1
|
Nakagawa T, Santos J, Nasamran CA, Sen P, Sadat S, Monther A, Bendik J, Ebisumoto K, Hu J, Preissl S, Guo T, Vavinskaya V, Fisch KM, Califano JA. Defining the relationship of salivary gland malignancies to novel cell subpopulations in human salivary glands using single nucleus RNA-sequencing. Int J Cancer 2024; 154:1492-1503. [PMID: 37971144 DOI: 10.1002/ijc.34790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Salivary glands have essential roles in maintaining oral health, mastication, taste and speech, by secreting saliva. Salivary glands are composed of several types of cells, and each cell type is predicted to be involved in the carcinogenesis of different types of cancers including adenoid cystic carcinoma (ACC), acinic cell carcinoma (AciCC), salivary duct carcinoma (SDC), myoepithelial carcinoma (MECA) and other histology. In our study, we performed single nucleus RNA-seq on three human salivary gland samples to clarify the gene expression profile of each complex cellular component of the salivary glands and related these expression patterns to expression found in salivary gland cancers (SGC) to infer cell of origin. By single nucleus RNA-seq, salivary gland cells were stratified into four clusters: acinar cells, ductal cells 1, ductal cells 2 and myoepithelial cells/stromal cells. The localization of each cell group was verified by IHC of each cluster marker gene, and one group of ductal cells was found to represent intercalated ductal cells labeled with HES1. Furthermore, in comparison with SGC RNA-seq data, acinar cell markers were upregulated in AciCC, but downregulated in ACC and ductal cell markers were upregulated in SDC but downregulated in MECA, suggesting that markers of origin are highly expressed in some SGC. Cell type expressions in specific SGC histology are similar to those found in normal salivary gland populations, indicating a potential etiologic relationship.
Collapse
Affiliation(s)
- Takuya Nakagawa
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jessica Santos
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Chanond A Nasamran
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, USA
| | - Prakriti Sen
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Sayed Sadat
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Abdula Monther
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Joseph Bendik
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Koji Ebisumoto
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jingjing Hu
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Theresa Guo
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, USA
| | - Vera Vavinskaya
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, USA
| | - Joseph A Califano
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Barone S, Brooks M, Zahedi K, Holliday LS, Bissler J, Yu JJ, Soleimani M. Identification of an Electrogenic 2Cl -/H + Exchanger, ClC5, as a Chloride-Secreting Transporter Candidate in Kidney Cyst Epithelium in Tuberous Sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:191-200. [PMID: 36336066 PMCID: PMC9926528 DOI: 10.1016/j.ajpath.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Kidney cyst expansion in tuberous sclerosis complex (TSC) or polycystic kidney disease (PKD) requires active secretion of chloride (Cl-) into the cyst lumen. In PKD, Cl- secretion is primarily mediated via the cystic fibrosis transmembrane conductance regulator (CFTR) in principal cells. Kidney cystogenesis in TSC is predominantly composed of type A intercalated cells, which do not exhibit noticeable expression of CFTR. The identity of the Cl--secreting molecule(s) in TSC cyst epithelia remains speculative. RNA-sequencing analysis results were used to examine the expression of FOXi1, the chief regulator of acid base transporters in intercalated cells, along with localization of Cl- channel 5 (ClC5), in various models of TSC. Results from Tsc2+/- mice showed that the expansion of kidney cysts corresponded to the induction of Foxi1 and correlated with the appearance of ClC5 and H+-ATPase on the apical membrane of cyst epithelia. In various mouse models of TSC, Foxi1 was robustly induced in the kidney, and ClC5 and H+-ATPase were expressed on the apical membrane of cyst epithelia. Expression of ClC5 was also detected on the apical membrane of cyst epithelia in humans with TSC but was absent in humans with autosomal dominant PKD or in a mouse model of PKD. These results indicate that ClC5 is expressed on the apical membrane of cyst epithelia and is a likely candidate mediating Cl- secretion into the kidney cyst lumen in TSC.
Collapse
Affiliation(s)
- Sharon Barone
- Research Services, Veterans Health Care Medical Center, Albuquerque, New Mexico; Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Marybeth Brooks
- Research Services, Veterans Health Care Medical Center, Albuquerque, New Mexico; Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Kamyar Zahedi
- Research Services, Veterans Health Care Medical Center, Albuquerque, New Mexico; Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, Tennessee; Department of Pediatrics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jane J Yu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Manoocher Soleimani
- Research Services, Veterans Health Care Medical Center, Albuquerque, New Mexico; Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| |
Collapse
|
3
|
Kidney intercalated cells and the transcription factor FOXi1 drive cystogenesis in tuberous sclerosis complex. Proc Natl Acad Sci U S A 2021; 118:2020190118. [PMID: 33536341 PMCID: PMC8017711 DOI: 10.1073/pnas.2020190118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in TSC1 or TSC2 gene and affects multiple organs, including the kidney, where it presents with angiomyolipomata and cysts that can result in kidney failure. The factors promoting cyst formation and tumor growth in TSC are incompletely understood. Current studies demonstrate that kidney cyst epithelia in TSC mouse models and in humans with TSC are composed of hyperproliferating intercalated cells, along with activation of H+-ATPase and carbonic anhydrase 2. Interfering with intercalated cell proliferation completely inhibited and inactivating carbonic anhydrase 2 significantly protected against cyst formation in TSC. Targeting the acid base and/or electrolyte transporters of intercalated cells may provide a therapeutic approach for the treatment of kidney cysts in TSC. Tuberous sclerosis complex (TSC) is caused by mutations in either TSC1 or TSC2 genes and affects multiple organs, including kidney, lung, and brain. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomata) and cysts, which eventually leads to kidney failure. The factors promoting cyst formation and tumor growth in TSC are incompletely understood. Here, we report that mice with principal cell-specific inactivation of Tsc1 develop numerous cortical cysts, which are overwhelmingly composed of hyperproliferating A-intercalated (A-IC) cells. RNA sequencing and confirmatory expression studies demonstrated robust expression of Forkhead Transcription Factor 1 (Foxi1) and its downstream targets, apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in cyst epithelia in Tsc1 knockout (KO) mice but not in Pkd1 mutant mice. In addition, the electrogenic 2Cl−/H+ exchanger (CLC-5) is significantly up-regulated and shows remarkable colocalization with H+-ATPase on the apical membrane of cyst epithelia in Tsc1 KO mice. Deletion of Foxi1, which is vital to intercalated cells viability and H+-ATPase expression, completely abrogated the cyst burden in Tsc1 KO mice, as indicated by MRI images and histological analysis in kidneys of Foxi1/Tsc1 double-knockout (dKO) mice. Deletion of CAII, which is critical to H+-ATPase activation, caused significant reduction in cyst burden and increased life expectancy in CAII/Tsc1 dKO mice vs. Tsc1 KO mice. We propose that intercalated cells and their acid/base/electrolyte transport machinery (H+-ATPase/CAII/CLC-5) are critical to cystogenesis, and their inhibition or inactivation is associated with significant protection against cyst generation and/or enlargement in TSC.
Collapse
|