1
|
Hijazi E. Enhancing mortality prediction after coronary artery bypass graft: a machine learning approach utilizing EuroScore. Future Sci OA 2024; 10:FSO959. [PMID: 38884372 PMCID: PMC11185181 DOI: 10.2144/fsoa-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/05/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: We developed a machine learning model using EuroScore assumptions and preoperative and intraoperative risk factors to predict mortality after coronary artery bypass graft (CABG). Materials & methods: We retrospectively examined data from 108 CABG patients at King Abdullah University Hospital, classifying them into risk groups via EuroScore and predicting mortality through random forest classification. Results: High-risk patients displayed longer surgical times and significant factors such as age and surgery choice. The median EuroScore was 0.95 (0.5-6.4). The model yielded high AUC scores (0.98, 0.95) indicating strong predictive accuracy. Conclusion: Our findings showed that the machine learning models combined with the EuroScore significantly improve post-CABG mortality prediction. For further validation, larger datasets are needed.
Collapse
Affiliation(s)
- Emad Hijazi
- Department of General Surgery & Urology, Faculty of Medicine, Jordan University of Science & Technology, Princess Muna Al-Hussein Cardiac Center, King Abdullah University Hospital, Irbid, 22110, Jordan
| |
Collapse
|
2
|
Chen Y, Xu J, Liu L, Li H, Yang Y, Cheng S, Li L. Construction and validation of an immune gene-based model for diagnosis and risk prediction of severe asthma. J Asthma 2024:1-14. [PMID: 39661012 DOI: 10.1080/02770903.2024.2422410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVE Severe asthma (SA) is a serious disease with limited treatment options, which is closely linked to immune dysfunction. Therefore, immune-associated biomarkers may diagnose SA and offer therapeutic targets for SA. METHODS The gene expression profiles of SA patients and matched controls were from the National Center for Biotechnology Information database. Immune genes were downloaded from the ImmPort database. After screening for differentially expressed genes (DEGs) between SA patients and controls, and identifying gene modules highly associated with SA, immune-related DEGs were obtained. Then, protein-protein interaction analysis, Cytoscape software and receiver operating characteristic (ROC) curves were used to identify hub genes. Next, the relationship between hub genes and immune cells was explored, and single-sample gene set enrichment analysis (ssGSEA) was applied to conduct pathway enrichment analyses. Finally, the Least Absolute Shrinkage and Selection Operator (LASSO) combined with ROC analysis were used to confirm the diagnostic value of the hub genes. RESULTS Forty immune-related DEGs were obtained, and RNASE3, CAMP and LTF were determined as hub genes. The hub genes were closely associated with immune cells, and ssGSEA showed that lysosome was associated with high expressions of the hub genes, while primary immunodeficiency was related to low expressions of the hub genes. LASSO combined with ROC analysis confirmed the immune gene-based model (RNASE3, CAMP, LTF, and CD79A) could distinguish SA patients from healthy individuals with high sensitivity. CONCLUSIONS RNASE3, CAMP, LTF, and CD79A could act as diagnostic markers for SA, providing a theoretical basis for developing diagnostic targets for SA.
Collapse
Affiliation(s)
- Yaqin Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jiaye Xu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liwei Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Han Li
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yufang Yang
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Shen Cheng
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| | - Lan Li
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University·(Zhejiang Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhang LX, Cao JY, Zhou XJ. Construction and validation of a nomogram prediction model for the risk of new-onset atrial fibrillation following percutaneous coronary intervention in acute myocardial infarction patients. BMC Cardiovasc Disord 2024; 24:642. [PMID: 39538121 PMCID: PMC11562501 DOI: 10.1186/s12872-024-04326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate risk factors for new-onset atrial fibrillation (NOAF) post-percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI), aiming to develop a predictive nomogram for NOAF risk. METHODS A retrospective cohort study involving 397 AMI patients who underwent PCI at a tertiary hospital in Anhui, China, from January 2021 to July 2022 was performed. Patients were divided into NOAF (n = 63) and non-NOAF (n = 334) groups based on post-PCI outcomes. Clinical data were extracted from the hospital information system (HIS) and analyzed using univariate and multivariate logistic regression to identify independent risk factors. A nomogram was generated utilizing R software (version 3.6.1), with its performance evaluated through receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and Bootstrap resampling. RESULTS Independent risk factors for NOAF included age, left atrial diameter (LAD), Gensini score, N-terminal pro-B-type natriuretic peptide (NT-proBNP), alanine transaminase (ALT), low-density lipoprotein cholesterol (LDL-C), left ventricular end-systolic diameter (LVESD), and ventricular rate (P < 0.05). The nomogram's ROC curve demonstrated an area under the curve (AUC) of 0.925 (95% CI: 0.887-0.963), supported by a Bootstrap-verified AUC of 0.924 (95% CI: 0.883-0.954), reflecting strong discriminative capability. The calibration curve indicated a mean absolute error (MAE) of 0.031 and 0.017 prior to and following Bootstrap verification, respectively, signifying robust calibration. The DCA curve illustrated that the nomogram offered optimal clinical net benefit for patients with a threshold probability of NOAF ranging from 0.01 to 0.99. CONCLUSION The nomogram developed from independent risk factors for NOAF exhibits significant predictive accuracy and clinical relevance for evaluating the risk of NOAF in AMI patients following PCI, thereby enabling the identification of high-risk individuals for targeted interventions.
Collapse
Affiliation(s)
- Li-Xiang Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, No. 1, Swan Lake Road, Hefei, Anhui Province, 230001, China
| | - Jiao-Yu Cao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, No. 1, Swan Lake Road, Hefei, Anhui Province, 230001, China
| | - Xiao-Juan Zhou
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, No. 1, Swan Lake Road, Hefei, Anhui Province, 230001, China.
| |
Collapse
|
4
|
Nedadur R, Bhatt N, Liu T, Chu MWA, McCarthy PM, Kline A. The Emerging and Important Role of Artificial Intelligence in Cardiac Surgery. Can J Cardiol 2024; 40:1865-1879. [PMID: 39098601 DOI: 10.1016/j.cjca.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
Artificial Intelligence (AI) has greatly affected our everyday lives and holds great promise to change the landscape of medicine. AI is particularly positioned to improve care for the increasingly complex patients undergoing cardiac surgery using the immense amount of data generated in the course of their care. When deployed, AI can be used to analyze this information at the patient's bedside more expediently and accurately, all while providing new insights. This review summarizes the current applications of AI in cardiac surgery from the vantage point of a patient's journey. Applications of AI include preoperative risk assessment, intraoperative planning, postoperative patient care, and outpatient telemonitoring, encompassing the spectrum of cardiac surgical care. Offloading of administrative processes and enhanced experience with information gathering also represent a unique and under-represented avenue for future use of AI. As clinicians, understanding the nomenclature and applications of AI is important to contextualize issues, to ensure problem-driven solutions, and for clinical benefit. Precision medicine, and thus clinically relevant AI, remains dependent on data curation and warehousing to gather insights from large multicentre repositories while treating privacy with the utmost importance. AI tasks should not be siloed but rather holistically integrated into clinical workflow to retain context and relevance. As cardiac surgeons, AI allows us to look forward to a bright future of more efficient use of our clinical expertise toward high-level decision making and technical prowess.
Collapse
Affiliation(s)
- Rashmi Nedadur
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA.
| | - Nitish Bhatt
- Peter Munk Cardiac Center, Toronto General Hospital, Toronto, Ontario, Canada
| | - Tom Liu
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA
| | | | - Patrick M McCarthy
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA
| | - Adrienne Kline
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Sulague RM, Beloy FJ, Medina JR, Mortalla ED, Cartojano TD, Macapagal S, Kpodonu J. Artificial intelligence in cardiac surgery: A systematic review. World J Surg 2024; 48:2073-2089. [PMID: 39019775 DOI: 10.1002/wjs.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Artificial intelligence (AI) has emerged as a tool to potentially increase the efficiency and efficacy of cardiovascular care and improve clinical outcomes. This study aims to provide an overview of applications of AI in cardiac surgery. METHODS A systematic literature search on AI applications in cardiac surgery from inception to February 2024 was conducted. Articles were then filtered based on the inclusion and exclusion criteria and the risk of bias was assessed. Key findings were then summarized. RESULTS A total of 81 studies were found that reported on AI applications in cardiac surgery. There is a rapid rise in studies since 2020. The most popular machine learning technique was random forest (n = 48), followed by support vector machine (n = 33), logistic regression (n = 32), and eXtreme Gradient Boosting (n = 31). Most of the studies were on adult patients, conducted in China, and involved procedures such as valvular surgery (24.7%), heart transplant (9.4%), coronary revascularization (11.8%), congenital heart disease surgery (3.5%), and aortic dissection repair (2.4%). Regarding evaluation outcomes, 35 studies examined the performance, 26 studies examined clinician outcomes, and 20 studies examined patient outcomes. CONCLUSION AI was mainly used to predict complications following cardiac surgeries and improve clinicians' decision-making by providing better preoperative risk assessment, stratification, and prognostication. While the application of AI in cardiac surgery has greatly progressed in the last decade, further studies need to be conducted to verify accuracy and ensure safety before use in clinical practice.
Collapse
Affiliation(s)
- Ralf Martz Sulague
- Graduate School of Arts and Sciences, Georgetown University, Washington, District of Columbia, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | - Jacques Kpodonu
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Salih AM, Galazzo IB, Gkontra P, Rauseo E, Lee AM, Lekadir K, Radeva P, Petersen SE, Menegaz G. A review of evaluation approaches for explainable AI with applications in cardiology. Artif Intell Rev 2024; 57:240. [PMID: 39132011 PMCID: PMC11315784 DOI: 10.1007/s10462-024-10852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
Explainable artificial intelligence (XAI) elucidates the decision-making process of complex AI models and is important in building trust in model predictions. XAI explanations themselves require evaluation as to accuracy and reasonableness and in the context of use of the underlying AI model. This review details the evaluation of XAI in cardiac AI applications and has found that, of the studies examined, 37% evaluated XAI quality using literature results, 11% used clinicians as domain-experts, 11% used proxies or statistical analysis, with the remaining 43% not assessing the XAI used at all. We aim to inspire additional studies within healthcare, urging researchers not only to apply XAI methods but to systematically assess the resulting explanations, as a step towards developing trustworthy and safe models. Supplementary Information The online version contains supplementary material available at 10.1007/s10462-024-10852-w.
Collapse
Affiliation(s)
- Ahmed M. Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
- Department of Population Health Sciences, University of Leicester, University Rd, Leicester, LE1 7RH UK
- Department of Computer Science, University of Zakho, Duhok road, Zakho, Kurdistan Iraq
| | - Ilaria Boscolo Galazzo
- Department of Engineering for Innovative Medicine, University of Verona, S. Francesco, 22, 37129 Verona, Italy
| | - Polyxeni Gkontra
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
| | - Elisa Rauseo
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Aaron Mark Lee
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Karim Lekadir
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - Petia Radeva
- Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
| | - Steffen E. Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, UK
- Health Data Research, London, UK
- Alan Turing Institute, London, UK
| | - Gloria Menegaz
- Department of Engineering for Innovative Medicine, University of Verona, S. Francesco, 22, 37129 Verona, Italy
| |
Collapse
|
7
|
Santos R, Ribeiro B, Sousa I, Santos J, Guede-Fernández F, Dias P, Carreiro AV, Gamboa H, Coelho P, Fragata J, Londral A. Predicting post-discharge complications in cardiothoracic surgery: A clinical decision support system to optimize remote patient monitoring resources. Int J Med Inform 2024; 182:105307. [PMID: 38061187 DOI: 10.1016/j.ijmedinf.2023.105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse outcomes earlier or prevent them, closing the gap between hospital and home care. However, equipment is limited due to economic and human resource constraints. This issue raises the need for efficient risk estimation to provide clinicians with insights into the potential benefit of remote monitoring for each patient. Standard models, such as the EuroSCORE, predict the mortality risk before the surgery. While these are used and validated in real settings, the models lack information collected during or following the surgery, determinant to predict adverse outcomes occurring further in the future. This paper proposes a Clinical Decision Support System based on Machine Learning to estimate the risk of severe complications within 90 days following cardiothoracic surgery discharge, an innovative objective underexplored in the literature. Health records from a cardiothoracic surgery department regarding 5 045 patients (60.8% male) collected throughout ten years were used to train predictive models. Clinicians' insights contributed to improving data preparation and extending traditional pipeline optimization techniques, addressing medical Artificial Intelligence requirements. Two separate test sets were used to evaluate the generalizability, one derived from a patient-grouped 70/30 split and another including all surgeries from the last available year. The achieved Area Under the Receiver Operating Characteristic curve on these test sets was 69.5% and 65.3%, respectively. Also, additional testing was implemented to simulate a real-world use case considering the weekly distribution of remote patient monitoring resources post-discharge. Compared to the random resource allocation, the selection of patients with respect to the outputs of the proposed model was proven beneficial, as it led to a higher number of high-risk patients receiving remote monitoring equipment.
Collapse
Affiliation(s)
- Ricardo Santos
- Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal; Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Physics Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal.
| | - Bruno Ribeiro
- Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal
| | - Inês Sousa
- Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal
| | - Jorge Santos
- Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Rua de Santa Marta, 50, 1169-023 Lisboa, Portugal
| | - Federico Guede-Fernández
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Physics Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal; Value for Health CoLAB, Av. Fontes Pereira de Melo, 15, 2°D, 1050-115 Lisboa, Portugal
| | - Pedro Dias
- Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Value for Health CoLAB, Av. Fontes Pereira de Melo, 15, 2°D, 1050-115 Lisboa, Portugal
| | - André V Carreiro
- Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal
| | - Hugo Gamboa
- Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal; Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Physics Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Pedro Coelho
- Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Rua de Santa Marta, 50, 1169-023 Lisboa, Portugal
| | - José Fragata
- Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Rua de Santa Marta, 50, 1169-023 Lisboa, Portugal
| | - Ana Londral
- Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Value for Health CoLAB, Av. Fontes Pereira de Melo, 15, 2°D, 1050-115 Lisboa, Portugal
| |
Collapse
|