1
|
Ye D, Liu Q, Zhang C, Dai E, Fan J, Wu L. Relationship between immune cells and the development of chronic lung allograft dysfunction. Int Immunopharmacol 2024; 137:112381. [PMID: 38865754 DOI: 10.1016/j.intimp.2024.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
A major cause of death for lung transplant recipients (LTRs) is the advent of chronic lung allograft dysfunction (CLAD), which has long plagued the long-term post-transplant prognosis and quality of survival of transplant patients. The intricacy of its pathophysiology and the irreversibility of its illness process present major obstacles to the clinical availability of medications. Immunotherapeutic medications are available, but they only aim to slow down the course of CLAD rather than having any therapeutic impact on the disease's development. For this reason, understanding the pathophysiology of CLAD is essential for both disease prevention and proven treatment. The immunological response in particular, in relation to chronic lung allograft dysfunction, has received a great deal of interest recently. Innate immune cells like natural killer cells, eosinophils, neutrophils, and mononuclear macrophages, as well as adaptive immunity cells like T and B cells, play crucial roles in this process through the release of chemokines and cytokines. The present review delves into changes and processes within the immune microenvironment, with a particular focus on the quantity, subtype, and characteristics of effector immune cells in the peripheral and transplanted lungs after lung transplantation. We incorporate and solidify the documented role of immune cells in the occurrence and development of CLAD with the advancements in recent years.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongliang Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Zhang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Nykänen AI, Keshavjee S, Liu M. Creating superior lungs for transplantation with next-generation gene therapy during ex vivo lung perfusion. J Heart Lung Transplant 2024; 43:838-848. [PMID: 38310996 DOI: 10.1016/j.healun.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/23/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Engineering donor organs to better tolerate the harmful non-immunological and immunological responses inherently related to solid organ transplantation would improve transplant outcomes. Our enhanced knowledge of ischemia-reperfusion injury, alloimmune responses and pathological fibroproliferation after organ transplantation, and the advanced toolkit available for gene therapies, have brought this goal closer to clinical reality. Ex vivo organ perfusion has evolved rapidly especially in the field of lung transplantation, where clinicians routinely use ex vivo lung perfusion (EVLP) to confirm the quality of marginal donor lungs before transplantation, enabling safe transplantation of organs originally considered unusable. EVLP would also be an attractive platform to deliver gene therapies, as treatments could be administered to an isolated organ before transplantation, thereby providing a window for sophisticated organ engineering while minimizing off-target effects to the recipient. Here, we review the status of lung transplant first-generation gene therapies that focus on inducing transgene expression in the target cells. We also highlight recent advances in next-generation gene therapies, that enable gene editing and epigenetic engineering, that could be used to permanently change the donor organ genome and to induce widespread transcriptional gene expression modulation in the donor lung. In a future vision, dedicated organ repair and engineering centers will use gene editing and epigenetic engineering, to not only increase the donor organ pool, but to create superior organs that will function better and longer in the recipient.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Thoracic Surgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Kaes J, Pollenus E, Hooft C, Liu H, Aelbrecht C, Cambier S, Jin X, Van Slambrouck J, Beeckmans H, Kerckhof P, Velde GV, Van Raemdonck D, Yildirim AÖ, Van den Steen PE, Vos R, Ceulemans LJ, Vanaudenaerde BM. The Immunopathology of Pulmonary Rejection after Murine Lung Transplantation. Cells 2024; 13:241. [PMID: 38334633 PMCID: PMC10854916 DOI: 10.3390/cells13030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
To improve outcomes following lung transplantation, it is essential to understand the immunological mechanisms that result in chronic graft failure. The associated clinical syndrome is termed chronic lung allograft dysfunction (CLAD), which is known to be induced by alloimmune-dependent (i.e., rejection) and alloimmune-independent factors (e.g., infections, reflux and environmental factors). We aimed to explore the alloimmune-related mechanism, i.e., pulmonary rejection. In this study, we use a murine orthotopic left lung transplant model using isografts and allografts (C57BL/6 or BALB/c as donors to C57BL/6 recipients), with daily immunosuppression (10 mg/kg cyclosporin A and 1.6 mg/kg methylprednisolone). Serial sacrifice was performed at days 1, 7 and 35 post-transplantation (n = 6 at each time point for each group). Left transplanted lungs were harvested, a single-cell suspension was made and absolute numbers of immune cells were quantified using multicolor flow cytometry. The rejection process followed the principles of a classic immune response, including innate but mainly adaptive immune cells. At day 7 following transplantation, the numbers of interstitial macrophages, monocytes, dendritic cells, NK cells, NKT cells, CD4+ T cells and CD8+ T and B cells were increased in allografts compared with isografts. Only dendritic cells and CD4+ T cells remained elevated at day 35 in allografts. Our study provides insights into the immunological mechanisms of true pulmonary rejection after murine lung transplantation. These results might be important in further research on diagnostic evaluation and treatment for CLAD.
Collapse
Affiliation(s)
- Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (E.P.)
| | - Charlotte Hooft
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Hengshuo Liu
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany (A.Ö.Y.)
| | - Celine Aelbrecht
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Pieterjan Kerckhof
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany (A.Ö.Y.)
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (E.P.)
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.K.)
| |
Collapse
|
4
|
Farahnak K, Bai YZ, Yokoyama Y, Morkan DB, Liu Z, Amrute JM, De Filippis Falcon A, Terada Y, Liao F, Li W, Shepherd HM, Hachem RR, Puri V, Lavine KJ, Gelman AE, Bharat A, Kreisel D, Nava RG. B cells mediate lung ischemia/reperfusion injury by recruiting classical monocytes via synergistic B cell receptor/TLR4 signaling. J Clin Invest 2024; 134:e170118. [PMID: 38488011 PMCID: PMC10940088 DOI: 10.1172/jci170118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Abstract
Ischemia/reperfusion injury-mediated (IRI-mediated) primary graft dysfunction (PGD) adversely affects both short- and long-term outcomes after lung transplantation, a procedure that remains the only treatment option for patients suffering from end-stage respiratory failure. While B cells are known to regulate adaptive immune responses, their role in lung IRI is not well understood. Here, we demonstrated by intravital imaging that B cells are rapidly recruited to injured lungs, where they extravasate into the parenchyma. Using hilar clamping and transplant models, we observed that lung-infiltrating B cells produce the monocyte chemokine CCL7 in a TLR4-TRIF-dependent fashion, a critical step contributing to classical monocyte (CM) recruitment and subsequent neutrophil extravasation, resulting in worse lung function. We found that synergistic BCR-TLR4 activation on B cells is required for the recruitment of CMs to the injured lung. Finally, we corroborated our findings in reperfused human lungs, in which we observed a correlation between B cell infiltration and CM recruitment after transplantation. This study describes a role for B cells as critical orchestrators of lung IRI. As B cells can be depleted with currently available agents, our study provides a rationale for clinical trials investigating B cell-targeting therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew E. Gelman
- Department of Surgery
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Department of Surgery
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | |
Collapse
|
5
|
Watanabe T, Juvet SC, Berra G, Havlin J, Zhong W, Boonstra K, Daigneault T, Horie M, Konoeda C, Teskey G, Guan Z, Hwang DM, Liu M, Keshavjee S, Martinu T. Donor IL-17 receptor A regulates LPS-potentiated acute and chronic murine lung allograft rejection. JCI Insight 2023; 8:e158002. [PMID: 37937643 PMCID: PMC10721268 DOI: 10.1172/jci.insight.158002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/15/2023] [Indexed: 11/09/2023] Open
Abstract
Chronic lung allograft dysfunction (CLAD) is a major complication after lung transplantation that results from a complex interplay of innate inflammatory and alloimmune factors, culminating in parenchymal and/or obliterative airway fibrosis. Excessive IL-17A signaling and chronic inflammation have been recognized as key factors in these pathological processes. Herein, we developed a model of repeated airway inflammation in mouse minor alloantigen-mismatched single-lung transplantation. Repeated intratracheal LPS instillations augmented pulmonary IL-17A expression. LPS also increased acute rejection, airway epithelial damage, and obliterative airway fibrosis, similar to human explanted lung allografts with antecedent episodes of airway infection. We then investigated the role of donor and recipient IL-17 receptor A (IL-17RA) in this context. Donor IL-17RA deficiency significantly attenuated acute rejection and CLAD features, whereas recipient IL-17RA deficiency only slightly reduced airway obliteration in LPS allografts. IL-17RA immunofluorescence positive staining was greater in human CLAD lungs compared with control human lung specimens, with localization to fibroblasts and myofibroblasts, which was also seen in mouse LPS allografts. Taken together, repeated airway inflammation after lung transplantation caused local airway epithelial damage, with persistent elevation of IL-17A and IL-17RA expression and particular involvement of IL-17RA on donor structural cells in development of fibrosis.
Collapse
Affiliation(s)
- Tatsuaki Watanabe
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Stephen C. Juvet
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gregory Berra
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Jan Havlin
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wenshan Zhong
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Kristen Boonstra
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Tina Daigneault
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | | | - Chihiro Konoeda
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
| | - Grace Teskey
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - Zehong Guan
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
| | - David M. Hwang
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Miggins JJ, Reul RM, Barrett S, Rana A, Alnajar A, Dunson J, Shafii A, Garcha P, Goss J, Loor G. Twenty-year survival following lung transplantation. J Thorac Dis 2023; 15:2997-3012. [PMID: 37426158 PMCID: PMC10323557 DOI: 10.21037/jtd-22-1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/03/2023] [Indexed: 07/11/2023]
Abstract
Background Lung transplantation median survival has seen improvements due to recognition of short-term survival factors but continues to trail behind other solid organs due to limited understanding of long-term survivorship. Given the creation of the United Network for Organ Sharing (UNOS) database in 1986, it was difficult to accrue data on long-term survivors until recently. This study characterizes factors impacting lung transplant survival beyond 20 years, conditional to 1-year survival. Methods Lung transplant recipients listed in UNOS from 1987 to 2002 who survived to 1 post-transplant year were reviewed. Kaplan-Meier and adjusted Cox regression analyses were performed at 20 and 10 years to identify risk factors associated with long-term outcomes independent of their short-term effects. Results A total of 6,172 recipients were analyzed, including 472 (7.6%) recipients who lived 20+ years. Factors associated with increased likelihood of 20-year survival were female-to-female gender match, recipient age 25-44, waitlist time >1 year, human leukocyte antigen (HLA) mismatch level 3, and donor cause of death: head trauma. Factors associated with decreased 20-year survival included recipient age ≥55, chronic obstructive pulmonary disease/emphysema (COPD/E) diagnosis, donor smoking history >20 pack-years, unilateral transplant, blood groups O&AB, recipient glomerular filtration rate (GFR) <10 mL/min, and donor GFR 20-29 mL/min. Conclusions This is the first study identifying factors associated with multiple-decade survival following lung transplant in the United States. Despite its challenges, long-term survival is possible and more likely in younger females in good waitlist condition without COPD/E who receive a bilateral allograft from a non-smoking, gender-matched donor of minimal HLA mismatch. Further analysis of the molecular and immunologic implications of these conditions are warranted.
Collapse
Affiliation(s)
| | - Ross M. Reul
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Abbas Rana
- Division of Abdominal Transplantation, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Alnajar
- Division of Cardiothoracic Surgery, Department of Surgery, University of Miami, Miami, FL, USA
| | - Jordan Dunson
- Department of Orthopaedic Surgery, UT College of Medicine Chattanooga, Chattanooga, TN, USA
| | - Alexis Shafii
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Puneet Garcha
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - John Goss
- Division of Abdominal Transplantation, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel Loor
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Nykänen AI, Liu M, Keshavjee S. Mesenchymal Stromal Cell Therapy in Lung Transplantation. Bioengineering (Basel) 2023; 10:728. [PMID: 37370659 DOI: 10.3390/bioengineering10060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lung transplantation is often the only viable treatment option for a patient with end-stage lung disease. Lung transplant results have improved substantially over time, but ischemia-reperfusion injury, primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD) continue to be significant problems. Mesenchymal stromal cells (MSC) are pluripotent cells that have anti-inflammatory and protective paracrine effects and may be beneficial in solid organ transplantation. Here, we review the experimental studies where MSCs have been used to protect the donor lung against ischemia-reperfusion injury and alloimmune responses, as well as the experimental and clinical studies using MSCs to prevent or treat CLAD. In addition, we outline ex vivo lung perfusion (EVLP) as an optimal platform for donor lung MSC delivery, as well as how the therapeutic potential of MSCs could be further leveraged with genetic engineering.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Watanabe T, Lam C, Oliver J, Oishi H, Teskey G, Beber S, Boonstra K, Mauricio Umaña J, Buhari H, Joe B, Guan Z, Horie M, Keshavjee S, Martinu T, Juvet SC. Donor Batf3 inhibits murine lung allograft rejection and airway fibrosis. Mucosal Immunol 2023; 16:104-120. [PMID: 36842540 DOI: 10.1016/j.mucimm.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 02/28/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) limits survival after lung transplantation. Noxious stimuli entering the airways foster CLAD development. Classical dendritic cells (cDCs) link innate and adaptive immunity and exhibit regional and functional specialization in the lung. The transcription factor basic leucine zipper ATF-like 3 (BATF3) is absolutely required for the development of type 1 cDCs (cDC1s), which reside in the airway epithelium and have variable responses depending on the context. We studied the role of BATF3 in a mouse minor alloantigen-mismatched orthotopic lung transplant model of CLAD with and without airway inflammation triggered by repeated administration of intratracheal lipopolysaccharide (LPS). We found that cDC1s accumulated in allografts compared with isografts and that donor cDC1s were gradually replaced by recipient cDC1s. LPS administration increased the number of cDC1s and enhanced their state of activation. We found that Batf3-/- recipient mice experienced reduced acute rejection in response to LPS; in contrast, Batf3-/- donor grafts underwent enhanced lung and skin allograft rejection and drove augmented recipient cluster of differentiation 8+ T-cell expansion in the absence of LPS. Our findings suggest that donor and recipient cDC1s have differing and context-dependent roles and may represent a therapeutic target in lung transplantation.
Collapse
Affiliation(s)
- Tatsuaki Watanabe
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada; Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Christina Lam
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Jillian Oliver
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Hisashi Oishi
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada; Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Grace Teskey
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Samuel Beber
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Kristen Boonstra
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Juan Mauricio Umaña
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Hifza Buhari
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Betty Joe
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Zehong Guan
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Miho Horie
- Joint Department of Medical Imaging, University Health Network, Toronto, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada
| | - Stephen C Juvet
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
10
|
Gräbner C, Ramsperger-Gleixner M, Kuckhahn A, Weyand M, Heim C. Chronische Abstoßung nach Lungentransplantation. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2023. [DOI: 10.1007/s00398-023-00562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Mahan LD, Mohanka MR, Joerns J, Lawrence A, Bollineni S, Kaza V, Timofte I, La Hoz RM, Sorelle J, Terada LS, Kershaw CD, Torres F, Banga A. A Case Report of Breakthrough Infections With 2 SARS-CoV-2 Variants in a Lung Transplant Patient. Transplant Proc 2022; 54:2698-2701. [PMID: 36116948 PMCID: PMC9314265 DOI: 10.1016/j.transproceed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 01/09/2023]
Abstract
A lung transplant (LT) patient developed 2 distinct episodes of COVID-19, confirmed by whole-genome sequencing, which was caused by the Delta, and then followed 6 weeks later, by the Omicron variant. The clinical course with Omicron was more severe, leading us to speculate that Omicron may not be any milder among LT patients. We discuss the potential mechanisms behind the Omicron not being any milder among LT patients and emphasize the need for outcomes data among these patients. Until such data become available, it may be prudent to maintain clinical equipoise as regards the relative virulence of the newer variants among LT patients.
Collapse
Affiliation(s)
- Luke D Mahan
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Manish R Mohanka
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John Joerns
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adrian Lawrence
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Srinivas Bollineni
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vaidehi Kaza
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Irina Timofte
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ricardo M La Hoz
- Division of Infectious Disease and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey Sorelle
- Departments of Genomics and Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lance S Terada
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Corey D Kershaw
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Fernando Torres
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amit Banga
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
12
|
Bos S, Milross L, Filby AJ, Vos R, Fisher AJ. Immune processes in the pathogenesis of chronic lung allograft dysfunction: identifying the missing pieces of the puzzle. Eur Respir Rev 2022; 31:31/165/220060. [PMID: 35896274 DOI: 10.1183/16000617.0060-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lung transplantation is the optimal treatment for selected patients with end-stage chronic lung diseases. However, chronic lung allograft dysfunction remains the leading obstacle to improved long-term outcomes. Traditionally, lung allograft rejection has been considered primarily as a manifestation of cellular immune responses. However, in reality, an array of complex, interacting and multifactorial mechanisms contribute to its emergence. Alloimmune-dependent mechanisms, including T-cell-mediated rejection and antibody-mediated rejection, as well as non-alloimmune injuries, have been implicated. Moreover, a role has emerged for autoimmune responses to lung self-antigens in the development of chronic graft injury. The aim of this review is to summarise the immune processes involved in the pathogenesis of chronic lung allograft dysfunction, with advanced insights into the role of innate immune pathways and crosstalk between innate and adaptive immunity, and to identify gaps in current knowledge.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robin Vos
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK .,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Roesel MJ, Sharma NS, Schroeter A, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Primary Graft Dysfunction: The Role of Aging in Lung Ischemia-Reperfusion Injury. Front Immunol 2022; 13:891564. [PMID: 35686120 PMCID: PMC9170999 DOI: 10.3389/fimmu.2022.891564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
Transplant centers around the world have been using extended criteria donors to remedy the ongoing demand for lung transplantation. With a rapidly aging population, older donors are increasingly considered. Donor age, at the same time has been linked to higher rates of lung ischemia reperfusion injury (IRI). This process of acute, sterile inflammation occurring upon reperfusion is a key driver of primary graft dysfunction (PGD) leading to inferior short- and long-term survival. Understanding and improving the condition of older lungs is thus critical to optimize outcomes. Notably, ex vivo lung perfusion (EVLP) seems to have the potential of reconditioning ischemic lungs through ex-vivo perfusing and ventilation. Here, we aim to delineate mechanisms driving lung IRI and review both experimental and clinical data on the effects of aging in augmenting the consequences of IRI and PGD in lung transplantation.
Collapse
Affiliation(s)
- Maximilian J Roesel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Institute of Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Nirmal S Sharma
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Andreas Schroeter
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Tomohisa Matsunaga
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Yao Xiao
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Miceli V, Bertani A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells 2022; 11:cells11050826. [PMID: 35269448 PMCID: PMC8909054 DOI: 10.3390/cells11050826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lung transplantation (LTx) has become the gold standard treatment for end-stage respiratory failure. Recently, extended lung donor criteria have been applied to decrease the mortality rate of patients on the waiting list. Moreover, ex vivo lung perfusion (EVLP) has been used to improve the number/quality of previously unacceptable lungs. Despite the above-mentioned progress, the morbidity/mortality of LTx remains high compared to other solid organ transplants. Lungs are particularly susceptible to ischemia-reperfusion injury, which can lead to graft dysfunction. Therefore, the success of LTx is related to the quality/function of the graft, and EVLP represents an opportunity to protect/regenerate the lungs before transplantation. Increasing evidence supports the use of mesenchymal stromal/stem cells (MSCs) as a therapeutic strategy to improve EVLP. The therapeutic properties of MSC are partially mediated by secreted factors. Hence, the strategy of lung perfusion with MSCs and/or their products pave the way for a new innovative approach that further increases the potential for the use of EVLP. This article provides an overview of experimental, preclinical and clinical studies supporting the application of MSCs to improve EVLP, the ultimate goal being efficient organ reconditioning in order to expand the donor lung pool and to improve transplant outcomes.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| |
Collapse
|
15
|
Van Slambrouck J, Van Raemdonck D, Vos R, Vanluyten C, Vanstapel A, Prisciandaro E, Willems L, Orlitová M, Kaes J, Jin X, Jansen Y, Verleden GM, Neyrinck AP, Vanaudenaerde BM, Ceulemans LJ. A Focused Review on Primary Graft Dysfunction after Clinical Lung Transplantation: A Multilevel Syndrome. Cells 2022; 11:cells11040745. [PMID: 35203392 PMCID: PMC8870290 DOI: 10.3390/cells11040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Primary graft dysfunction (PGD) is the clinical syndrome of acute lung injury after lung transplantation (LTx). However, PGD is an umbrella term that encompasses the ongoing pathophysiological and -biological mechanisms occurring in the lung grafts. Therefore, we aim to provide a focused review on the clinical, physiological, radiological, histological and cellular level of PGD. PGD is graded based on hypoxemia and chest X-ray (CXR) infiltrates. High-grade PGD is associated with inferior outcome after LTx. Lung edema is the main characteristic of PGD and alters pulmonary compliance, gas exchange and circulation. A conventional CXR provides a rough estimate of lung edema, while a chest computed tomography (CT) results in a more in-depth analysis. Macroscopically, interstitial and alveolar edema can be distinguished below the visceral lung surface. On the histological level, PGD correlates to a pattern of diffuse alveolar damage (DAD). At the cellular level, ischemia-reperfusion injury (IRI) is the main trigger for the disruption of the endothelial-epithelial alveolar barrier and inflammatory cascade. The multilevel approach integrating all PGD-related aspects results in a better understanding of acute lung failure after LTx, providing novel insights for future therapies.
Collapse
Affiliation(s)
- Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Cedric Vanluyten
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Elena Prisciandaro
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lynn Willems
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Pulmonary Circulation Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium;
| | - Michaela Orlitová
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yanina Jansen
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Geert M. Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arne P. Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
- Department of Anesthesiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
16
|
Bai YZ, Roberts SH, Kreisel D, Nava RG. Microbiota in heart and lung transplantation: implications for innate-adaptive immune interface. Curr Opin Organ Transplant 2021; 26:609-614. [PMID: 34561360 DOI: 10.1097/mot.0000000000000923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Transplantation continues to be the only treatment option for end-stage organ failure when other interventions have failed. Although short-term outcomes have improved due to advances in perioperative care, long-term outcomes continue to be adversely affected by chronic rejection. Little is known about the role microbiota play in modulating alloimmune responses and potentially contributing to graft failure. Initial data have identified a correlation between specific changes of the recipient and/or donor microbiota and transplant outcomes. In this review, we will focus on recent findings concerning the complex interplay between microbiota and the innate immune system after heart and lung transplantation. RECENT FINDINGS Gut microbiome derangements in heart failure promote an inflammatory state and have lasting effects on the innate immune system, with an observed association between increased levels of microbiota-dependent metabolites and acute rejection after cardiac transplantation. The lung allograft microbiome interacts with components of the innate immune system, such as toll-like receptor signalling pathways, NKG2C+ natural killer cells and the NLRP3 inflammasome, to alter posttransplant outcomes, which may result in the development of chronic rejection. SUMMARY The innate immune system is influenced by alterations in the microbiome before and after heart and lung transplantation, thereby offering potential therapeutic targets for prolonging allograft survival.
Collapse
Affiliation(s)
| | | | - Daniel Kreisel
- Department of Surgery
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
17
|
Ojanguren A, Santamaría M, Milla-Collado L, Fraile C, Gatius-Calderó S, Puy S, Boldó A, Gómez-Olles S, Boada-Pérez M, Esquinas C, Sáez-Giménez B, Ojanguren I, Barrecheguren M, Olsina-Kissler JJ. Pilot Trial of Extended Hypothermic Lung Preservation to Analyze Ischemia-reperfusion Injury in Pigs. Arch Bronconeumol 2021; 57:479-489. [PMID: 35698954 DOI: 10.1016/j.arbr.2021.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/03/2021] [Indexed: 06/15/2023]
Abstract
BACKGROUND In lung transplantation (LT), the length of ischemia time is controversial as it was arbitrarily stablished. We ought to explore the impact of extended cold-ischemia time (CIT) on ischemia-reperfusion injury in an experimental model. METHODS Experimental, randomized pilot trial of parallel groups and final blind analysis using a swine model of LT. Donor animals (n=8) were submitted to organ procurement. Lungs were subjected to 6h (n=4) or 12h (n=4) aerobic hypothermic preservation. The left lung was transplanted and re-perfused for 4h. Lung biopsies were obtained at (i) the beginning of CIT, (ii) the end of CIT, (iii) 30min after reperfusion, and (iv) 4h after reperfusion. Lung-grafts were histologically assessed by microscopic lung injury score and wet-to-dry ratio. Inflammatory response was measured by determination of inflammatory cytokines. Caspase-3 activity was determined as apoptosis marker. RESULTS We observed no differences on lung injury score or wet-to-dry ratio any given time between lungs subjected to 6h-CIT or 12h-CIT. IL-1β and IL6 showed an upward trend during reperfusion in both groups. TNF-α was peaked within 30min of reperfusion. IFN-γ was hardly detected. Caspase-3 immunoexpression was graded semiquantitatively by the percentage of stained cells. Twenty percent of apoptotic cells were observed 30min after reperfusion. CONCLUSIONS We observed that 6 and 12h of CIT were equivalent in terms of microscopic lung injury, inflammatory profile and apoptosis in a LT swine model. The extent of lung injury measured by microscopic lung injury score, proinflammatory cytokines and caspase-3 determination was mild.
Collapse
Affiliation(s)
- Amaia Ojanguren
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain; Thoracic Surgery Department, Lausanne University Hospital, Lausanne, Switzerland.
| | - Maite Santamaría
- General Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Lucía Milla-Collado
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Carlos Fraile
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | | | - Sara Puy
- Centre de Reserca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Alba Boldó
- Centre de Reserca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Susana Gómez-Olles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Boada-Pérez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Esquinas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Sáez-Giménez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iñigo Ojanguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
18
|
Miyahara K, Miyoshi K, Kurosaki T, Otani S, Sugimoto S, Yamane M, Toyooka S. Circulating anti-human leukocyte antigen IgM antibodies as a potential early predictor of allograft rejection and a negative clinical outcome after lung transplantation. Surg Today 2021; 52:52-60. [PMID: 33961136 DOI: 10.1007/s00595-021-02293-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Anti-human leukocyte antigen (HLA) immunoglobulin (Ig) M production stimulated by an alloantigen is sensitive, making IgM a novel potential marker of allorejection after organ transplantation. This study examined the relationship between the serum levels of anti-HLA IgM early after clinical lung transplantation (LTx) and the post-transplant outcomes. METHODS Thirty-one consecutive patients who underwent deceased LTx were included. Immunoreactivity against HLA was retrospectively analyzed by measuring the anti-HLA IgM levels in the serum sampled for the first 14 days after LTx. The flow panel reactive antibody technique was used. The ratio of the anti-class I IgM level at each day to baseline was obtained, and the peak IgM level was determined for each case. The correlation between the peak IgM level and subsequent development of acute rejection (AR), chronic lung allograft dysfunction (CLAD), and survival outcomes were examined. RESULTS The peak IgM level was a significant risk factor for AR within 90 days in univariate and multivariate analyses. In the long term, the patients with positive IgM (peak level > 1.8) tended to have a poorer CLAD-free and overall survival than those with negative IgM. CONCLUSION Elevation of anti-HLA IgM levels early after LTx may be correlated with a higher incidence of rejection and negative clinical outcomes.
Collapse
Affiliation(s)
- Kazuaki Miyahara
- Department of Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kentaroh Miyoshi
- Department of Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Takeshi Kurosaki
- Organ Transplant Center, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinji Otani
- Department of Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- Department of Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Organ Transplant Center, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masaomi Yamane
- Department of Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Organ Transplant Center, Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
19
|
Ojanguren A, Santamaría M, Milla-Collado L, Fraile C, Gatius-Calderó S, Puy S, Boldó A, Gómez-Olles S, Boada-Pérez M, Esquinas C, Sáez-Giménez B, Ojanguren I, Barrecheguren M, Olsina-Kissler JJ. Pilot Trial of Extended Hypothermic Lung Preservation to Analyze Ischemia-reperfusion Injury in Pigs. Arch Bronconeumol 2021:S0300-2896(21)00106-X. [PMID: 33849720 DOI: 10.1016/j.arbres.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In lung transplantation (LT), the length of ischemia time is controversial as it was arbitrarily stablished. We ought to explore the impact of extended cold-ischemia time (CIT) on ischemia-reperfusion injury in an experimental model. METHODS Experimental, randomized pilot trial of parallel groups and final blind analysis using a swine model of LT. Donor animals (n=8) were submitted to organ procurement. Lungs were subjected to 6h (n=4) or 12h (n=4) aerobic hypothermic preservation. The left lung was transplanted and re-perfused for 4h. Lung biopsies were obtained at (i) the beginning of CIT, (ii) the end of CIT, (iii) 30min after reperfusion, and (iv) 4h after reperfusion. Lung-grafts were histologically assessed by microscopic lung injury score and wet-to-dry ratio. Inflammatory response was measured by determination of inflammatory cytokines. Caspase-3 activity was determined as apoptosis marker. RESULTS We observed no differences on lung injury score or wet-to-dry ratio any given time between lungs subjected to 6h-CIT or 12h-CIT. IL-1β and IL6 showed an upward trend during reperfusion in both groups. TNF-α was peaked within 30min of reperfusion. IFN-γ was hardly detected. Caspase-3 immunoexpression was graded semiquantitatively by the percentage of stained cells. Twenty percent of apoptotic cells were observed 30min after reperfusion. CONCLUSIONS We observed that 6 and 12h of CIT were equivalent in terms of microscopic lung injury, inflammatory profile and apoptosis in a LT swine model. The extent of lung injury measured by microscopic lung injury score, proinflammatory cytokines and caspase-3 determination was mild.
Collapse
Affiliation(s)
- Amaia Ojanguren
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain; Thoracic Surgery Department, Lausanne University Hospital, Lausanne, Switzerland.
| | - Maite Santamaría
- General Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Lucía Milla-Collado
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Carlos Fraile
- Thoracic Surgery Department, Arnau de Vilanova University Hospital, Lleida, Spain
| | | | - Sara Puy
- Centre de Reserca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Alba Boldó
- Centre de Reserca Experimental Biomèdica Aplicada (CREBA), IRBLleida, Lleida, Spain
| | - Susana Gómez-Olles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Boada-Pérez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Esquinas
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Sáez-Giménez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iñigo Ojanguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
20
|
Miceli V, Bertani A, Chinnici CM, Bulati M, Pampalone M, Amico G, Carcione C, Schmelzer E, Gerlach JC, Conaldi PG. Conditioned Medium from Human Amnion-Derived Mesenchymal Stromal/Stem Cells Attenuating the Effects of Cold Ischemia-Reperfusion Injury in an In Vitro Model Using Human Alveolar Epithelial Cells. Int J Mol Sci 2021; 22:ijms22020510. [PMID: 33419219 PMCID: PMC7825633 DOI: 10.3390/ijms22020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical results of lung transplantation (LTx) are still less favorable than other solid organ transplants in both the early and long term. The fragility of the lungs limits the procurement rate and can favor the occurrence of ischemia-reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) with Steen SolutionTM (SS) aims to address problems, and the implementation of EVLP to alleviate the activation of IRI-mediated processes has been achieved using mesenchymal stromal/stem cell (MSC)-based treatments. In this study, we investigated the paracrine effects of human amnion-derived MSCs (hAMSCs) in an in vitro model of lung IRI that includes cold ischemia and normothermic EVLP. We found that SS enriched by a hAMSC-conditioned medium (hAMSC-CM) preserved the viability and delayed the apoptosis of alveolar epithelial cells (A549) through the downregulation of inflammatory factors and the upregulation of antiapoptotic factors. These effects were more evident using the CM of 3D hAMSC cultures, which contained an increased amount of immunosuppressive and growth factors compared to both 2D cultures and encapsulated-hAMSCs. To conclude, we demonstrated an in vitro model of lung IRI and provided evidence that a hAMSC-CM attenuated IRI effects by improving the efficacy of EVLP, leading to strategies for a potential implementation of this technique.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
- Correspondence: ; Tel.: +39-091-21-92-649
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90127 Palermo, Italy;
| | - Cinzia Maria Chinnici
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| | - Mariangela Pampalone
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Claudia Carcione
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
| | - Eva Schmelzer
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
| | - Jörg C. Gerlach
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
- Department of Bioengineering, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| |
Collapse
|