1
|
Yang R, Wang X, Zhang Y, Jin L, Zhao K, Chen J, Shang X, Zhou Y, Yu H. Genetic variations in IGF2BP2 and CAPN10 and their interaction with environmental factors increase gestational diabetes mellitus risk in Chinese women. Gene 2025; 941:149226. [PMID: 39798826 DOI: 10.1016/j.gene.2025.149226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
AIM This study aims to investigate the association of the genetic variations in IGF2BP2 and CAPN10 as well as gene-environment interactions with the risk of gestational diabetes (GDM) in Chinese women. MATERIALS AND METHODS A total of 1,566 pregnant Chinese women participated in this case-control study. We employed targeted next-generation sequencing to analyze specific SNPs in IGF2BP2 (rs11927381, rs1470579, rs4402960, rs7640539) and CAPN10/rs2975760. Various genetic models were used to assess the associations of these polymorphisms with GDM risk. Gene-gene and gene-environment interactions were examined using GMDR to identify interaction models, Subsequently, logistic regression was employed to confirm the significance of these models and to evaluate their impact on GDM susceptibility. RESULTS Our study identified significant associations between the C allele of IGF2BP2/rs11927381 and an increased GDM susceptibility in both dominant (P = 0.031, OR = 1.247) and heterozygote (P = 0.043, OR = 1.239) gene models. Conversely, the heterozygote TC genotype of CAPN10/rs2975760 was associated with a reduced risk of GDM (P = 0.046, OR = 0.766). Increased BMI and O3 levels were linked to a higher GDM susceptibility. We discovered interactions between CAPN10/rs2975760 CC and IGF2BP2/rs11927381 TC genotype that exacerbated GDM risk (P = 0.022, OR = 11.337). Furthermore, interactions between IGF2BP2/rs11927381 and environmental factors were observed, indicating increased GDM risks (BMI: P = 0.004, OR = 1.011; O3: P = 0.013, OR = 1.002; PM2.5: P = 0.042, OR = 1.005;BC: P = 0.048, OR = 1.094; NO3-:P = 0.045, OR = 1.024). CONCLUSION GDM is significantly associated with IGF2BP2/rs11927381 and CAPN10/rs2975760 polymorphisms as well as exposure to O3. Furthermore, the interaction between the CAPN10/rs2975760 CC genotype and IGF2BP2/rs11927381 TC genotype, as well as environmental factors (O3, PM2.5, BMI), significantly increases the risk of GDM in Chinese women.
Collapse
Affiliation(s)
- Runqiu Yang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xuejun Shang
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuanzhong Zhou
- School of Public Health,Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China.
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Parasin N, Amnuaylojaroen T, Saokaew S, Sittichai N, Tabkhan N, Dilokthornsakul P. Outdoor air pollution exposure and the risk of type 2 diabetes mellitus: A systematic umbrella review and meta-analysis. ENVIRONMENTAL RESEARCH 2025; 269:120885. [PMID: 39828191 DOI: 10.1016/j.envres.2025.120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The association between different air pollutants and Type 2 Diabetes Mellitus (T2DM) is a growing topic of interest in public health research. This umbrella review and meta-analysis aimed to consolidate current literature on the association between various outdoor air pollutants and T2DM. Subgroups and dose-response relationships were also analyzed to further quantify the association, especially by the factors such as the type of pollutants, duration of exposure, and geographical variation, etc. A thorough literature search of three databases revealed a total of 71 records for umbrella review and 1524 records for meta-analysis where 8 studies were included in the final review of umbrella review and 46 studies for meta-analysis. The evaluation of the study's quality in umbrella review and meta-analysis were conducted using the AMSTAR 2 criteria and the Newcastle-Ottawa Scale (NOS), respectively. Exposure to Particulate Matter (PM) 2.5, PM10, Nitrogen dioxides (NO2) and Ozone (O3) were significantly associated with the risk of T2DM [OR = 1.12 (95% Confidence Interval (CI): 1.09, 1.15), 1.12 (95% CI: 1.06, 1.18), 1.09 (95%CI: 1.07, 1.12), 1.05 (95%CI: 1.03, 1.08), respectively] and subgroup analysis further revealed that PM2.5, PM10, and NO2 associations were confounded by factors such as ages, study design, regions of exposure and air pollution concentration levels. Lastly, only exposure to PM10 had a significant dose-response relationship with the risk of T2DM (p-value = 0.000). These findings further emphasized the need for standardized methods in conducting air pollution research and additional research on other air pollutants to further explore the relationships between these air pollutants and T2DM.
Collapse
Affiliation(s)
- Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao, 56000, Thailand
| | - Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao, 56000, Thailand; Atmospheric Pollution and Climate Change Research Units, School of Energy and Environment, University of Phayao, Phayao, 56000, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy (SAP), Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, 56000, Thailand; Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, 10330, Thailand; Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, 56000, Thailand.
| | - Nuttawut Sittichai
- Program in Physical Education, Faculty of Education, Phuket Rajabhat University, Phuket, 83000, Thailand
| | - Natcha Tabkhan
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyameth Dilokthornsakul
- Center for Medical and Health Technology Assessment (CM-HTA), Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Liu W, Zou H, Liu W, Qin J. The impact of PM 2.5 and its constituents on gestational diabetes mellitus: a retrospective cohort study. BMC Public Health 2024; 24:2249. [PMID: 39160489 PMCID: PMC11334325 DOI: 10.1186/s12889-024-19767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND There is increasing evidence that exposure to PM2.5 and its constituents is associated with an increased risk of gestational diabetes mellitus (GDM), but studies on the relationship between exposure to PM2.5 constituents and the risk of GDM are still limited. METHODS A total of 17,855 pregnant women in Guangzhou were recruited for this retrospective cohort study, and the time-varying average concentration method was used to estimate individual exposure to PM2.5 and its constituents during pregnancy. Logistic regression was used to assess the relationship between exposure to PM2.5 and its constituents and the risk of GDM, and the expected inflection point between exposure to PM2.5 and its constituents and the risk of GDM was estimated using logistic regression combined with restricted cubic spline curves. Stratified analyses and interaction tests were performed. RESULTS After adjustment for confounders, exposure to PM2.5 and its constituents (NO3-, NH4+, and OM) was positively associated with the risk of GDM during pregnancy, especially when exposure to NO3- and NH4+ occurred in the first to second trimester, with each interquartile range increase the risk of GDM by 20.2% (95% CI: 1.118-1.293) and 18.2% (95% CI. 1.107-1.263), respectively. The lowest inflection points between PM2.5, SO42-, NO3-, NH4+, OM, and BC concentrations and GDM risk throughout the gestation period were 18.96, 5.80, 3.22, 2.67, 4.77 and 0.97 µg/m3, respectively. In the first trimester, an age interaction effect between exposure to SO42-, OM, and BC and the risk of GDM was observed. CONCLUSIONS This study demonstrates a positive association between exposure to PM2.5 and its constituents and the risk of GDM. Specifically, exposure to NO3-, NH4+, and OM was particularly associated with an increased risk of GDM. The present study contributes to a better understanding of the effects of exposure to PM2.5 and its constituents on the risk of GDM.
Collapse
Affiliation(s)
- Weiqi Liu
- Department of Clinical Laboratory, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, 510800, Guangdong, People's Republic of China.
| | - Haidong Zou
- Department of Obstetrics, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, 510800, Guangdong, People's Republic of China
| | - Weiling Liu
- Department of Clinical Laboratory, Foshan Fosun Chancheng Hospital, Foshan, 528000, Guangdong, People's Republic of China
| | - Jiangxia Qin
- Department of Obstetrics, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, 510800, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Rahnemaei FA, Aghapour E, Asgharpoor H, Ardabili NS, Kashani ZA, Abdi F. Prenatal exposure to ambient air pollution and risk of fetal overgrowth: Systematic review of cohort studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116526. [PMID: 38823346 DOI: 10.1016/j.ecoenv.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES Fetal overgrowth has detrimental effects on both the mother and the fetus. The global issue of ambient air pollution has been found to contribute to fetal overgrowth through various pathways. This study aimed to identify the association between prenatal exposure to ambient air pollution and the risk of fetal overgrowth. METHODS We identified articles between January 2013 and February 2024 by searching the Web of Sciences(WoS), PubMed, Proquest, Scopus, and Google Scholar databases. Quality assessment was performed using the Newcastle Ottawa scale. This review was provided based on the PRISMA guideline and registered with PROSPERO, "CRD42023488936". RESULTS The search generated 1719 studies, of which 22 cohort studies were included involving 3,480,041 participants. Results on the effects of air pollutants on fetal overgrowth are inconsistent because they vary in population and geographic region. But in general, the results indicate that prenatal exposure to air pollutants, specifically PM2.5, NO2, and SO2, is linked to a higher likelihood of fetal overgrowth(macrosomia and large for gestational age). Nevertheless, the relationship between CO and O3 pollution and fetal overgrowth remains uncertain. Furthermore, PM10 has a limited effect on fetal overgrowth. It is essential to consider the time that reproductive-age women are exposed to air pollution. Exposure to air pollutants before conception and throughout pregnancy has a substantial impact on the fetus's vulnerability to overgrowth. CONCLUSIONS Fetal overgrowth has implications for the health of both mother and fetus. fetal overgrowth can cause cardiovascular diseases, obesity, type 2 diabetes, and other diseases in adulthood, so it is considered an important issue for the health of the future generation. Contrary to popular belief that air pollution leads to intrauterine growth restriction and low birth weight, this study highlights that one of the adverse consequences of air pollution is macrosomia or LGA during pregnancy. Therefore governments must focus on implementing initiatives that aim to reduce pregnant women's exposure to ambient air pollution to ensure the health of future generations.
Collapse
Affiliation(s)
- Fatemeh Alsadat Rahnemaei
- Mother and Child Welfare Research Center,Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ehsan Aghapour
- Department of Social Welfare Management, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Homeira Asgharpoor
- Reproductive Health Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | | | | | - Fatemeh Abdi
- Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Sun Q, Ye F, Liu J, Yang Y, Hui Q, Chen Y, Liu D, Guo J, Wang C, Lv D, Tang L, Zhang Q. Outdoor artificial light at night exposure and gestational diabetes mellitus: a case-control study. Front Public Health 2024; 12:1396198. [PMID: 38660366 PMCID: PMC11039930 DOI: 10.3389/fpubh.2024.1396198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Objective This study aims to explore the association between outdoor artificial light at night (ALAN) exposure and gestational diabetes mellitus (GDM). Methods This study is a retrospective case-control study. According with quantiles, ALAN has been classified into three categories (Q1-Q3). GDM was diagnosed through oral glucose tolerance tests. Conditional logistic regression models were used to evaluate the association between ALAN exposure and GDM risk. The odds ratio (OR) with 95% confidence interval (CI) was used to assess the association. Restricted cubic spline analysis (RCS) was utilized to investigate the no liner association between ALAN and GDM. Results A total of 5,720 participants were included, comprising 1,430 individuals with GDM and 4,290 matched controls. Pregnant women exposed to higher levels of ALAN during the first trimester exhibited an elevated risk of GDM compared to those with lower exposure levels (Q2 OR = 1.39, 95% CI 1.20-1.63, p < 0.001); (Q3 OR = 1.70, 95% CI 1.44-2.00, p < 0.001). Similarly, elevated ALAN exposure during the second trimester also conferred an increased risk of GDM (second trimester: Q2 OR = 1.70, 95% CI 1.45-1.98, p < 0.001; Q3 OR = 2.08, 95% CI 1.77-2.44, p < 0.001). RCS showed a nonlinear association between ALAN exposure and GDM risk in second trimester pregnancy, with a threshold value of 4.235. Conclusion Outdoor ALAN exposure during pregnancy is associated with an increased risk of GDM.
Collapse
Affiliation(s)
- Qi Sun
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Precision and Smart Imaging Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fang Ye
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Yang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qin Hui
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanmei Chen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Die Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianning Guo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Di Lv
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijuan Tang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Department of Pediatrics, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Singhal B, Chauhan S, Soni N, Gurjar V, Joshi V, Kaur P, Ratre P, Kumari R, Mishra PK. Modulatory Effects of Vitamin D: A Possible Approach to Mitigate Air Pollution Related Pregnancy Complications. J Reprod Infertil 2024; 25:79-101. [PMID: 39157803 PMCID: PMC11327426 DOI: 10.18502/jri.v25i2.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/18/2024] [Indexed: 08/20/2024] Open
Abstract
Approximately 99% of people on the planet breathe air that exceeds the World Health Organization's permitted threshold for pollution. South Asia is home to the world's most polluted cities. Population-based studies have suggested that women's reproductive health outcomes are worsening due to air pollution. Preeclampsia, miscarriage, gestational diabetes, high blood pressure, and unfavorable birth outcomes, including preterm birth, low birth weight, or even stillbirth are all linked to exposure to air pollution during pregnancy. It is estimated that 0.61 million deaths in India alone were related to indoor air pollution. Females frequently cook in the household using solid fuel as a primary combustion source. Women in the regions with the highest population density are disproportionately affected by high levels of poor-quality indoor air. Recently, it has been proposed that air pollution has a distinct role in the onset of vitamin D deficiency. Numerous studies have explored associations between low vitamin D level and various female reproductive health conditions since the discovery of the vitamin D receptor. It is worthy to note that some of these reproductive health conditions positively correlate with the severity of air pollution. In this study, the evidence has been synthesized on vitamin D's protective properties and dietary and pharmaceutical interventions have been discussed to show their beneficial effects in decreasing the long-term negative impacts of air pollution on women's health.
Collapse
Affiliation(s)
| | | | - Nikita Soni
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Vikas Gurjar
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Vibhor Joshi
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Prasan Kaur
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pooja Ratre
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Roshani Kumari
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| |
Collapse
|
7
|
Mazumder H, Rimu FH, Shimul MH, Das J, Gain EP, Liaw W, Hossain MM. Maternal health outcomes associated with ambient air pollution: An umbrella review of systematic reviews and meta-analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169792. [PMID: 38199356 DOI: 10.1016/j.scitotenv.2023.169792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
A growing body of literature demonstrated an association between exposure to ambient air pollution and maternal health outcomes with mixed findings. The objective of this umbrella review was to systematically summarize the global evidence on the effects of air pollutants on maternal health outcomes. We adopted the Joanna Briggs Institute (JBI) methodology and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting standards for this umbrella review. We conducted a comprehensive search across six major electronic databases and other sources to identify relevant systematic reviews and meta-analyses (SRMAs) published from the inception of these databases up to June 30, 2023. Out of 2399 records, 20 citations matched all pre-determined eligibility criteria that include SRMAs focusing on exposure to air pollution and its impact on maternal health, reported quantitative measures or summary effects, and published in peer-reviewed journals in the English language. The risk of bias of included SRMAs was evaluated based on the JBI critical appraisal checklist. All SRMAs reported significant positive associations between ambient air pollution and several maternal health outcomes. Specifically, particulate matter (PM), SO2, and NO demonstrated positive associations with gestational diabetes mellitus (GDM). Moreover, PM and NO2 showed a consistent positive relationship with hypertensive disorder of pregnancy (HDP) and preeclampsia (PE). Although limited, available evidence highlighted a positive correlation between PM and gestational hypertension (GH) and spontaneous abortion (SAB). Only one meta-analysis reported the effects of air pollution on maternal postpartum depression (PPD) where only PM10 showed a significant positive relationship. Limited studies were identified from low- and middle-income countries (LMICs), suggesting evidence gap from the global south. This review necessitates further research on underrepresented regions and communities to strengthen evidence on this critical issue. Lastly, interdisciplinary policymaking and multilevel interventions are needed to alleviate ambient air pollution and associated maternal health disparities.
Collapse
Affiliation(s)
- Hoimonty Mazumder
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN 38152, United States.
| | - Fariha Hoque Rimu
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Monir Hossain Shimul
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| | - Jyoti Das
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Easter Protiva Gain
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN 38152, United States
| | - Winston Liaw
- Department of Health Systems and Population Health Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, TX 77204, United States
| | - M Mahbub Hossain
- Department of Health Systems and Population Health Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, TX 77204, United States; Department of Decision and Information Sciences, C.T. Bauer College of Business, University of Houston, TX 77204, United States
| |
Collapse
|
8
|
Zheng W, Chu J, Bambrick H, Wang N, Mengersen K, Guo X, Hu W. Impact of environmental factors on diabetes mortality: A comparison between inland and coastal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166335. [PMID: 37591381 DOI: 10.1016/j.scitotenv.2023.166335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Diabetes mortality varies between coastal and inland areas in Shandong Province, China. However, evidence about the reasons for this disparity is limited. We assume that distinct environmental conditions may contribute to the disparities in diabetes mortality patterns between coastal and inland areas. METHOD Qingdao and Jinan were selected as typical coastal and inland cities in Shandong Province, respectively, with similar socioeconomic but different environmental characteristics. Data on diabetes deaths and environmental factors (i.e., temperature, relative humidity and air pollution particles with a diameter of 2.5 μm or less (PM2.5)) were collected from 2013 to 2020. Spatial kriging methods were used to estimate the aggregated diabetes mortality at the city level. A distributed lag non-linear model (DLNM) was used to quantify the possible cumulative and non-cumulative associations between environmental factors and diabetes mortality by age, sex and location. RESULTS In the coastal city (Qingdao), the maximum cumulative relative risks (RRs) of temperature and PM2.5 associated with diabetes deaths were 2.54 (95 % confidence interval (CI): 1.25-5.15), and 1.17 (95 % CI: 1.01-1.37) respectively, at lag 1 week. In the inland city (Jinan), only temperature exhibited significant cumulative associations with diabetes deaths (RR = 1.54, 95 % CI: 1.07-2.23 at 29 °C). Lower relative humidity (22 %-45 %) had a lag-specific association with diabetes deaths in inland areas at lag 3 weeks (RR = 1.33, 95 % CI: 1.03-1.70 at 22 %). CONCLUSION Despite the lower PM2.5 concentrations in the coastal location, diabetes mortality exhibited stronger links to environmental variables in the coastal city than in the inland city. These findings suggest that the control of air pollution could decrease the mortality burden of diabetes, even in the region with relatively good air quality. Additionally, the spatial estimation method is recommended to identify associations between environmental factors and diseases in studies with limited data.
Collapse
Affiliation(s)
- Wenxiu Zheng
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jie Chu
- Shandong Center for Disease Control and Prevention, Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China
| | - Hilary Bambrick
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia; National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ning Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kerrie Mengersen
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China.
| | - Wenbiao Hu
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Orenshtein S, Sheiner E, Kloog I, Wainstock T. Maternal particulate matter exposure and gestational diabetes mellitus: a population-based cohort study. Am J Obstet Gynecol MFM 2023; 5:101050. [PMID: 37328033 DOI: 10.1016/j.ajogmf.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gestational diabetes mellitus prevalence is steadily increasing worldwide, posing a significant threat to the short-term and long-term health of both mother and offspring. Because particulate matter air pollution has been reported to affect glucose metabolism, it was suggested that maternal particulate matter exposure may be associated with the development of gestational diabetes mellitus; however, the evidence is limited and inconsistent. OBJECTIVE This study aimed to determine the association between maternal exposure to particulate matter of diameter ≤2.5 µm and of diameter of ≤10 µm and the risk of gestational diabetes mellitus, to identify critical windows of susceptibility and to evaluate effect modification by ethnicity. STUDY DESIGN A retrospective cohort study was conducted including pregnancies of women who delivered at a large tertiary medical center in Israel between 2003 and 2015. Residential particulate matter levels were estimated by a hybrid spatiotemporally resolved satellite-based model at 1 km spatial resolution. Multivariable logistic analyses were applied to study the association between maternal particulate matter exposure in different pregnancy periods and gestational diabetes mellitus risk, while adjusting for background, obstetrical, and pregnancy characteristics. Analyses were also stratified by ethnicity (Jewish and Bedouin). RESULTS The study included 89,150 pregnancies, of which 3245 (3.6%) were diagnosed with gestational diabetes mellitus. First trimester exposure to both particulate matter of diameter ≤2.5 µm (adjusted odds ratio per 5 μg/m3, 1.09; 95% confidence interval, 1.02-1.17) and particulate matter of diameter of ≤10 µm (adjusted odds ratio per 10 μg/m3, 1.11; 95% confidence interval, 1.06-1.17) was significantly associated with increased risk for gestational diabetes mellitus. In the stratified analyses, the association with first trimester particulate matter of diameter of ≤10 µm exposure was consistent among pregnancies of both Jewish and Bedouin women, whereas the association with first trimester particulate matter of diameter ≤2.5 µm exposure was significant among pregnancies of Jewish women only (adjusted odds ratio per 5 μg/m3, 1.09; 95% confidence interval, 1.00-1.19), as well as association with preconception particulate matter of diameter of ≤10 µm exposure (adjusted odds ratio per 10 μg/m3, 1.07; 95% confidence interval, 1.01-1.14). No association was found between second trimester particulate matter exposure and gestational diabetes mellitus risk. CONCLUSION Maternal exposure to both particulate matter of diameter ≤2.5 µm and diameter of 10 µm or less during the first trimester of pregnancy is associated with gestational diabetes mellitus, suggesting that the first trimester is a particular window of susceptibility to the effect of particulate matter exposure on gestational diabetes mellitus risk. The effects found in this study differed by ethnic group, emphasizing the importance of addressing ethnic disparities when assessing environmental impacts on health.
Collapse
Affiliation(s)
- Shani Orenshtein
- Department of Epidemiology, Biostatistics and Community Health Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Orenshtein and Dr Wainstock).
| | - Eyal Sheiner
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Prof Sheiner)
| | - Itai Kloog
- Department of Geography and Environment, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Prof Kloog)
| | - Tamar Wainstock
- Department of Epidemiology, Biostatistics and Community Health Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (Orenshtein and Dr Wainstock)
| |
Collapse
|
10
|
Kutlar Joss M, Boogaard H, Samoli E, Patton AP, Atkinson R, Brook J, Chang H, Haddad P, Hoek G, Kappeler R, Sagiv S, Smargiassi A, Szpiro A, Vienneau D, Weuve J, Lurmann F, Forastiere F, Hoffmann BH. Long-Term Exposure to Traffic-Related Air Pollution and Diabetes: A Systematic Review and Meta-Analysis. Int J Public Health 2023; 68:1605718. [PMID: 37325174 PMCID: PMC10266340 DOI: 10.3389/ijph.2023.1605718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives: We report results of a systematic review on the health effects of long-term traffic-related air pollution (TRAP) and diabetes in the adult population. Methods: An expert Panel appointed by the Health Effects Institute conducted this systematic review. We searched the PubMed and LUDOK databases for epidemiological studies from 1980 to July 2019. TRAP was defined based on a comprehensive protocol. Random-effects meta-analyses were performed. Confidence assessments were based on a modified Office for Health Assessment and Translation (OHAT) approach, complemented with a broader narrative synthesis. We extended our interpretation to include evidence published up to May 2022. Results: We considered 21 studies on diabetes. All meta-analytic estimates indicated higher diabetes risks with higher exposure. Exposure to NO2 was associated with higher diabetes prevalence (RR 1.09; 95% CI: 1.02; 1.17 per 10 μg/m3), but less pronounced for diabetes incidence (RR 1.04; 95% CI: 0.96; 1.13 per 10 μg/m3). The overall confidence in the evidence was rated moderate, strengthened by the addition of 5 recently published studies. Conclusion: There was moderate evidence for an association of long-term TRAP exposure with diabetes.
Collapse
Affiliation(s)
- Meltem Kutlar Joss
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | | | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Richard Atkinson
- Population Health Research Institute, St. George’s University of London, London, United Kingdom
| | - Jeff Brook
- Occupational and Environmental Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Howard Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Pascale Haddad
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Ron Kappeler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sharon Sagiv
- Center for Environmental Research and Children’s Health, Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, CA, United States
| | - Francesco Forastiere
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - Barbara H. Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|