaluation.
Collapse
Affiliation(s)
- Yaodong He
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Dengcheng Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yunshan Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Junwei Xiang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol Cancer 2022; 21:177. [PMID: 36071472 PMCID: PMC9454207 DOI: 10.1186/s12943-022-01645-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.
Collapse
Affiliation(s)
- Ruixue Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
10
|
Li Z, Lei G, Meng X, Yang Z. Identification of a new five-gene risk score for risk stratification and prognosis prediction in HCC. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:736-754. [PMID: 35532340 DOI: 10.1080/15257770.2022.2071445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Approximately 80% of primary liver cancer (PLC) is hepatocellular carcinoma (HCC), and the prognosis of HCC patients is unfavorable. Further studies are required to develop new prognostic tools for predicting the HCC patients' prognosis. The univariate Cox and LASSO regression were utilized to develop the multi-gene risk score. Single-sample Gene Set Enrichment Analysis (ssGSEA) was employed to assess differences of immune functions and cells. The model performance was evaluated by calibration curve and receiver operating characteristic curve (ROC). And qRT-PCR was utilized to evaluate the genes expression in clinical samples. Finally, a novel five-gene (KIF20A, CENPA, HMMR, G6PD, and ADH4) risk score was developed. Based on the median value of patients' risk scores, patients were divided into two groups: high-risk group and low-risk group. The Overall survival (OS) of patients in high-risk group was obviously poorer than that in the low-risk group. And the five-gene risk score was an independent risk factor correlated with patients' OS. Besides, a nomogram consisting of TNM stage and risk score was established. The results of decision curve, calibration curve, and ROC presented that the prognostic risk score and the nomogram had great predictive capability. Besides, ADH4's mRNA was reduced in HCC tissues, while the mRNA of KIF20A, CENPA, HMMR, and G6PD were overexpressed in HCC tissues. We developed a novel five-gene risk score that could predict HCC patients' prognosis. And these five genes could be promising therapeutic targets for HCC. The five-gene risk score and nomogram may be useful prognostic tools for HCC.
Collapse
Affiliation(s)
- Zhi Li
- Medical School of Chinese PLA and Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guanglin Lei
- Department of Hepatology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Hepatobiliary Surgery Department, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, Hebei, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhanyu Yang
- Medical School of Chinese PLA and Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Lv S, Qian Z, Li J, Piao S, Li J. Identification and Validation of a Hypoxia-Immune-Based Prognostic mRNA Signature for Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5286251. [PMID: 35178089 PMCID: PMC8844353 DOI: 10.1155/2022/5286251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a commonly encountered head and neck malignancy. Increasing evidence shows that there are abnormal immune response and chronic cell hypoxia in the development of OSCC. However, there is a lack of a reliable hypoxia-immune-based gene signature that may serve to accurately prognosticate OSCC. METHODS The mRNA expression data of OSCC patients were extracted from the TCGA and GEO databases. Hypoxia status was identified using the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm. Both ESTIMATE and single-sample gene-set enrichment analysis (ssGSEA) were used for further evaluation of immune status. The DEGs in different hypoxia and immune status were determined, and univariate Cox regression was used to identify significantly prognostic genes. A machine learning method, least absolute shrinkage and selection operator (LASSO) Cox regression analysis, allowed us to construct prognostic gene signature to predict the overall survival (OS) of OSCC patients. RESULTS A total of 773 DEGs were identified between hypoxia high and low groups. According to immune cell infiltration, patients were divided into immune high, medium, and low groups and immune-associated DEGs were identified. A total of 193 overlapped DEGs in both immune and hypoxia status were identified. With the univariate and LASSO Cox regression model, eight signature mRNAs (FAM122C, RNF157, RANBP17, SOWAHA, KIAA1211, RIPPLY2, INSL3, and DNAH1) were selected for further calculation of their respective risk scores. The risk score showed a significant association with age and perineural and lymphovascular invasion. In the GEO validation cohort, a better OS was observed in patients from the low-risk group in comparison with those in the high-risk group. High-risk patients also demonstrated different immune infiltration characteristics from the low-risk group and the low-risk group showed potentially better immunotherapy efficacy in contrast to high-risk ones. CONCLUSION The hypoxia-immune-based gene signature has prognostic potential in OSCC.
Collapse
Affiliation(s)
- Shaohua Lv
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
- Stomatology School, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang, China
| | - Zhipeng Qian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianhao Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Songlin Piao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jichen Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
- Stomatology School, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Liu H, Wang X, Shen P, Ni Y, Han X. The basic functions of phosphoglycerate kinase 1 and its roles in cancer and other diseases. Eur J Pharmacol 2022; 920:174835. [DOI: 10.1016/j.ejphar.2022.174835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
|
13
|
Chen J, Wang G, Zhang D, Luo X, Zhang D, Zhang Y. Construction of novel hypoxia-related gene model for prognosis and tumor microenvironment in endometrial carcinoma. Front Endocrinol (Lausanne) 2022; 13:1075431. [PMID: 36589842 PMCID: PMC9797861 DOI: 10.3389/fendo.2022.1075431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Endometrial cancer is currently one of the three most common female reproductive cancers, which seriously threatens women's lives and health. Hypoxia disrupts the tumor microenvironment, thereby affecting tumor progression and drug resistance. METHODS We established hypoxia-related gene model to predict patient prognosis and 1-, 3-, and 5-year overall survival rates. Then, the expression level of hypoxia-related genes and survival data were extracted for comprehensive analysis by Cox regression analysis, and the model was established. RESULTS We analyzed the survival and prognosis of patients in the high and low-risk groups. The Kaplan-Meier curve showed that the low-risk group is associated with a better survival rate. The 1-, 3-, and 5-year AUC values of the model were 0.680, 0.698, and 0.687, respectively. Finally, we found that LAG3 may be a potential immune checkpoint for endometrial cancer. CONCLUSION We found four hypoxia-related genes (ANXA2, AKAP12, NR3C1, and GPI) associated with prognosis. The hypoxia-related gene model can also predict prognosis and tumor microenvironment in endometrial cancer.
Collapse
Affiliation(s)
- Junfeng Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guocheng Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Donghai Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaomei Luo
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Da Zhang
- Department of Gynecological Oncology, Changchun Center Hospital, Changchun, Jilin, China
- *Correspondence: Yongli Zhang, ; Da Zhang,
| | - Yongli Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongli Zhang, ; Da Zhang,
| |
Collapse
|