1
|
Wu Y, Xiao Y, Ding Y, Ran R, Wei K, Tao S, Mao H, Wang J, Pang S, Shi J, Zhu C, Wan W, Yang Q, Chen C. Colorectal cancer cell-derived exosomal miRNA-372-5p induces immune escape from colorectal cancer via PTEN/AKT/NF-κB/PD-L1 pathway. Int Immunopharmacol 2024; 143:113261. [PMID: 39353381 DOI: 10.1016/j.intimp.2024.113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Tumor cells can escape immune surveillance by changing their own escape or expressing abnormal genes and proteins, resulting in unlimited proliferation and invasive growth of cells. These changes are related to microRNAs (miRNAs), which reduce the killing effect of immune cells, devastate the immune response, and interfere with apoptosis through the aberrant expression of relevant miRNAs. In the preliminary phase of this study, miRNAs in clinical plasma exosomes of colorectal cancer patients were differentially analyzed by RNA sequencing technology, and miR-372-5p derived from extracellular vesicles (sEVs) was found to be a key signaling molecule mediating the regulation of macrophages by colorectal cancer (CRC). miRNA-372-5p is upregulated in colorectal cancer patient tissues and serum, as well as colorectal cancer cell lines and their exosomes. Subsequently, we found that macrophages could take up sEV secreted by colorectal cancer cells HCT116, affecting the expression of the immune checkpoint PD-L1, resulting in the generation of a tumor-immunosuppressive microenvironment and suppression of T cell activation in CRC. Gene enrichment mapping and database revealed that miR-372-5p regulates PD-L1 expression in colorectal cancer through the homologous phosphatase-tensin (PTEN)-phosphatidylinositol 3-kinase-protein kinase B (AKT)-nuclear factor-κB (NF-κB) pathway. Further studies confirmed that miRNA-372-5p-treated macrophages co-cultured with T cells affected the regulation of PD-L1 expression through the PTEN/AKT/NF-κB signaling pathway, resulting in decreased CD3+CD8+ T cell activity, decreased cytokine IL-2 and increased IFN-γ. And miRNA-372-5p could down-regulate the expression of PD-L1 in HCT116 through the PTEN/AKT/NF-κB pathway, inhibit tumor cell proliferation and promote apoptosis. Conclusion: Colorectal cancer cell-derived exosome miR-372-5p can be phagocytosed by colorectal cancer and macrophage cells, regulate the expression of PD-L1 in colorectal cancer cells and macrophages by targeting the PTEN/AKT/NF-κB pathway, and induce the immunosuppressive microenvironment of CRC to promote CRC development. This suggests that inhibiting the secretion of HCT116-specific sEV-miR-372-5p or targeting PD-L1 in tumor-associated macrophages could be a novel approach for CRC treatment and possibly a sensitizing approach for CRC anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Yulun Wu
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China; Department of Life Sciences, Bengbu Medical University, Anhui 233030, China.
| | - Yuhan Xiao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China; School of Laboratory Medicine, Bengbu Medical University, Anhui 233030, China.
| | - Yongxing Ding
- The Third the Pople's Hospital of Bengbu, Anhui 233000, China.
| | - Ruorong Ran
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Ke Wei
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Shuang Tao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Huilan Mao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Jing Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Siyan Pang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Jiwen Shi
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Chengle Zhu
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Wenrui Wan
- Department of Biotechnology, Bengbu Medical University, Anhui 233030, China.
| | - Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, Anhui 233030, China.
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, Anhui 233030, China.
| |
Collapse
|
2
|
Zeng W, Liu H, Mao Y, Jiang S, Yi H, Zhang Z, Wang M, Zong Z. Myeloid‑derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in colorectal cancer (Review). Int J Oncol 2024; 65:85. [PMID: 39054950 PMCID: PMC11299769 DOI: 10.3892/ijo.2024.5673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most common type of cancer. CRC has no apparent symptoms in the early stages of disease, and most patients receive a confirmed diagnosis in the middle or late disease stages. The incidence of CRC continues to increase, and the affected population tends to be younger. Therefore, determining how to achieve an early CRC diagnosis and treatment has become a top priority for prolonging patient survival. Myeloid‑derived suppressor cells (MDSCs) are a group of bone marrow‑derived immuno‑negative regulatory cells that are divided into two subpopulations, polymorphonuclear‑MDSCs and monocytic‑MDSCs, based on their phenotypic similarities to neutrophils and monocytes, respectively. These cells can inhibit the immune response and promote cancer cell metastasis in the tumour microenvironment (TME). A large aggregation of MDSCs in the TME is often a marker of cancer and a poor prognosis in inflammatory diseases of the intestine (such as colonic adenoma and ulcerative colitis). In the present review, the phenotypic classification of MDSCs in the CRC microenvironment are first discussed. Then, the amplification, role and metastatic mechanism of MDSCs in the CRC TME are described, focusing on genes, gene modifications, proteins and the intestinal microenvironment. Finally, the progress in CRC‑targeted therapies that aim to modulate the quantity, function and structure of MDSCs are summarized in the hope of identifying potential screening markers for CRC and improving CRC prognosis and therapeutic options.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanhao Mao
- Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 330006, P.R. China
| | - Shihao Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zitong Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
3
|
Zhou X, Li D, Xia S, Ma X, Li R, Mu Y, Liu Z, Zhang L, Zhou Q, Zhuo W, Ding K, Lin A, Liu W, Liu X, Zhou T. RNA-based modulation of macrophage-mediated efferocytosis potentiates antitumor immunity in colorectal cancer. J Control Release 2024; 366:128-141. [PMID: 38104775 DOI: 10.1016/j.jconrel.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Tumor-associated macrophages play pivotal roles in tumor progression and metastasis. Macrophage-mediated clearance of apoptotic cells (efferocytosis) supports inflammation resolution, contributing to immune evasion in colorectal cancers. To reverse this immunosuppressive process, we propose a readily translatable RNA therapy to selectively inhibit macrophage-mediated efferocytosis in tumor microenvironment. A clinically approved lipid nanoparticle platform (LNP) is employed to encapsulate siRNA for the phagocytic receptor MerTK (siMerTK), enabling selective MerTK inhibition in the diseased organ. Decreased MerTK expression in tumor-associated macrophages results in apoptotic cell accumulation and immune activation in tumor microenvironment, leading to suppressed tumor growth and better survival in both liver and peritoneal metastasis models of colorectal cancers. siMerTK delivery combined with PD-1 blockade further produces enhanced antimetastatic efficacy with reactivated intratumoral immune milieu. Collectively, LNP-based siMerTK delivery combined with immune checkpoint therapy may present a feasible modality for metastatic colorectal cancer therapy.
Collapse
Affiliation(s)
- Xuefei Zhou
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Dezhi Li
- Department of Oncology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Shenglong Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xixi Ma
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310020, China
| | - Rong Li
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongli Mu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zimo Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Quan Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Zhuo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310020, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiangrui Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310020, China.
| |
Collapse
|
4
|
Sriramulu S, Malayaperumal S, Banerjee A, Anbalagan M, Kumar MM, Radha RKN, Liu X, Zhang H, Hu G, Sun XF, Pathak S. AEG-1 as a Novel Therapeutic Target in Colon Cancer: A Study from Silencing AEG-1 in BALB/c Mice to Large Data Analysis. Curr Gene Ther 2024; 24:307-320. [PMID: 38783530 DOI: 10.2174/0115665232273077240104045022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Astrocyte elevated gene-1 (AEG-1) is overexpressed in various malignancies. Exostosin-1 (EXT-1), a tumor suppressor, is an intermediate for malignant tumors. Understanding the mechanism behind the interaction between AEG-1 and EXT-1 may provide insights into colon cancer metastasis. METHODS AOM/DSS was used to induce tumor in BALB/c mice. Using an in vivo-jetPEI transfection reagent, transient transfection of AEG-1 and EXT-1 siRNAs were achieved. Histological scoring, immunohistochemical staining, and gene expression studies were performed from excised tissues. Data from the Cancer Genomic Atlas and GEO databases were obtained to identify the expression status of AEG-1 and itsassociation with the survival. RESULTS In BALB/c mice, the AOM+DSS treated mice developed necrotic, inflammatory and dysplastic changes in the colon with definite clinical symptoms such as loss of goblet cells, colon shortening, and collagen deposition. Administration of AEG-1 siRNA resulted in a substantial decrease in the disease activity index. Mice treated with EXT-1 siRNA showed diffusely reduced goblet cells. In vivo investigations revealed that PTCH-1 activity was influenced by upstream gene AEG-1, which in turn may affect EXT-1 activity. Data from The Cancer Genomic Atlas and GEO databases confirmed the upregulation of AEG-1 and downregulation of EXT-1 in cancer patients. CONCLUSIONS This study revealed that AEG-1 silencing might alter EXT-1 expression indirectly through PTCH-1, influencing cell-ECM interactions, and decreasing dysplastic changes, proliferation and invasion.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Sarubala Malayaperumal
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Makalakshmi Murali Kumar
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Rajesh Kanna Nandagopal Radha
- Department of Pathology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| | - Xingyi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Basic Medicine and Biological Sciences, Suzhou, China
| | - Hong Zhang
- School of Medicine, Institute of Medical Sciences, Orebro University, SE-701 82 Orebro, Sweden
| | - Guang Hu
- School of Medicine, Institute of Medical Sciences, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India
| |
Collapse
|
5
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
6
|
Xie X, Lu Y, Wang B, Yin X, Chen J. DOCK4 is a Novel Prognostic Biomarker and Correlated with Immune Infiltrates in Colon Adenocarcinoma. Comb Chem High Throughput Screen 2024; 27:1119-1130. [PMID: 37702239 DOI: 10.2174/1386207326666230912094101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Dedicator for cytokinesis 4 (DOCK4) is a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. However, the functions of DOCK4 concerning the tumor microenvironment (TME) in colon adenocarcinoma (COAD) remain uncertain. METHODS The TIMER and GEPIA databases were used to analyze the DOCK4 expression between COAD tissues and adjunct normal tissues. The PrognoScan database was used to assess the prognosis of DOCK4 expression in COAD. The co-expression networks of DOCK4 in COAD were constructed by the LinkedOmics website. Furthermore, the correlation between DOCK4 expression and TME of COAD was explored using TIMER and TISIDB databases. Finally, the clone formation assay was used to further verify the function of DOCK4 in COAD. The Western blotting assay was used to confirm the mechanism related to DOCK4 in COAD. RESULTS The DOCK4 expression was different significantly in COAD tissues and paracancerous tissues. The DOCK4 was found to play a poor role in the prognosis of patients with COAD. The DOCK4 was found to participate in the TME by promoting immune evasion of COAD. The reduction of DOCK4 expression inhibited the clone formation and Ras-associated protein 1A (Rap1A) expression of HCT116 cells. CONCLUSIONS DOCK4 potentially plays an important role in the regulation of TME in COAD. DOCK4 facilitates the development through the Rap1A pathway, thus becoming a novel prognostic biomarker in COAD.
Collapse
Affiliation(s)
- Xingjiang Xie
- Department of General Surgery, Wenjiang District People's Hospital of Chengdu, Chengdu, Sichuan, 611130, China
| | - Yi Lu
- Department of Otorhinolaryngology Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Bo Wang
- Department of General Surgery, Wenjiang District People's Hospital of Chengdu, Chengdu, Sichuan, 611130, China
| | - Xiaobin Yin
- Department of General Surgery, Wenjiang District People's Hospital of Chengdu, Chengdu, Sichuan, 611130, China
| | - Jianfeng Chen
- Department of General Surgery, Wenjiang District People's Hospital of Chengdu, Chengdu, Sichuan, 611130, China
| |
Collapse
|
7
|
Kong J, Xu S, Zhang P, Zhao Y. CXCL1 promotes immune escape in colorectal cancer by autophagy-mediated MHC-I degradation. Hum Immunol 2023; 84:110716. [PMID: 37802708 DOI: 10.1016/j.humimm.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Immunotherapy is now seen as a potential remedy for colorectal cancer (CRC). Chemokines play a crucial role in tumors, including CRC, which contains CXCL1. We attempted to study how CXCL1 impacts immune escape in CRC. METHODS Bioinformatics analysis was used to examine CXCL1 level in CRC. qRT-PCR was used to assess CXCL1 and MHC-I (HLA-A, B, C) levels. Cell Counting Kit-8 (CCK-8) was used to measure cell viability. Cytotoxicity assay kit was utilized to assay CD8+ T cell cytotoxicity against CRC. Flow cytometry tested proliferation and apoptosis of CD8+ T cells. Chemotaxis assay evaluated chemotaxis of CD8+ T cells towards CRC. Immunofluorescence examined expression of autophagy marker LC3 and localization of NBR1/MHC-I. Western blot analysis measured protein levels of chemokines CXCL9 and CXCL10, autophagy-related proteins LC3-I and LC3-II, and MHC-I (HLA-A, B, C). RESULTS Bioinformatics analysis and qRT-PCR presented that CXCL1 was upregulated in CRC. Cell experiments demonstrated that CXCL1 overexpression promoted immune escape in CRC. Rescue experiments revealed that the autophagy inducer Rapa could attenuate the inhibitory effect of CXCL1 low expression on immune escape in CRC. Further studies showed that CXCL1 promoted immune escape in CRC by autophagy-mediated MHC-I degradation. CONCLUSION CXCL1 promoted immune escape in CRC by autophagy-mediated MHC-I degradation, suggesting that CXCL1 may be a possible immunotherapeutic target for CRC.
Collapse
Affiliation(s)
- Jianqiao Kong
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China
| | - Song Xu
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China
| | - Peng Zhang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China.
| | - Yun Zhao
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, China.
| |
Collapse
|
8
|
Lin KX, Istl AC, Quan D, Skaro A, Tang E, Zheng X. PD-1 and PD-L1 inhibitors in cold colorectal cancer: challenges and strategies. Cancer Immunol Immunother 2023; 72:3875-3893. [PMID: 37831146 PMCID: PMC10700246 DOI: 10.1007/s00262-023-03520-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/08/2023] [Indexed: 10/14/2023]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer mortality, with mismatch repair proficient (pMMR) and/or microsatellite stable (MSS) CRC making up more than 80% of metastatic CRC. Programmed death-ligand 1 (PD-L1) and programmed death 1 (PD-1) immune checkpoint inhibitors (ICIs) are approved as monotherapy in many cancers including a subset of advanced or metastatic colorectal cancer (CRC) with deficiency in mismatch repair (dMMR) and/or high microsatellite instability (MSI-H). However, proficient mismatch repair and microsatellite stable (pMMR/MSS) cold CRCs have not shown clinical response to ICIs alone. To potentiate the anti-tumor response of PD-L1/PD-1 inhibitors in patients with MSS cold cancer, combination strategies currently being investigated include dual ICI, and PD-L1/PD-1 inhibitors in combination with chemotherapy, radiotherapy, vascular endothelial growth factor (VEGF) /VEGF receptor (VEGFR) inhibitors, mitogen-activated protein kinase (MEK) inhibitors, and signal transducer and activation of transcription 3 (STAT3) inhibitors. This paper will review the mechanisms of PD-1/PD-L1 ICI resistance in pMMR/MSS CRC and potential combination strategies to overcome this resistance, summarize the published clinical experience with different combination therapies, and make recommendations for future avenues of research.
Collapse
Affiliation(s)
- Ke Xin Lin
- Department of Pathology, University of Western Ontario, London, ON, N6A 5A5, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alexandra C Istl
- Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Douglas Quan
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada
| | - Anton Skaro
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada
| | - Ephraim Tang
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada
| | - Xiufen Zheng
- Department of Pathology, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Department of Surgery, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Department of Oncology, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, N6A 5A5, Canada.
- Lawson Health Research Institute, London, ON, N6A 5A5, Canada.
| |
Collapse
|
9
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
10
|
Yao S, Han Y, Yang M, Jin K, Lan H. It's high-time to re-evaluate the value of induced-chemotherapy for reinforcing immunotherapy in colorectal cancer. Front Immunol 2023; 14:1241208. [PMID: 37920463 PMCID: PMC10619163 DOI: 10.3389/fimmu.2023.1241208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Immunotherapy has made significant advances in the treatment of colorectal cancer (CRC), revolutionizing the therapeutic landscape and highlighting the indispensable role of the tumor immune microenvironment. However, some CRCs have shown poor response to immunotherapy, prompting investigation into the underlying reasons. It has been discovered that certain chemotherapeutic agents possess immune-stimulatory properties, including the induction of immunogenic cell death (ICD), the generation and processing of non-mutated neoantigens (NM-neoAgs), and the B cell follicle-driven T cell response. Based on these findings, the concept of inducing chemotherapy has been introduced, and the combination of inducing chemotherapy and immunotherapy has become a standard treatment option for certain cancers. Clinical trials have confirmed the feasibility and safety of this approach in CRC, offering a promising method for improving the efficacy of immunotherapy. Nevertheless, there are still many challenges and difficulties ahead, and further research is required to optimize its use.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Yuan J, Li X, Zhang Y, Zhang G, Cheng W, Wang W, Lei Y, Song G. USP39 attenuates the antitumor activity of cisplatin on colon cancer cells dependent on p53. Cell Biol Toxicol 2023; 39:1995-2010. [PMID: 34822033 DOI: 10.1007/s10565-021-09683-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023]
Abstract
Cisplatin is the effective chemotherapeutic drug in colon cancer treatment, but its therapeutic efficacy is limited by intrinsic or acquired drug resistance and detrimental side effects. Therefore, improving the effect of cisplatin chemotherapy remains a great challenge. The previous study identified that USP39 was relevant to cisplatin resistance of lung cancer. However, the function and mechanisms of USP39 regulating the chemosensitivity of cisplatin in colorectal cancer remain unclear. In this study, we reveal that USP39 is associated with colon cancer cells sensitivity to cisplatin. Depletion of USP39 enhances the cisplatin-induced apoptosis in HCT116 cells. Conversely, overexpression of USP39 attenuates apoptosis in RKO cells. Furthermore, we demonstrate that USP39 depletion promotes apoptosis induced by cisplatin, which is related with the induction of oxidative stress and DNA damage response. Further studies show that USP39 regulates cisplatin-induced apoptosis dependent on p53. The underlying mechanism is demonstrated by knocking down USP39, that results in p53 upregulation, associated with its prolonged half-life. Collectively, our findings reveal that USP39 might be a negative factor of the p53 mediated cisplatin sensitivity of colon cancer, and suggest USP39 as a potential molecular target for cisplatin chemotherapy of colon cancer.
Collapse
Affiliation(s)
- Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
- Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yuqi Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Weipeng Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yongbin Lei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
12
|
Al Zein M, Boukhdoud M, Shammaa H, Mouslem H, El Ayoubi LM, Iratni R, Issa K, Khachab M, Assi HI, Sahebkar A, Eid AH. Immunotherapy and immunoevasion of colorectal cancer. Drug Discov Today 2023; 28:103669. [PMID: 37328052 DOI: 10.1016/j.drudis.2023.103669] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/20/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
The tremendous success of immunotherapy in clinical trials has led to its establishment as a new pillar of cancer therapy. However, little clinical efficacy has been achieved in microsatellite stable colorectal cancer (MSS-CRC), which constitutes most CRC tumors. Here, we discuss the molecular and genetic heterogeneity of CRC. We review the immune escape mechanisms, and focus on the latest advances in immunotherapy as a treatment modality for CRC. By providing a better understanding of the tumor microenvironment (TME) and the molecular mechanisms underlying immunoevasion, this review offers an insight into developing therapeutic strategies that are effective for patients with various subsets of CRC.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Mona Boukhdoud
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hadi Shammaa
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hadi Mouslem
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | | | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
| | - Khodr Issa
- University of Lille, Proteomics, Inflammatory Response, Mass Spectrometry, INSERM U-1192, Lille, France
| | - Maha Khachab
- Faculty of Medicine, University of Balamand, Lebanon
| | - Hazem I Assi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
13
|
Yao S, Lan H, Han Y, Mao C, Yang M, Zhang X, Jin K. From organ preservation to selective surgery: How immunotherapy changes colorectal surgery? Surg Open Sci 2023; 15:44-53. [PMID: 37637243 PMCID: PMC10450522 DOI: 10.1016/j.sopen.2023.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the traditional treatment paradigm of colorectal cancer (CRC). Among them, immune checkpoint blockade has become the first-line treatment for metastatic colorectal cancer (mCRC) and has made significant progress in the treatment of locally advanced colorectal cancer (LACRC). We reviewed a series of clinical trials that have made breakthrough progress. We will emphasize the breakthrough progress in achieving organ preservation in patients with high microsatellite instability or DNA mismatch repair deficiency (MSI-H/dMMR), and based on this, we propose the concept of selective surgery, which includes selectively removing or preserving lymph nodes, with the aim of proving our idea through more research in the future.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Chunsen Mao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650106, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| |
Collapse
|
14
|
Moslehian MS, Shabkhizan R, Asadi MR, Bazmani A, Mahdipour M, Haiaty S, Rahbarghazi R, Sakhinia E. Interaction of lncRNAs with mTOR in colorectal cancer: a systematic review. BMC Cancer 2023; 23:512. [PMID: 37280524 DOI: 10.1186/s12885-023-11008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most widespread cancer and the fourth leading lethal disease among different societies. It is thought that CRC accounts for about 10% of all newly diagnosed cancer cases with high-rate mortality. lncRNAs, belonging to non-coding RNAs, are involved in varied cell bioactivities. Emerging data have confirmed a significant alteration in lncRNA transcription under anaplastic conditions. This systematic review aimed to assess the possible influence of abnormal mTOR-associated lncRNAs in the tumorigenesis of colorectal tissue. In this study, the PRISMA guideline was utilized based on the systematic investigation of published articles from seven databases. Of the 200 entries, 24 articles met inclusion criteria and were used for subsequent analyses. Of note, 23 lncRNAs were prioritized in association with the mTOR signaling pathway with up-regulation (79.16%) and down-regulation (20.84%) trends. Based on the obtained data, mTOR can be stimulated or inhibited during CRC by the alteration of several lncRNAs. Determining the dynamic activity of mTOR and relevant signaling pathways via lncRNAs can help us progress novel molecular therapeutics and medications.
Collapse
Affiliation(s)
- Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University Of Mashhad, Mashhad, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Sakhinia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Drommi F, Calabrò A, Vento G, Pezzino G, Cavaliere R, Omero F, Muscolino P, Granata B, D'Anna F, Silvestris N, De Pasquale C, Ferlazzo G, Campana S. Crosstalk between ILC3s and Microbiota: Implications for Colon Cancer Development and Treatment with Immune Check Point Inhibitors. Cancers (Basel) 2023; 15:cancers15112893. [PMID: 37296855 DOI: 10.3390/cancers15112893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type 3 innate lymphoid cells (ILC3s) are primarily tissue-resident cells strategically localized at the intestinal barrier that exhibit the fast-acting responsiveness of classic innate immune cells. Populations of these lymphocytes depend on the transcription factor RAR-related orphan receptor and play a key role in maintaining intestinal homeostasis, keeping host-microbial mutualism in check. Current evidence has indicated a bidirectional relationship between microbiota and ILC3s. While ILC3 function and maintenance in the gut are influenced by commensal microbiota, ILC3s themselves can control immune responses to intestinal microbiota by providing host defense against extracellular bacteria, helping to maintain a diverse microbiota and inducing immune tolerance for commensal bacteria. Thus, ILC3s have been linked to host-microbiota interactions and the loss of their normal activity promotes dysbiosis, chronic inflammation and colon cancer. Furthermore, recent evidence has suggested that a healthy dialog between ILC3s and gut microbes is necessary to support antitumor immunity and response to immune checkpoint inhibitor (ICI) therapy. In this review, we summarize the functional interactions occurring between microbiota and ILC3s in homeostasis, providing an overview of the molecular mechanisms orchestrating these interactions. We focus on how alterations in this interplay promote gut inflammation, colorectal cancer and resistance to therapies with immune check point inhibitors.
Collapse
Affiliation(s)
- Fabiana Drommi
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| | - Alessia Calabrò
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| | - Grazia Vento
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genova, Italy
| | - Gaetana Pezzino
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| | - Fausto Omero
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Paola Muscolino
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Barbara Granata
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Federica D'Anna
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G.Barresi", University of Messina, 98125 Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genova, Italy
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G.Barresi", University of Messina, 98122 Messina, Italy
| |
Collapse
|
16
|
Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29:1395-1426. [PMID: 36998426 PMCID: PMC10044855 DOI: 10.3748/wjg.v29.i9.1395] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 03/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major leading cause of cancer-related deaths worldwide. Despite advances in therapeutic regimens, the number of patients presenting with metastatic CRC (mCRC) is increasing due to resistance to therapy, conferred by a small population of cancer cells, known as cancer stem cells. Targeted therapies have been highly successful in prolonging the overall survival of patients with mCRC. Agents are being developed to target key molecules involved in drug-resistance and metastasis of CRC, and these include vascular endothelial growth factor, epidermal growth factor receptor, human epidermal growth factor receptor-2, mitogen-activated extracellular signal-regulated kinase, in addition to immune checkpoints. Currently, there are several ongoing clinical trials of newly developed targeted agents, which have shown considerable clinical efficacy and have improved the prognosis of patients who do not benefit from conventional chemotherapy. In this review, we highlight recent developments in the use of existing and novel targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss limitations and challenges associated with targeted therapy and strategies to combat intrinsic and acquired resistance to these therapies, in addition to the importance of implementing better preclinical models and the application of personalized therapy based on predictive biomarkers for treatment selection.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
17
|
Identifying predictive biomarkers of apatinib in third-line treatment of advanced colorectal cancer through comprehensive genomic profiling. Anticancer Drugs 2023; 34:431-438. [PMID: 36730496 DOI: 10.1097/cad.0000000000001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apatinib is a selective inhibitor of vascular endothelial growth factor receptor-2. Despite encouraging anticancer activity in different cancer types, some patients may not benefit from apatinib treatment. Herein, we characterized genomic profiles in colorectal cancer (CRC) patients to explore predictive biomarkers of apatinib at molecular level. We retrospectively recruited 19 CRC patients receiving apatinib as third-line treatment. Tissue samples before apatinib treatment were collected and subjected to genomic profiling using a targeted sequencing panel covering 520 cancer-related genes. After apatinib treatment, the patients achieved an objective response rate of 21% (4/19) and disease control rate of 57.9% (11/19). The median progression-free survival (PFS) and overall survival were 5 and 8.7 months, respectively. Genetic alterations were frequently identified in TP53 (95%), APC (53%), KRAS (53%) and PIK3CA (26%). Higher tumor mutation burden levels were significantly observed in patients harboring alterations in ERBB and RAS signaling pathways. Patients harboring FLT1 amplifications ( n = 3) showed significantly worse PFS than wild-type patients. Our study described molecular profiles in CRC patients receiving apatinib treatment and identified FLT1 amplification as a potential predictive biomarker for poor efficacy of apatinib. Further studies are warranted to validate the use of FLT1 amplification during apatinib treatment.
Collapse
|
18
|
Deng S, Zhu Q, Chen H, Xiao T, Zhu Y, Gao J, Li Q, Gao Y. Screening of prognosis-related Immune cells and prognostic predictors in Colorectal Cancer Patients. BMC Cancer 2023; 23:195. [PMID: 36859111 PMCID: PMC9976376 DOI: 10.1186/s12885-023-10667-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE To accurately screen potential immune cells that can predict the survival of colorectal cancer (CRC) patients and identify related prognostic predictors. METHODS The sample data of CRC patients were downloaded from the GEO database as a training set to establish a prognosis-scoring model and screen prognosis-related immune cells. The sample data of CRC patients from the TCGA database were used as the validation set. Simultaneously, cancer tissue samples from 116 patients with CRC diagnosed pathologically in Shanghai Dongfang Hospital were collected to analyze the relationship of prognosis-related immune cells with patients' survival, and clinical and pathological parameters, and to screen prognostic predictors. RESULTS Prognosis-related immune cells screened from GEO and TCGA databases mainly included Follicular Helper T cells (Tfh), Monocytes and M2 Macrophages. In the training set, the 2,000- and 4,000-day survival rates were 48.3% and 10.7% in the low-risk group (N = 234), and 42.1% and 7.5% in the high-risk group (N = 214), respectively. In the validation set, the 2,000- and 4,000-day survival rates were 34.8% and 8.6% in the low-risk group (N = 187), and 28.9% and 6.1% in the high-risk group (N = 246), respectively. The prognosis of patients in the high-risk group was worse than that in the low-risk group (P < 0.05). Furthermore, the screened primary prognostic predictors were CD163 and CD4 + CXCR5. CD163 protein expression was distributed in Monocytes and M2 Macrophages. The 1,000- and 2,000-day survival rates were 56.1% and 7.0% in the CD163 low-expression group, and 40.7% and 1.7% in the high-expression group (N = 214), respectively, showing a worse prognosis in the high-expression group than that in the low-expression group. Meanwhile, the immune marker CD4 + CXCR5 could identify Tfh. The 1,000- and 2,000-day survival rates were 63.9% and 5.6% in the CD4 + CXCR5 high-expression group, and 33.3% and 2.8% in the low-expression group (N = 214), respectively, with a better prognosis in the high-expression group than that in the low-expression group. CONCLUSION Prognostic-related immune cells of CRC mainly include Tfh cells, Monocytes and M2 Macrophages. Monocytes and M2 Macrophages correlate negatively, while Tfh cells correlate positively with the prognosis of CRC patients. Immune markers CD163 and CD4 + CXCR5 can be considered as the prognostic predictors of CRC with clinical value of the application.
Collapse
Affiliation(s)
- Shuangshuang Deng
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qiping Zhu
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongyan Chen
- Department of Neurology, Luodian Hospital, Baoshan District, Shanghai, 201908, China
| | - Tianyu Xiao
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yinshen Zhu
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinli Gao
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qing Li
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
19
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
20
|
Gan C, Li M, Lu Y, Peng G, Li W, Wang H, Peng Y, Hu Q, Wei W, Wang F, Liu L, Zhao Q. SPOCK1 and POSTN are valuable prognostic biomarkers and correlate with tumor immune infiltrates in colorectal cancer. BMC Gastroenterol 2023; 23:4. [PMID: 36611136 PMCID: PMC9826581 DOI: 10.1186/s12876-022-02621-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Immune cells and stromal cells in the tumor microenvironment play a vital role in the progression of colorectal cancer (CRC). The study aimed to screen valuable prognostic biomarkers in CRC based on stromal and immune scores. METHOD The ESTIMATE algorithm was used to calculate the immune and stromal scores of CRC samples in TCGA. Then samples were divided into high and low score groups based on the median value of the scores. Differentially expressed genes (DEGs) associated with immune and stromal scores were screened. WGCNA and univariate COX regression analysis were performed to further identify key prognostic genes. Analysis of scRNA-seq for CRC was used for verifying the main source of the key genes. The prognostic value of they was validated based on The Gene Expression Profiling Interactive Analysis and GSE17536 dataset. TIMER and CIBERSORT algorithms were applied to analyze the correlations among key genes and tumor-infiltrating immune cells. Several pairs of colon cancer tissue were used to be proven. RESULT 1314 upregulated and 4 downregulated genes were identified, which were significantly enriched in immune-related biological processes and pathways. Among these DEGs, SPOCK1 and POSTN were identified as key prognostic genes and mainly expressed in cancer-associated fibroblasts for CRC. High expression of SPCOK1 and POSTN was associated with advanced clinical stage, T stage, N stage, and poor prognosis of CRC. The results from CIBERSORT and TIMER revealed that SPOCK1 and POSTN were associated with tumor-infiltrating immune cells, especially macrophages and neutrophils. Meanwhile, in several pairs of human colorectal tissue samples, SPOK1 and POSTN were found to be significantly overexpressed in colorectal tissue compared with para-cancer tissue, and macrophage surface markers CD68 (co-expressed by M1 and M2 macrophages) and CD206 (M2-specific macrophage expression) were also overexpressed in cancer tissue. Besides, SPOCK1 and POSTN expression were positively correlated with the expression of immune checkpoints. CONCLUSION Collectively, our results indicate that SPOCK1 and POSTN associated with CAF may be novel prognostic biomarkers in CRC and correlate with immune infiltrates.
Collapse
Affiliation(s)
- Caiqin Gan
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Mengting Li
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Yuanyuan Lu
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Ganjing Peng
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Wenjie Li
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Haizhou Wang
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Yanan Peng
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Qian Hu
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Wanhui Wei
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Fan Wang
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Lan Liu
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Qiu Zhao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| |
Collapse
|
21
|
Shi ZL, Yang X, Shen CL, Zhou GQ. Identification of an m6A-related lncRNA prognostic signature in colorectal cancer. J Biochem Mol Toxicol 2023; 37:e23239. [PMID: 36205301 DOI: 10.1002/jbt.23239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Data sets of colorectal cancer (CRC) were obtained from The Cancer Genome Atlas (TCGA), three N6-methyladenosine (m6A) subtypes were identified using 21 m6A-related long noncoding RNAs (lncRNAs) and differential m6A subtypes of different CRC tumors were determined in this study to evaluate the m6A expression and the prognosis of patients with CRC. Subsequently, eight key lncRNAs were identified based on co-expression with 21 m6A-related genes in CRC tumors using the single-factor Cox and least absolute shrinkage and selection operator. Finally, an m6A-related lncRNA risk score model of CRC tumor was established using multifactor Cox regression based on the eight important lncRNAs and found to have a better performance in evaluating the prognosis of patients in the TCGA-CRC data set. TCGA-CRC tumor samples were divided based on the risk scores: high and low. Then, the clinical characteristics, tumor mutation load, and tumor immune cell infiltration difference between the high- and low-risk-score groups were explored, and the predictive ability of the risk score was assessed for immunotherapeutic benefits. We found that the risk score model can determine the overall survival, be a relatively independent prognostic indicator, and better evaluate the immunotherapeutic benefits for patients with CRC. This study provides data support for accurate immunotherapy in CRC.
Collapse
Affiliation(s)
- Zhi-Liang Shi
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Changshu, Jiangsu province, China
| | - Xiaoling Yang
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Changshu, Jiangsu province, China
| | - Cheng-Long Shen
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Changshu, Jiangsu province, China
| | - Guo-Qiang Zhou
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Changshu, Jiangsu province, China
| |
Collapse
|
22
|
Zhang M, Meng L, Zhang Z, Wu J, Chen X, Wang Y, He J. The relationships of OSBPL3 expression with KI-67 expression and KRAS mutations in CRC: implications for diagnosis and prognosis. BMC Med Genomics 2022; 15:259. [PMID: 36517805 PMCID: PMC9753258 DOI: 10.1186/s12920-022-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND OSBPL3 is overexpressed in a variety of malignancies and is closely associated with tumor growth and metastasis. However, its expression and function in colorectal cancer (CRC) are unclear. We aimed to investigate its prognostic and therapeutic value in this disease by detecting its expression in CRC and its correlation with the clinicopathological characteristics and prognosis of patients. METHODS A total of 92 CRC samples were included in this study. According to the 2020 WHO diagnostic criteria, the criteria of the American Joint Committee on Cancer (AJCC) 8th edition staging system were used. OSBPL3 and Ki-67 expression in these samples was detected by immunohistochemistry. OSBPL3 mRNA expression was detected by qRT-PCR. KRAS/NRAS mutations were detected by an amplification refractory mutation system (ARMS). Data analysis was performed using the statistical analysis software Prism 8. RESULTS OSBPL3 was found to be significantly overexpressed in CRC tumor tissues and was associated with worse progression-free survival and overall survival in patients. Additionally, OSBPL3 expression was negatively correlated with the degree of tumor differentiation. KRAS mutations were detected in approximately 32.6% of patients and were significantly associated with high OSBPL3 expression. In addition, OSBPL3 and Ki-67 expression was significantly correlated. CONCLUSIONS OSBPL3 is highly expressed in CRC samples and predicts a worse prognosis. OSBPL3 may become a new potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Min Zhang
- grid.59053.3a0000000121679639Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Lei Meng
- grid.59053.3a0000000121679639Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Zhaoxuan Zhang
- grid.59053.3a0000000121679639Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Jing Wu
- grid.59053.3a0000000121679639Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Xi Chen
- grid.59053.3a0000000121679639Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Yuejing Wang
- grid.186775.a0000 0000 9490 772XAnhui Medical University, Hefei, Anhui China
| | - Jie He
- grid.59053.3a0000000121679639Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| |
Collapse
|
23
|
Akin Telli T, Bregni G, Vanhooren M, Saude Conde R, Hendlisz A, Sclafani F. Regorafenib in combination with immune checkpoint inhibitors for mismatch repair proficient (pMMR)/microsatellite stable (MSS) colorectal cancer. Cancer Treat Rev 2022; 110:102460. [DOI: 10.1016/j.ctrv.2022.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
24
|
Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol 2022; 13:981479. [PMID: 36263033 PMCID: PMC9573978 DOI: 10.3389/fimmu.2022.981479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
25
|
Lin C, Yang H, Zhao W, Wang W. CTSB+ macrophage repress memory immune hub in the liver metastasis site of colorectal cancer patient revealed by multi-omics analysis. Biochem Biophys Res Commun 2022; 626:8-14. [DOI: 10.1016/j.bbrc.2022.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
|
26
|
Insights into the therapeutic potential of histone deacetylase inhibitor/immunotherapy combination regimens in solid tumors. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1262-1273. [PMID: 35066777 DOI: 10.1007/s12094-022-02779-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022]
Abstract
Solid tumors including skin, lung, breast, colon, and prostate cancers comprise the most diagnosed cancers worldwide. Treatment of such cancers is still challenging specially in the advanced/metastatic setting. The growing understanding of the tumor microenvironment has revolutionized the cancer therapy paradigms. Targeting programmed death-1 (PD-1)/PD-L1 immune checkpoint has been extensively studied over this decade as a new trend in the management of hard-to-treat cancers by harnessing the power of the immune system to eradicate the tumors. Yet, low response rate and resistance were observed when immunotherapies were tested as monotherapy. This urged the need to develop combinatorial regimens of immunotherapy with other immune modulatory agents to enhance its therapeutic potential and help in reverting the resistance. Epigenetic modifiers such as histone deacetylase inhibitors (HDACIs) showed favorable effects on modulating the tumor microenvironment along with the host immune cells. This qualified HDACIs as an attractive candidate class to be tested in combination with immunotherapy. In this review we cover the ongoing clinical trials that investigate the safety and/or the efficacy of HDACI/immunotherapy combinations in solid tumors including skin cancer, prostate cancer, breast cancer, colorectal cancer, lung cancer and recapitulates areas for future research.
Collapse
|
27
|
Yang L, Yang T, Wang H, Dou T, Fang X, Shi L, Li X, Feng M. DNMBP-AS1 Regulates NHLRC3 Expression by Sponging miR-93-5p/17-5p to Inhibit Colon Cancer Progression. Front Oncol 2022; 12:765163. [PMID: 35574307 PMCID: PMC9092830 DOI: 10.3389/fonc.2022.765163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) act as competing endogenous RNAs (ceRNAs) in colon cancer (CC) progression, via binding microRNAs (miRNAs) to regulate the expression of corresponding messenger RNAs (mRNAs). This article aims to explore the detailed molecular mechanism of ceRNA in CC. Top mad 5000 lncRNAs and top mad 5000 mRNAs were used to perform weighted gene co-expression network analysis (WGCNA), and key modules were selected. We used 405 lncRNAs in the red module and 145 mRNAs in the purple module to build the original ceRNA network by online databases. The original ceRNA network included 50 target lncRNAs, 41 target miRNAs, and 34 target mRNAs. Fifty target lncRNAs were used to establish a prognostic risk model by univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses. LncRNAs in the risk model were used to build the secondary ceRNA network, which contained 9 lncRNAs in the risk model, 35 miRNAs, and 29 mRNAs. Survival analyses of 29 mRNAs in the secondary ceRNA network have shown HOXA10 and NHLRC3 were identified as crucial prognostic factors. Finally, we constructed the last ceRNA network including 5 lncRNAs in the risk model, 8 miRNAs, and 2 mRNAs related to prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR) results revealed that DNMBP-AS1 and FAM87A were down-regulated in CC cells and tissues. Function assays showed that over-expression of DNMBP-AS1 and FAM87A inhibited CC cells proliferation and migration. Mechanism study showed that DNMBP-AS1 served as miR-93-5p/17-5p sponges and relieved the suppression effect of miR-93-5p/17-5p on their target NHLRC3. Our study suggested that DNMBP-AS1 inhibited the progression of colon cancer through the miR-93-5p/17-5p/NHLRC3 axis, which could be potential therapeutic targets for CC.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Tiecheng Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Huaqiao Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Tingting Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Xiaochang Fang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Liwen Shi
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Xuanfei Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, China
| |
Collapse
|
28
|
Gatenbee CD, Baker AM, Schenck RO, Strobl M, West J, Neves MP, Hasan SY, Lakatos E, Martinez P, Cross WCH, Jansen M, Rodriguez-Justo M, Whelan CJ, Sottoriva A, Leedham S, Robertson-Tessi M, Graham TA, Anderson ARA. Immunosuppressive niche engineering at the onset of human colorectal cancer. Nat Commun 2022; 13:1798. [PMID: 35379804 PMCID: PMC8979971 DOI: 10.1038/s41467-022-29027-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
The evolutionary dynamics of tumor initiation remain undetermined, and the interplay between neoplastic cells and the immune system is hypothesized to be critical in transformation. Colorectal cancer (CRC) presents a unique opportunity to study the transition to malignancy as pre-cancers (adenomas) and early-stage cancers are frequently resected. Here, we examine tumor-immune eco-evolutionary dynamics from pre-cancer to carcinoma using a computational model, ecological analysis of digital pathology data, and neoantigen prediction in 62 patient samples. Modeling predicted recruitment of immunosuppressive cells would be the most common driver of transformation. As predicted, ecological analysis reveals that progressed adenomas co-localized with immunosuppressive cells and cytokines, while benign adenomas co-localized with a mixed immune response. Carcinomas converge to a common immune "cold" ecology, relaxing selection against immunogenicity and high neoantigen burdens, with little evidence for PD-L1 overexpression driving tumor initiation. These findings suggest re-engineering the immunosuppressive niche may prove an effective immunotherapy in CRC.
Collapse
Affiliation(s)
- Chandler D Gatenbee
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA.
| | - Ann-Marie Baker
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ryan O Schenck
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX37BN, UK
| | - Maximilian Strobl
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
| | - Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
| | - Margarida P Neves
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sara Yakub Hasan
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Eszter Lakatos
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pierre Martinez
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Lyon Cancer Institute, Lyon, France
| | - William C H Cross
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Marnix Jansen
- Department of Pathology, University College London Hospital, London, UK
| | | | - Christopher J Whelan
- Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
- Department of Biological Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA
| | - Andrea Sottoriva
- Center for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Simon Leedham
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX37BN, UK
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB 4, Tampa, FL, 336122, USA.
| |
Collapse
|
29
|
Different strategies for expression and purification of the CT26-poly-neoepitopes vaccine in Escherichia coli. Mol Biol Rep 2022; 49:859-873. [DOI: 10.1007/s11033-021-06727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
|
30
|
Ishiguro S, Upreti D, Bassette M, Singam ERA, Thakkar R, Loyd M, Inui M, Comer J, Tamura M. Local immune checkpoint blockade therapy by an adenovirus encoding a novel PD-L1 inhibitory peptide inhibits the growth of colon carcinoma in immunocompetent mice. Transl Oncol 2022; 16:101337. [PMID: 34990908 PMCID: PMC8741604 DOI: 10.1016/j.tranon.2021.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/05/2022] Open
Abstract
A novel inhibitory peptide interfering with the PD-L1/PD-1 immune checkpoint pathway, dubbed PD-L1ip3, was designed. The affinity of PD-L1ip3 for PD-L1 was only a few times weaker than that of its natural ligand, PD-1. Direct treatment with PD-L1ip3 enhanced the ability of CD8+ T cells primed with cancer antigens to kill cancer cells in culture. A combination treatment including transduction into cancer cells of a gene encoding PD-L1ip3 coupled with direct administration of PD-L1ip3 in peptide form significantly attenuated the growth of murine colon carcinoma in mice.
A novel peptide that interferes with the PD-1/PD-L1 immune checkpoint pathway, termed PD-L1 inhibitory peptide 3 (PD-L1ip3), was computationally designed, experimentally validated for its specific binding to PD-L1, and evaluated for its antitumor effects in cell culture and in a mouse colon carcinoma syngeneic murine model. In several cell culture studies, direct treatment with PD-L1ip3, but not a similar peptide with a scrambled sequence, substantially increased death of CT26 colon carcinoma cells when co-cultured with murine CD8+ T cells primed by CT26 cell antigens. In a syngeneic mouse tumor model, the growth of CT26 tumor cells transduced with the PD-L1ip3 gene by an adenovirus vector was significantly slower than that of un-transduced CT26 cells in immunocompetent mice. This tumor growth attenuation was further enhanced by the coadministration of the peptide form of PD-L1ip3 (10 mg/kg/day). The current study suggests that this peptide can stimulate host antitumor immunity via blockade of the PD-1/PD-L1 pathway, thereby increasing CD8+ T cell-induced death of colon carcinoma cells. The tumor site-specific inhibition of PD-L1 by an adenovirus carrying the PD-L1ip3 gene, together with direct peptide treatment, may be used as a local immune checkpoint blockade therapy to inhibit colon carcinoma growth.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Deepa Upreti
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Molly Bassette
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; Department of Pathology, University of California, San Francisco, CA 94143, USA.
| | - E R Azhagiya Singam
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Ravindra Thakkar
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Mayme Loyd
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Makoto Inui
- Departments of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.
| | - Jeffrey Comer
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Masaaki Tamura
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| |
Collapse
|
31
|
Zhang Y, Xie J, Liu D, Zhu S, Zhang S. The expression of LRRN4 was correlated with the progression and prognosis of colon adenocarcinoma (COAD) patients. Genet Mol Biol 2022; 45:e20210138. [PMID: 34919118 PMCID: PMC8679243 DOI: 10.1590/1678-4685-gmb-2021-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Our present study aims to investigate the value of LRRN4 in the progression and prognosis of COAD patients. All COAD and adjacent sample data was downloaded from TCGA database. Survival analysis was performed according to Kaplan-Meier method. The real-time quantitative PCR and immunohistochemistry analysis were conducted for validation in cell lines and tissues. The GSEA was conducted to find functional KEGG pathways. Multivariate Cox regression proportional hazard mode was used to determine whether LRRN4 expression was an independent prognostic factor. The LRRN4 expression in COAD samples were significantly higher than that in adjacent samples, which was consistent with our experiments in cell lines and tissues. Along with the increase of TNM Stage, LRRN4 expression had an increasing tendency. The COAD patients with high LRRN4 expression showed undesirable prognoses. Additionally, the TGF-β signaling pathway, WNT signaling pathway and other 25 pathways were significantly activated in the high LRRN4 expression group. In conclusion, high LRRN4 expression was closely related to the onset of COAD and it was a poor prognostic factor for COAD patients.
Collapse
Affiliation(s)
- Yuxian Zhang
- Capital Medical University, Beijing Friendship Hospital, China
| | | | | | - Shengtao Zhu
- Capital Medical University, Beijing Friendship Hospital, China
| | - Shutian Zhang
- Capital Medical University, Beijing Friendship Hospital, China
| |
Collapse
|
32
|
Kou Y, Li Z, Sun Q, Yang S, Wang Y, Hu C, Gu H, Wang H, Xu H, Li Y, Kou Y, Han B. Prognostic value and predictive biomarkers of phenotypes of tumor-associated macrophages in colorectal cancer. Scand J Immunol 2021; 95:e13137. [PMID: 34964155 PMCID: PMC9286461 DOI: 10.1111/sji.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 12/26/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The roles of different subtypes of tumor-associated macrophages (TAMs) in predicting the prognosis of colorectal cancer (CRC) remain controversial. In this study, different subtypes of TAMs were investigated as prognostic and predictive biomarkers for CRC. METHODS Expressions of CD68, CD86 and CD163 were investigated by immunohistochemistry (IHC) and immunofluorescence (IF), and the correlation between the expression of CD86 and CD163 was calculated in colorectal cancer tissues from 64 CRC patients. RESULTS The results showed that high expressions of CD86+ and CD68+ CD86+ TAMs as well as low expression of CD163+ and CD68+ CD163+ TAMs were significantly associated with favorable overall survival (OS). The level of CD86 protein expression showed a negative correlation with CD163 protein expression. In addition, CD86 protein expression remarkably negative correlated with tumor differentiation and tumor node metastasis (TNM) stage, while CD163 protein expression significantly positive correlated with tumor differentiation and tumor size. As an independent risk factor, high expression of CD86 TAMs had prominently favorable prognostic efficacy while high expression of CD68+ CD163+ TAMs had significantly poor prognostic efficacy. CONCLUSIONS These results indicate that CD86+ and CD68+ CD163+ TAMs as prognostic and predictive biomarkers for CRC.
Collapse
Affiliation(s)
- Yu Kou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Zhuoqun Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Qidi Sun
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Shengnan Yang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Yunshuai Wang
- Department of General Surgery, Luoyang Central Hospital Affiliated of Zhengzhou University, 471000, Henan, China
| | - Chen Hu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Huijie Gu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Huangjian Wang
- Department of General Surgery, Luoyang Central Hospital Affiliated of Zhengzhou University, 471000, Henan, China
| | - Hairong Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Yan Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Yu Kou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Baowei Han
- Department of General Surgery, Luoyang Central Hospital Affiliated of Zhengzhou University, 471000, Henan, China
| |
Collapse
|
33
|
Roufarshbaf M, Esmaeil N, Akbari V. Comparison of four methods of colon cancer cell lysates preparation for ex vivo maturation of dendritic cells. Res Pharm Sci 2021; 17:43-52. [PMID: 34909043 PMCID: PMC8621848 DOI: 10.4103/1735-5362.329925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/16/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background and purpose: One of the most effective methods for the development of dendritic cell (DC)-based cancer immunotherapy is ex vivo pulsing of DCs with tumor cell lysates (TCLs). However, antitumor immune responses of DCs are significantly influenced by how TCLs were prepared. Here, we compared four strategies of TCL preparation derived from colon cancer cells, HT-29, for ex vivo maturation of DCs. Experimental approach: Peripheral blood monocytes were isolated from healthy volunteers and incubated with granulocyte macrophage colony-stimulating factor and interleukin (IL)-4 to differentiate into DCs in 10 days. Morphological properties, phenotype characteristics (i.e. CD83 and CD86), and cytokine production (i.e. IL-10 and interferon gamma) of DCs loaded with four different TCLs (i.e. freeze-thaw, hypochlorous acid (HOCl), hyperthermia, and UV irradiation) were evaluated. Findings/Results: HOCl preparations led to the generation of DCs with higher surface expression of maturation biomarkers (particularly CD83), while UV preparations resulted in DCs with lower levels of surface biomarkers compared to freeze-thawed preparations. The supernatant of DCs pulsed with HOCl preparation showed significantly higher levels of interferon gamma and lower levels of IL-10 compared with the other groups. Conclusion and implications: Our results suggest that pulsing DCs with HOCl preparation may be superior to other TCLs preparation strategies, possibly due to induction of rapid necrotic cell death.
Collapse
Affiliation(s)
- Mohammad Roufarshbaf
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
34
|
Tian Y, Liang P, Zhang L, Zhang X, Wang X, Jin Y, Qi X, Liu Y. High expression of MAGE-C1 gene in colorectal cancer is associated with its poor prognosis. J Gastrointest Oncol 2021; 12:2872-2881. [PMID: 35070414 PMCID: PMC8748057 DOI: 10.21037/jgo-21-739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The aim of this study was to explore the relationship between melanoma antigen gene C1 (MAGE-C1) expression and the prognosis for colorectal cancer (CRC), and to establish a mathematical model to comprehensively evaluate the prognosis of patients with CRC. METHODS MAGE-C1 was selected by bioinformatics for its greater expression differences in CRC patients. Immunohistochemistry (IHC) was used to detect the expression level of MAGE-C1 in tissue samples of 156 patients with CRC. Kaplan-Meier analysis was employed to assess the relationship between MAGE-C1 and the prognosis of patients with CRC. Univariate and multivariate Cox regression models analyzed the factors affecting the prognosis of CRC patients. Also, the clinicopathological characteristics of patients and genes with clinical concern were integrated to establish a model to comprehensively predict the prognosis of patients with CRC. RESULTS MAGE-C1 was found to be highly expressed in 28.8% of CRC patients. MAGE-C1 expression was associated with tumor size, number, and metastasis. Survival analysis showed that CRC patients with high expression of MAGE-C1 had a poor prognosis. Regression analysis demonstrated that MAGE-C1 protein status, T stage, differentiation, Kirsten rat sarcoma (KRAS) status, and v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) status were the independent factors influencing the overall survival of patients with CRC. Meanwhile, MAGE-C1 combined with clinicopathological characteristics and hotspot gene mutations could be used to evaluate the prognosis of CRC. CONCLUSIONS Our study shows that MAGE-C1 is differentially expressed in patients with CRC and affects the prognosis of patients. The combination of MAGE-C1, clinicopathological characteristics, and genes with clinical concern can be used to assess the prognosis of CRC.
Collapse
Affiliation(s)
- Yu Tian
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ping Liang
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Lihua Zhang
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Xiufen Zhang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoli Wang
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yufen Jin
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yankui Liu
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
35
|
Hu LF, Lan HR, Huang D, Li XM, Jin KT. Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand? Front Oncol 2021; 11:769305. [PMID: 34888246 PMCID: PMC8649954 DOI: 10.3389/fonc.2021.769305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the world. Immunotherapy using monoclonal antibodies, immune-checkpoint inhibitors, adoptive cell therapy, and cancer vaccines has raised great hopes for treating poor prognosis metastatic CRCs that are resistant to the conventional therapies. However, high inter-tumor and intra-tumor heterogeneity hinder the success of immunotherapy in CRC. Patients with a similar tumor phenotype respond differently to the same immunotherapy regimen. Mutation-based classification, molecular subtyping, and immunoscoring of CRCs facilitated the multi-aspect grouping of CRC patients and improved immunotherapy. Personalized immunotherapy using tumor-specific neoantigens provides the opportunity to consider each patient as an independent group deserving of individualized immunotherapy. In the recent decade, the development of sequencing and multi-omics techniques has helped us classify patients more precisely. The expansion of such advanced techniques along with the neoantigen-based immunotherapy could herald a new era in treating heterogeneous tumors such as CRC. In this review article, we provided the latest findings in immunotherapy of CRC. We elaborated on the heterogeneity of CRC patients as a bottleneck of CRC immunotherapy and reviewed the latest advances in personalized immunotherapy to overcome CRC heterogeneity.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dong Huang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xue-Min Li
- Department of Hepatobiliary Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
36
|
Romano B, Pagano E, Iannotti FA, Piscitelli F, Brancaleone V, Lucariello G, Nanì MF, Fiorino F, Sparaco R, Vanacore G, Di Tella F, Cicia D, Lionetti R, Makriyannis A, Malamas M, De Luca M, Aprea G, D'Armiento M, Capasso R, Sbarro B, Venneri T, Di Marzo V, Borrelli F, Izzo AA. NAAA is dysregulated in colorectal cancer patients and its inhibition reduces experimental cancer growth. Br J Pharmacol 2021; 179:1679-1694. [PMID: 34791641 PMCID: PMC9303321 DOI: 10.1111/bph.15737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose N‐Acylethanolamine acid amidase (NAAA) is a lysosomal enzyme accountable for the breakdown of N‐acylethanolamines (NAEs) and its pharmacological inhibition has beneficial effects in inflammatory conditions. The knowledge of NAAA in cancer is fragmentary with an unclarified mechanism, whereas its contribution to colorectal cancer (CRC) is unknown to date. Experimental Approach CRC xenograft and azoxymethane models were used to assess the in vivo effect of NAAA inhibition. Further, the tumour secretome was evaluated by an oncogenic array, CRC cell lines were used for in vitro studies, cell cycle was analysed by cytofluorimetry, NAAA was knocked down with siRNA, human biopsies were obtained from surgically resected CRC patients, gene expression was measured by RT‐PCR and NAEs were measured by LC–MS. Key Results The NAAA inhibitor AM9053 reduced CRC xenograft tumour growth and counteracted tumour development in the azoxymethane model. NAAA inhibition affected the composition of the tumour secretome inhibiting the expression of EGF family members. In CRC cells, AM9053 reduced proliferation with a mechanism mediated by PPAR‐α and TRPV1. AM9053 induced cell cycle arrest in the S phase associated with cyclin A2/CDK2 down‐regulation. NAAA knock‐down mirrored the effects of NAAA inhibition with AM9053. NAAA expression was down‐regulated in human CRC tissues, with a consequential augmentation of NAE levels and dysregulation of some of their targets. Conclusion and Implications Our results show novel data on the functional importance of NAAA in CRC progression and the mechanism involved. We propose that this enzyme is a valid drug target for the treatment of CRC growth and development.
Collapse
Affiliation(s)
- Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Fabio A Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Endocannabinoid Research Group
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Endocannabinoid Research Group
| | | | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Francesca Nanì
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rosa Sparaco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giovanna Vanacore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Federica Di Tella
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Donatella Cicia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ruggero Lionetti
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, United States
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, United States
| | - Marcello De Luca
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giovanni Aprea
- Department of Clinical Medicine and Surgery, Interuniversity Center for Technological Innovation Interdepartmental Center for Robotic Surgery, University of Naples Federico II, Naples, Italy
| | - Maria D'Armiento
- Department of Biomorphological and Functional Science, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Endocannabinoid Research Group
| | - Bernardo Sbarro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Quèbec, Québec City, Canada.,Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec City, Canada.,Endocannabinoid Research Group
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Endocannabinoid Research Group
| |
Collapse
|
37
|
Guo JN, Chen D, Deng SH, Huang JR, Song JX, Li XY, Cui BB, Liu YL. Identification and quantification of immune infiltration landscape on therapy and prognosis in left- and right-sided colon cancer. Cancer Immunol Immunother 2021; 71:1313-1330. [PMID: 34657172 PMCID: PMC9122887 DOI: 10.1007/s00262-021-03076-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023]
Abstract
Background The left-sided and right-sided colon cancer (LCCs and RCCs, respectively) have unique molecular features and clinical heterogeneity. This study aimed to identify the characteristics of immune cell infiltration (ICI) subtypes for evaluating prognosis and therapeutic benefits. Methods The independent gene datasets, corresponding somatic mutation and clinical information were collected from The Cancer Genome Atlas and Gene Expression Omnibus. The ICI contents were evaluated by “ESTIMATE” and “CIBERSORT.” We performed two computational algorithms to identify the ICI landscape related to prognosis and found the unique infiltration characteristics. Next, principal component analysis was conducted to construct ICI score based on three ICI patterns. We analyzed the correlation between ICI score and tumor mutation burden (TMB), and stratified patients into prognostic-related high- and low- ICI score groups (HSG and LSG, respectively). The role of ICI scores in the prediction of therapeutic benefits was investigated by "pRRophetic" and verified by Immunophenoscores (IPS) (TCIA database) and an independent immunotherapy cohort (IMvigor210). The key genes were preliminary screened by weighted gene co-expression network analysis based on ICI scores. And they were further identified at various levels, including single cell, protein and immunotherapy response. The predictive ability of ICI score for prognosis was also verified in IMvigor210 cohort. Results The ICI features with a better prognosis were marked by high plasma cells, dendritic cells and mast cells, low memory CD4+ T cells, M0 macrophages, M1 macrophages, as well as M2 macrophages. A high ICI score was characterized by an increased TMB and genomic instability related signaling pathways. The prognosis, sensitivities of targeted inhibitors and immunotherapy, IPS and expression of immune checkpoints were significantly different in HSG and LSG. The genes identified by ICI scores and various levels included CA2 and TSPAN1. Conclusion The identification of ICI subtypes and ICI scores will help gain insights into the heterogeneity in LCC and RCC, and identify patients probably benefiting from treatments. ICI scores and the key genes could serve as an effective biomarker to predict prognosis and the sensitivity of immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-03076-2.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, People's Republic of China
| | - Du Chen
- The First Department of Oncological Surgery, The First People's Hospital of Xiangtan City, Xiangtan, 411100, People's Republic of China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jia-Rong Huang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Jin-Xuan Song
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiang-Yu Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, People's Republic of China.
| | - Yan-Long Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, People's Republic of China.
| |
Collapse
|
38
|
Hu J, Zhang J, Yu M, Liu Z, Zou Y, Hong L, Zhang T, Sun J, Zheng M, Zhu X, Wang Z, Liu S. Circulating miR-221/222 reduces CD4+ T cells by inhibiting CD4 expression in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1367-1376. [PMID: 34357372 DOI: 10.1093/abbs/gmab106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Many patients with cancers have low levels of CD4+ in their peripheral blood. However, the molecular mechanism is still unclear. Here, we found that the blood levels of miR-221 and miR-222 were dramatically increased in patients with colorectal cancer (CRC), and both circulating miR-211 and miR-222 served as sensitive diagnostic markers with an area under the curve of 0.8790 and 0.9148, respectively. Transfection of either miR-221 or miR-222 resulted in the reduction of the surface CD4 antigen level but not the surface CD8 antigen level. The luciferase reporter assay showed that miR-221/222 directly regulated CD4 expression in human primary T cells. These data showed that miR-221/222 levels were upregulated in the blood of patients with CRC and that the expression of CD4 in human primary T cells was inhibited by miR-221/222. These findings provide a novel strategy for modulating the number of CD4+ T cells in the blood and further adjusting the microenvironment suitable for immunotherapy.
Collapse
Affiliation(s)
- Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Jiawei Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zukai Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yan Zou
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xuekai Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
39
|
Subtil B, Cambi A, Tauriello DVF, de Vries IJM. The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer. Front Immunol 2021; 12:724883. [PMID: 34691029 PMCID: PMC8527179 DOI: 10.3389/fimmu.2021.724883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and the second leading cause of cancer-related deaths worldwide. Locally advanced and metastatic disease exhibit resistance to therapy and are prone to recurrence. Despite significant advances in standard of care and targeted (immuno)therapies, the treatment effects in metastatic CRC patients have been modest. Untreatable cancer metastasis accounts for poor prognosis and most CRC deaths. The generation of a strong immunosuppressive tumor microenvironment (TME) by CRC constitutes a major hurdle for tumor clearance by the immune system. Dendritic cells (DCs), often impaired in the TME, play a critical role in the initiation and amplification of anti-tumor immune responses. Evidence suggests that tumor-mediated DC dysfunction is decisive for tumor growth and metastasis initiation, as well as for the success of immunotherapies. Unravelling and understanding the complex crosstalk between CRC and DCs holds promise for identifying key mechanisms involved in tumor progression and spread that can be exploited for therapy. The main goal of this review is to provide an overview of the current knowledge on the impact of CRC-driven immunosuppression on DCs phenotype and functionality, and its significance for disease progression, patient prognosis, and treatment response. Moreover, present knowledge gaps will be highlighted as promising opportunities to further understand and therapeutically target DC dysfunction in CRC. Given the complexity and heterogeneity of CRC, future research will benefit from the use of patient-derived material and the development of in vitro organoid-based co-culture systems to model and study DCs within the CRC TME.
Collapse
Affiliation(s)
- Beatriz Subtil
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daniele V. F. Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
40
|
Suarez-Carmona M, Williams A, Schreiber J, Hohmann N, Pruefer U, Krauss J, Jäger D, Frömming A, Beyer D, Eulberg D, Jungelius JU, Baumann M, Mangasarian A, Halama N. Combined inhibition of CXCL12 and PD-1 in MSS colorectal and pancreatic cancer: modulation of the microenvironment and clinical effects. J Immunother Cancer 2021; 9:e002505. [PMID: 34607895 PMCID: PMC8491418 DOI: 10.1136/jitc-2021-002505] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Immunotherapy in microsatellite stable colorectal or pancreatic cancer has not shown promising results. It has been hypothesized that targeting immunosuppressive molecules like SDF1-alpha/CXCL12 could contribute to immunotherapy and animal models showed promising results on T cell activation and migration in combination with immune checkpoint inhibition. METHODS Here, we describe the successful application of anti-CXCL12 (NOX-A12) in patients with advanced stage pretreated metastatic colorectal and pancreatic cancer (OPERA trial). The treatment consisted of 2 weeks of anti-CXCL12 monotherapy with NOX-A12 followed by combination therapy with pembrolizumab (n=20 patients) until progression or intolerable toxicity had occurred. RESULTS The treatment was safe and well tolerated with 83.8% grade I/II, 15.5% grade III and 0.7% grade V adverse events. Of note, for a majority of patients, time on trial treatment was prolonged compared with their last standard treatment preceding trial participation. Systematic serial biopsies revealed distinct patterns of modulation. Tissue and clinical responses were associated with Th1-like tissue reactivity upon CXCL12 inhibition. A downregulation of a cytokine cassette of interleukin (IL)-2/IL-16/CXCL-10 was associated with tumor resistance and furthermore linked to a rare, CXCL12-associated CD14+CD15+promonocytic population. T cells showed aggregation and directed movement towards the tumor cells in responding tissues. Serum analyses detected homogeneous immunomodulatory patterns in all patients, regardless of tissue responses. CONCLUSIONS We demonstrate that the combination of CXCL12 inhibition and checkpoint inhibition is safe and grants further exploration of synergistic combinatorial strategies.
Collapse
Affiliation(s)
- Meggy Suarez-Carmona
- Department of Translational Immunotherapy, German Cancer Research Centre, Heidelberg, Germany
| | - Anja Williams
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Jutta Schreiber
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Nicolas Hohmann
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Ulrike Pruefer
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Jürgen Krauss
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center of Tumor Diseases, Heidelberg, Baden-Württemberg, Germany
| | | | | | | | | | | | | | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Centre, Heidelberg, Germany
| |
Collapse
|
41
|
Katkeviciute E, Hering L, Montalban-Arques A, Busenhart P, Schwarzfischer M, Manzini R, Conde J, Atrott K, Lang S, Rogler G, Naschberger E, Schellerer VS, Stürzl M, Rickenbacher A, Turina M, Weber A, Leibl S, Leventhal GE, Levesque M, Boyman O, Scharl M, Spalinger MR. Protein tyrosine phosphatase nonreceptor type 2 controls colorectal cancer development. J Clin Invest 2021; 131:140281. [PMID: 33001862 DOI: 10.1172/jci140281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) recently emerged as a promising cancer immunotherapy target. We set out to investigate the functional role of PTPN2 in the pathogenesis of human colorectal carcinoma (CRC), as its role in immune-silent solid tumors is poorly understood. We demonstrate that in human CRC, increased PTPN2 expression and activity correlated with disease progression and decreased immune responses in tumor tissues. In particular, stage II and III tumors displayed enhanced PTPN2 protein expression in tumor-infiltrating T cells, and increased PTPN2 levels negatively correlated with expression of PD-1, CTLA4, STAT1, and granzyme A. In vivo, T cell- and DC-specific PTPN2 deletion reduced tumor burden in several CRC models by promoting CD44+ effector/memory T cells, as well as CD8+ T cell infiltration and cytotoxicity in the tumor. In direct relevance to CRC treatment, T cell-specific PTPN2 deletion potentiated anti-PD-1 efficacy and induced antitumor memory formation upon tumor rechallenge in vivo. Our data suggest a role for PTPN2 in suppressing antitumor immunity and promoting tumor development in patients with CRC. Our in vivo results identify PTPN2 as a key player in controlling the immunogenicity of CRC, with the strong potential to be exploited for cancer immunotherapy.
Collapse
Affiliation(s)
- Egle Katkeviciute
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Larissa Hering
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | | | - Philipp Busenhart
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | | | - Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Javier Conde
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Vera S Schellerer
- Department of Surgery, University Medical Center of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | - Achim Weber
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Leibl
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Gabriel E Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | | | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
42
|
Cui Z, Sun G, Bhandari R, Lu J, Zhang M, Bhandari R, Sun F, Liu Z, Zhao S. Comprehensive Analysis of Glycolysis-Related Genes for Prognosis, Immune Features, and Candidate Drug Development in Colon Cancer. Front Cell Dev Biol 2021; 9:684322. [PMID: 34422808 PMCID: PMC8377503 DOI: 10.3389/fcell.2021.684322] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
The dysregulated expression of glycolysis-related genes (GRGs) is closely related to the occurrence of diverse tumors and regarded as a novel target of tumor therapy. However, the role of GRGs in colon cancer is unclear. We obtained 226 differential GRGs (DE-GRGs) from The Cancer Genome Atlas (TCGA) database. Cox regression analysis was used to construct a DE-GRG prognostic model, including P4HA1, PMM2, PGM2, PPARGC1A, PPP2CB, STC2, ENO3, and CHPF2. The model could accurately predict the overall survival rate of TCGA and GSE17536 patient cohorts. The risk score of the model was closely related to a variety of clinical traits and was an independent risk factor for prognosis. Enrichment analysis revealed the activation of a variety of glycolysis metabolism and immune-related signaling pathways in the high-risk group. High-risk patients displayed low expression of CD4+ memory resting T cells and resting dendritic cells and high expression of macrophages M0 compared with the expression levels in the low-risk patients. Furthermore, patients in the high-risk group had a higher tumor mutation load and tumor stem cell index and were less sensitive to a variety of chemotherapeutic drugs. Quantitative reverse transcription polymerase chain reaction and immunohistochemistry analyses validated the expression of eight GRGs in 43 paired clinical samples. This is the first multi-omics study on the GRGs of colon cancer. The establishment of the risk model may benefit the prognosis and drug treatment of patients.
Collapse
Affiliation(s)
- Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Guifeng Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ramesh Bhandari
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Department of Pathology, Universal College of Medical Sciences, Bhairahawa, Nepal
| | - Jiayi Lu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Mengmei Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Rajeev Bhandari
- Department of General Surgery, Universal College of Medical Sciences, Bhairahawa, Nepal
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongchen Liu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Shasha Zhao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
43
|
Dutta R, Khalil R, Mayilsamy K, Green R, Howell M, Bharadwaj S, Mohapatra SS, Mohapatra S. Combination Therapy of Mithramycin A and Immune Checkpoint Inhibitor for the Treatment of Colorectal Cancer in an Orthotopic Murine Model. Front Immunol 2021; 12:706133. [PMID: 34381456 PMCID: PMC8350740 DOI: 10.3389/fimmu.2021.706133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
The axis of Programmed cell death-1 receptor (PD-1) with its ligand (PD-L1) plays a critical role in colorectal cancer (CRC) in escaping immune surveillance, and blocking this axis has been found to be effective in a subset of patients. Although blocking PD-L1 has been shown to be effective in 5-10% of patients, the majority of the cohorts show resistance to this checkpoint blockade (CB) therapy. Multiple factors assist in the growth of resistance to CB, among which T cell exhaustion and immunosuppressive effects of immune cells in the tumor microenvironment (TME) play a critical role along with other tumor intrinsic factors. We have previously shown the polyketide antibiotic, Mithramycin-A (Mit-A), an effective agent in killing cancer stem cells (CSCs) in vitro and in vivo in a subcutaneous murine model. Since TME plays a pivotal role in CB therapy, we tested the immunomodulatory efficacy of Mit-A with anti-PD-L1 mAb (αPD-L1) combination therapy in an immunocompetent MC38 syngeneic orthotopic CRC mouse model. Tumors and spleens were analyzed by flow cytometry for the distinct immune cell populations affected by the treatment, in addition to RT-PCR for tumor samples. We demonstrated the combination treatment decreases tumor growth, thus increasing the effectiveness of the CB. Mit-A in the presence of αPD-L1 significantly increased CD8+ T cell infiltration and decreased immunosuppressive granulocytic myeloid-derived suppressor cells and anti-inflammatory macrophages in the TME. Our results revealed Mit-A in combination with αPD-L1 has the potential for augmented CB therapy by turning an immunologically "cold" into "hot" TME in CRC.
Collapse
Affiliation(s)
- Rinku Dutta
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Roukiah Khalil
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Karthick Mayilsamy
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ryan Green
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mark Howell
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Srinivas Bharadwaj
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Shyam S. Mohapatra
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Subhra Mohapatra
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Center for Research and Education in Nano-Bioengineering, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
44
|
Xian D, Niu L, Zeng J, Wang L. LncRNA KCNQ1OT1 Secreted by Tumor Cell-Derived Exosomes Mediates Immune Escape in Colorectal Cancer by Regulating PD-L1 Ubiquitination via MiR-30a-5p/USP22. Front Cell Dev Biol 2021; 9:653808. [PMID: 34350172 PMCID: PMC8326752 DOI: 10.3389/fcell.2021.653808] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background: This study tried to explore the mechanism of long non-coding RNA (lncRNA) KCNQ1OT1 in tumor immune escape. Methods: Gene Expression Omnibus (GEO) and microarray analysis were used to screen the differentially expressed lncRNA and microRNA (miRNA) in normal tissues and tumor tissues. Quantitative reverse transcription PCR (RT-qPCR) was used to quantify KCNQ1OT1, miR-30a-5p, ubiquitin-specific peptidase 22 (USP22), and programmed death-ligand 1 (PD-L1). The interactive relationship between KCNQ1OT1 and miR-30a-5p was verified using dual-luciferase reporter gene assay and ribonucleoprotein immunoprecipitation (RIP) assay. Cell Counting Kit (CCK)-8, clone formation, wound healing, and apoptosis are used to detect the occurrence of tumor cells after different treatments. Protein half-life and ubiquitination detection are used to study the influence of USP22 on PD-L1 ubiquitination. BALB/c mice and BALB/c nude mice are used to detect the effects of different treatments on tumor growth and immune escape in vivo. Results: The expression of lncRNA KCNQ1OT1 in tumor tissues and tumor cell-derived exosomes was significantly increased. The tumor-promoting effect of lncRNA KCNQ1OT1 was through the autocrine effect of tumor cell-derived exosomes, which mediates the miR-30a-5p/USP22 pathway to regulate the ubiquitination of PD-L1 and inhibits CD8+ T-cell response, thereby promoting colorectal cancer development. Conclusion: Tumor cell-derived exosomes' KCNQ1OT1 could regulate PD-L1 ubiquitination through miR-30a-5p/USP22 to promote colorectal cancer immune escape.
Collapse
Affiliation(s)
- Di Xian
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Liangbo Niu
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jie Zeng
- Department of Emergency Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lei Wang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
45
|
NCAPD2 inhibits autophagy by regulating Ca 2+/CAMKK2/AMPK/mTORC1 pathway and PARP-1/SIRT1 axis to promote colorectal cancer. Cancer Lett 2021; 520:26-37. [PMID: 34229059 DOI: 10.1016/j.canlet.2021.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023]
Abstract
Non-SMC condensin I complex subunit D2 (NCAPD2) is one of the three non-SMC subunits in condensin I. Previous studies have shown that NCAPD2 plays an important role in the chromosome condensation and segregation. However, its role in the development of colorectal cancer (CRC) and specific molecular mechanisms still need to be further studied. Here we show that NCAPD2 inhibits autophagy and blocks autophagic flux via Ca2+/CAMKK/AMPK/mTORC1 pathway and PARP-1/SIRT1 axis. NCAPD2 acts as a tumor promoter both in vitro and in vivo. NCAPD2 knockout suppresses colorectal cancer development in AOM/DSS induced mice model. Therefore, our findings support a role for NCAPD2 in autophagy to promote CRC development and highlight NCAPD2 as a potential target for CRC therapy.
Collapse
|
46
|
Bai J, Chen H, Bai X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J Clin Lab Anal 2021; 35:e23810. [PMID: 33938589 PMCID: PMC8183910 DOI: 10.1002/jcla.23810] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
Due to advances in understanding the immune microenvironment of colorectal cancer (CRC), microsatellite classification (dMMR/MSI-H and pMMR/MSS) has become a key biomarker for the diagnosis and treatment of CRC patients and therefore has important clinical value. Microsatellite status is associated with a variety of clinicopathological features and affects drug resistance and the prognosis of patients. CRC patients with different microsatellite statuses have different compositions and distributions of immune cells and cytokines within their tumor microenvironments (TMEs). Therefore, there is great interest in reversing or reshaping CRC TMEs to transform immune tolerant "cold" tumors into immune sensitive "hot" tumors. This requires a thorough understanding of differences in the immune microenvironments of MSI-H and MSS type tumors. This review focuses on the relationship between CRC microsatellite status and the immune microenvironment. It focuses on how this relationship has value for clinical application in diagnosis and treatment, as well as exploring the limitations of its current application.
Collapse
Affiliation(s)
- Junge Bai
- The Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Hongsheng Chen
- Department of General SurgeryThe Fourth Hospital of Harbin Medical UniversityHarbinChina
| | - Xuefeng Bai
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
47
|
Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev 2021; 42:227-258. [PMID: 33891325 DOI: 10.1002/med.21809] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Colon cancer is an adenocarcinoma, which subsequently develops into malignant tumors, if not treated properly. The current colon cancer therapy mainly revolves around chemotherapy, radiotherapy and surgery, but the search continues for more effective interventions. With the advancement of nanoparticles (NPs), it is now possible to diagnose and treat colon cancers with different types, shapes, and sizes of NPs. Nanoformulations such as quantum dots, iron oxide, polymeric NPs, dendrimers, polypeptides, gold NPs, silver NPs, platinum NPs, and cerium oxide have been either extensively used alone or in combination with other nanomaterials or drugs in colon cancer diagnosis, and treatments. These nanoformulations possess high biocompatibility and bioavailability, which makes them the most suitable candidates for cancer treatment. The size and shape of NPs are critical to achieving an effective drug delivery in cancer treatment and diagnosis. Most NPs currently are under different testing phases (in vitro, preclinical, and clinical), whereas some of them have been approved for therapeutic applications. We have comprehensively reviewed the recent advances in the applications of NPs-based formulations in colon cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Firdos A Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Albalawi
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Student of the volunteer/training program at IRMC
| | - Faheem H Pottoo
- College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
48
|
Vemala RNG, Katti SV, Sirohi B, Manikandan D, Nandakumar G. Molecular Oncology in Management of Colorectal Cancer. Indian J Surg Oncol 2021; 12:169-180. [PMID: 33994743 PMCID: PMC8119525 DOI: 10.1007/s13193-021-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancers are the third most common cancers in the world. Management of both primary and metastatic colorectal cancers has evolved over the last couple of decades. Extensive research in molecular oncology has helped us understand and identify these complex intricacies in colorectal cancer biology and disease progression. These advances coupled with improved knowledge on various mutations have helped develop targeted chemotherapeutics and has allowed planning an effective treatment regimen in this era of immunotherapy with precision. The diverse chemotherapeutic and biological agents at our disposal can make decision making a very complex process. Molecular profile, including CIN, RAS, BRAF mutations, microsatellite instability, ctDNA, and consensus molecular subtypes, are some of the important factors which are to be considered while planning an individualized treatment regimen. This article summarizes the current status of molecular oncology in the management of colorectal cancer and should serve as a practical guide for the clinical team.
Collapse
Affiliation(s)
| | | | | | | | - Govind Nandakumar
- Columbia Asia Hospitals, Bengaluru, India
- Weill Cornell Medical College, New York, USA
| |
Collapse
|
49
|
Liao Z, Nie H, Wang Y, Luo J, Zhou J, Ou C. The Emerging Landscape of Long Non-Coding RNAs in Colorectal Cancer Metastasis. Front Oncol 2021; 11:641343. [PMID: 33718238 PMCID: PMC7947863 DOI: 10.3389/fonc.2021.641343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers, with extremely high rates of morbidity and mortality. The main cause of death in CRC is distant metastasis; it affects patient prognosis and survival and is one of the key challenges in the treatment of CRC. Long non-coding RNAs (lncRNAs) are a group of non-coding RNA molecules with more than 200 nucleotides. Abnormal lncRNA expression is closely related to the occurrence and progression of several diseases, including cancer. Recent studies have shown that numerous lncRNAs play pivotal roles in the CRC metastasis, and reversing the expression of these lncRNAs through artificial means can reduce the malignant phenotype of metastatic CRC to some extent. This review summarizes the major mechanisms of lncRNAs in CRC metastasis and proposes lncRNAs as potential therapeutic targets for CRC and molecular markers for early diagnosis.
Collapse
Affiliation(s)
- Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Luo
- Teaching and Research Room of Biochemistry and Molecular Biology, Medical School of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Sninsky JA, Bishnupuri KS, González I, Trikalinos NA, Chen L, Dieckgraefe BK. Reg4 and its downstream transcriptional activator CD44ICD in stage II and III colorectal cancer. Oncotarget 2021; 12:278-291. [PMID: 33659040 PMCID: PMC7899555 DOI: 10.18632/oncotarget.27896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Reg4 is highly expressed in gastrointestinal malignancies and acts as a mitogenic and pro-invasive factor. Our recent works suggest that Reg4 binds with CD44 and induces its proteolytic cleavage to release intra-cytoplasmic domain of CD44 (CD44ICD). The goal of this study is to demonstrate clinical significance of the Reg4-CD44/CD44ICD pathway in stage II/III colon cancer and its association with clinical parameters of aggression. We constructed a tissue microarray (TMA) of 93 stage II/III matched colon adenocarcinoma patients, 23 with recurrent disease. The TMA was immunohistochemically stained for Reg4, CD44, and CD44ICD proteins and analyzed to identify associations with tumor characteristics, recurrence and overall survival. The TMA data analysis showed a significant correlation between Reg4 and CD44 (r2 = 0.23, P = 0.028), CD44 and CD44ICD (r2 = 0.36, p = 0.0004), and Reg4 and CD44ICD (r2 = 0.45, p ≤ 0.0001). Reg4 expression was associated with larger tumor size (r2 = 0.23, p = 0.026). Although, no association was observed between Reg4, CD44, or CD44ICD expression and disease recurrence, Reg4-positive patients had a median survival of 4 years vs. 7 years for Reg4-negative patients (p = 0.04) in patients who recurred. Inhibition of the Reg4-CD44/CD44ICD pathway may be a future therapeutic target for colon cancer patients.
Collapse
Affiliation(s)
- Jared A Sninsky
- Division of Gastroenterology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kumar S Bishnupuri
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Iván González
- Division of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nikolaos A Trikalinos
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Brian K Dieckgraefe
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|