1
|
Yan Y, Ren Y, Bao Y, Wang Y. RNA splicing alterations in lung cancer pathogenesis and therapy. CANCER PATHOGENESIS AND THERAPY 2023; 1:272-283. [PMID: 38327600 PMCID: PMC10846331 DOI: 10.1016/j.cpt.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 02/09/2024]
Abstract
RNA splicing alterations are widespread and play critical roles in cancer pathogenesis and therapy. Lung cancer is highly heterogeneous and causes the most cancer-related deaths worldwide. Large-scale multi-omics studies have not only characterized the mutational landscapes but also discovered a plethora of transcriptional and post-transcriptional changes in lung cancer. Such resources have greatly facilitated the development of new diagnostic markers and therapeutic options over the past two decades. Intriguingly, altered RNA splicing has emerged as an important molecular feature and therapeutic target of lung cancer. In this review, we provide a brief overview of splicing dysregulation in lung cancer and summarize the recent progress on key splicing events and splicing factors that contribute to lung cancer pathogenesis. Moreover, we describe the general strategies targeting splicing alterations in lung cancer and highlight the potential of combining splicing modulation with currently approved therapies to combat this deadly disease. This review provides new mechanistic and therapeutic insights into splicing dysregulation in cancer.
Collapse
Affiliation(s)
- Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Li HX, Zhao KC, Jiang JJ, Zhu QS. Research progress on black phosphorus hybrids hydrogel platforms for biomedical applications. J Biol Eng 2023; 17:8. [PMID: 36717887 PMCID: PMC9887857 DOI: 10.1186/s13036-023-00328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Hydrogels, also known as three-dimensional, flexible, and polymer networks, are composed of natural and/or synthetic polymers with exceptional properties such as hydrophilicity, biocompatibility, biofunctionality, and elasticity. Researchers in biomedicine, biosensing, pharmaceuticals, energy and environment, agriculture, and cosmetics are interested in hydrogels. Hydrogels have limited adaptability for complicated biological information transfer in biomedical applications due to their lack of electrical conductivity and low mechanical strength, despite significant advances in the development and use of hydrogels. The nano-filler-hydrogel hybrid system based on supramolecular interaction between host and guest has emerged as one of the potential solutions to the aforementioned issues. Black phosphorus, as one of the representatives of novel two-dimensional materials, has gained a great deal of interest in recent years owing to its exceptional physical and chemical properties, among other nanoscale fillers. However, a few numbers of publications have elaborated on the scientific development of black phosphorus hybrid hydrogels extensively. In this review, this review thus summarized the benefits of black phosphorus hybrid hydrogels and highlighted the most recent biological uses of black phosphorus hybrid hydrogels. Finally, the difficulties and future possibilities of the development of black phosphorus hybrid hydrogels are reviewed in an effort to serve as a guide for the application and manufacture of black phosphorus -based hydrogels. Recent applications of black phosphorus hybrid hydrogels in biomedicine.
Collapse
Affiliation(s)
- Hao-xuan Li
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Kun-chi Zhao
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Jia-jia Jiang
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| | - Qing-san Zhu
- grid.415954.80000 0004 1771 3349Department of Spine Surgery, China-Japan Union Hospital of Jilin University, N.126 Xiantai Street, Changchun, 130033 Jilin People’s Republic of China
| |
Collapse
|
3
|
Tan L, Shen X, He Z, Lu Y. The Role of Photodynamic Therapy in Triggering Cell Death and Facilitating Antitumor Immunology. Front Oncol 2022; 12:863107. [PMID: 35692783 PMCID: PMC9184441 DOI: 10.3389/fonc.2022.863107] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is a major threat to human health because of its high mortality, easy recurrence, strong invasion, and metastasis. Photodynamic therapy (PDT) is a promising minimally invasive treatment for tumor. Compared with traditional treatment methods, PDT is less invasive and does not easily damage normal tissues. Most of the effects of this treatment are due to the direct effects of singlet oxygen together with reactive oxygen species. PDT can provide the source of active oxygen for the Fenton reaction, which enhances ferroptosis and also improves the efficacy of PDT in antitumor therapy. Additionally, in contrast to chemotherapy and radiotherapy, PDT has the effect of stimulating the immune response, which can effectively induce immunogenic cell death (ICD) and stimulate immunity. PDT is an ideal minimally invasive treatment method for tumors. In this paper, according to the characteristics of anti-tumor immunity of PDT, some tumor treatment strategies of PDT combined with anti-tumor immunotherapy are reviewed.
Collapse
|
4
|
Chen H, Timashev P, Zhang Y, Xue X, Liang XJ. Nanotechnology-based combinatorial phototherapy for enhanced cancer treatment. RSC Adv 2022; 12:9725-9737. [PMID: 35424935 PMCID: PMC8977843 DOI: 10.1039/d1ra09067d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology-based phototherapy has attracted enormous attention to cancer treatment owning to its non-invasiveness, high controllability and accuracy. Given the fast development of anti-tumor strategies, we summarize various examples of multifunctional nanosystems to highlight the recent advances in nanotechnology-based combinatorial phototherapy towards improving cancer treatment. The limitations of the monotherapeutic approach and the superiority of the photo-involved combinatorial strategies are discussed in each part. The future breakthroughs and clinical perspectives of combinatorial phototherapy are also outlooked. Our perspectives may inspire researchers to develop more effective phototherapy-based cancer-treating approaches.
Collapse
Affiliation(s)
- Han Chen
- School of Pharmacy, Pharm-X Center, Shanghai Jiao Tong Univeristy Shanghai 200240 China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University Moscow 119991 Russia
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University Moscow 119991 Russia
| | - Xiangdong Xue
- School of Pharmacy, Pharm-X Center, Shanghai Jiao Tong Univeristy Shanghai 200240 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China Beijing 100190 China
| |
Collapse
|
5
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 326] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
6
|
Du B, Wen X, Wang Y, Lin M, Lai J. Gemcitabine and checkpoint blockade exhibit synergistic anti-tumor effects in a model of murine lung carcinoma. Int Immunopharmacol 2020; 86:106694. [PMID: 32570034 DOI: 10.1016/j.intimp.2020.106694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is leading cause of cancer death in the world. Chemotherapy is currently one of the standard treatments for lung cancer. Gemcitabine is a pyrimidine nucleoside drug which has been approved by FDA to treat lung cancer. However, acquired resistance inevitable develops after Gemcitabine treatment, limiting clinical efficacy. Lewis lung carcinoma (LLC) cells were treated with Gemcitabine and cell apoptosis and programmed cell death-ligand 1 (PD-L1) expression were analyzed by flow cytometry. LLC mouse model was established to analysis the proportion and programmed cell death-1 (PD-1) expression of CD8 + T cells. Anti-tumor effect by treating with Gemcitabine and anti-PD-1 antibody was measured through in vivo LLC mouse model. Gemcitabine treatment induces tumor cell apoptosis and PD-L1 expression. Further study showed that Gemcitabine treatment also increases CD8+ and CD4+ T cells proportion, PD-1 and PD-L1 expression in LLC mouse model. Combination therapy with Gemcitabine and αPD-1 not only has strong anti-tumor effect, but also could inhibit postsurgical recurrence of LLC. Our findings demonstrated that the combination therapy of Gemcitabine and αPD-1 is an effective therapeutic strategy for lung cancer.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- B7-H1 Antigen/biosynthesis
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/immunology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Disease Models, Animal
- Drug Synergism
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred C57BL
- Neoplasm Recurrence, Local/drug therapy
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/biosynthesis
- Programmed Cell Death 1 Receptor/genetics
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Up-Regulation
- Gemcitabine
Collapse
Affiliation(s)
- Bin Du
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China
| | - Xiaojiao Wen
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China
| | - Yao Wang
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China
| | - Mengxin Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China
| | - Jinhuo Lai
- Department of Medical Oncology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Fuzhou 350001, Fujian, China.
| |
Collapse
|
7
|
Ye X, Liang X, Chen Q, Miao Q, Chen X, Zhang X, Mei L. Surgical Tumor-Derived Personalized Photothermal Vaccine Formulation for Cancer Immunotherapy. ACS NANO 2019; 13:2956-2968. [PMID: 30789699 DOI: 10.1021/acsnano.8b07371] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Personalized cancer vaccines show great potential in cancer immunotherapy by inducing an effective and durable antitumor response. However, the limitation of neoantigen identification, low immunogenicity, and weak immune response hamper the development of personalized cancer vaccines. The surgically removed tumor contains tumor antigens specific to the patient, which provides a promising source for personalized cancer vaccines. Here, we utilized the surgically removed tumor to prepare a personalized photothermal vaccine combined with the PD-1 checkpoint blockade antibody to prevent tumor relapse and metastasis. Black phosphorus quantum dot nanovesicles (BPQD-CCNVs) coated with surgically removed tumor cell membrane were prepared and loaded into a thermosensitive hydrogel containing GM-CSF and LPS. The sustained release of GM-CSF from the hypodermic injection of Gel-BPQD-CCNVs effectively recruited dendritic cells to capture tumor antigen. NIR irradiation and LPS stimulated the expansion and activation of DCs, which then traveled to the lymph nodes to present antigen to CD8+ T cells. Moreover, the combination with PD-1 antibody significantly enhanced tumor-specific CD8+ T cell elimination of the surgical residual and lung metastatic tumor. Hence, our work may provide a promising strategy for the clinical development of a personalized cancer vaccine.
Collapse
Affiliation(s)
- Xinyu Ye
- School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
- School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P. R. China
| | - Xin Liang
- School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , 215123 , P. R. China
| | - Qianwei Miao
- School of Life Science , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Xiuli Chen
- School of Life Sciences , Tsinghua University , Beijing 100084 , P. R. China
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P. R. China
| | - Xudong Zhang
- School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
- School of Medicine (Shenzhen) , Sun Yat-sen University , Guangzhou 510080 , China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
- Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P. R. China
| |
Collapse
|
8
|
Peterson GM, Thomas J, Yee KC, Kosari S, Naunton M, Olesen IH. Monoclonal antibody therapy in cancer: When two is better (and considerably more expensive) than one. J Clin Pharm Ther 2018; 43:925-930. [DOI: 10.1111/jcpt.12750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Jackson Thomas
- Faculty of Health; University of Canberra; Bruce ACT Australia
| | - Kwang C. Yee
- Faculty of Health; University of Canberra; Bruce ACT Australia
| | - Sam Kosari
- Faculty of Health; University of Canberra; Bruce ACT Australia
| | - Mark Naunton
- Faculty of Health; University of Canberra; Bruce ACT Australia
| | - Inger H. Olesen
- The Andrew Love Cancer Centre; Barwon Health; Geelong VIC Australia
| |
Collapse
|