1
|
Liu Y, Li H, Li X, Zhang T, Zhang Y, Zhu J, Cui H, Li R, Cheng Y. Highly consistency of PIK3CA mutation spectrum between circulating tumor DNA and paired tissue in lung cancer patients. Heliyon 2024; 10:e34013. [PMID: 39071569 PMCID: PMC11277437 DOI: 10.1016/j.heliyon.2024.e34013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA) mutations are associated with drug resistance and prognosis in lung cancer; however, the consistency and clinical value of PIK3CA mutations between tissue and liquid samples are unknown. Methods Circulating tumor DNA (ctDNA) and matched tumor tissue samples from 405 advanced lung cancer patients were collected at Jilin Cancer Hospital between 2018 and 2022, and the PIK3CA mutation status was sequenced using next-generation sequencing based on a 520 gene panel. The viability of different mutant lung cancer cells was detected using MTT assay. Results PIK3CA mutations were detected in 46 (5.68 %) of 810 lung cancer samples, with 21 (5.19 %) of 405 plasma samples and 25 (6.17 %) of 405 matched tissues. p.Glu542Lys, p.Glu545Lys, and p.His1047Arg were the most common mutation types of PIK3CA in both the ctDNA and tissue samples. The concordance of PIK3CA mutations was 97.53 % between ctDNA and matched tissues (kappa: 0.770, P = 0.000), with sensitivity/true positive rate of 72.0 %, specificity/true negative rate of 99.2 %, and negative predictive value and positive predictive value of 0.982 and 0.857, respectively (AUC = 0.856, P = 0.000). Furthermore, the concordance of PIK3CA mutations was 98.26 % in lung adenocarcinoma and 96.43 % in lung squamous cell carcinoma. TP53 and EGFR were the most common concomitant mutations in ctDNA and tissues. Patients with PIK3CA mutations showed a high tumor mutational burden (TMB) (P < 0.001) and a significant correlation between bTMB and tTMB (r = 0.5986, P = 0.0041). For the tPIK3CAmut/ctDNA PIK3CAmut cohort, PI3K pathways alteration was associated with male sex (P = 0.022), old age (P = 0.007), and smoking (P = 0.001); tPIK3CAmut/ctDNA PIK3CAwt patients harbored clinicopathological factors of adenocarcinoma stage IV, with low PS score (≤1) and TMB. Conclusion This study showed that ctDNA is highly concordant and sensitive for identifying PIK3CA mutations, suggesting that PIK3CA mutation detection in liquid samples may be an alternative clinical practice for tissues.
Collapse
Affiliation(s)
- Yan Liu
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
| | - Hui Li
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
| | - Xiang Li
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
| | - Tingting Zhang
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Yang Zhang
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Jing Zhu
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Heran Cui
- Biobank, Jilin Cancer Hospital, Changchun, 130012, China
| | - Rixin Li
- Biobank, Jilin Cancer Hospital, Changchun, 130012, China
| | - Ying Cheng
- Translational Oncology Research Lab Jilin Province, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, China
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China
| |
Collapse
|
2
|
Chen M, Wang H, Zhang Y, Jiang H, Li T, Liu L, Zhao Y. Label-Free Multiplex Profiling of Exosomal Proteins with a Deep Learning-Driven 3D Surround-Enhancing SERS Platform for Early Cancer Diagnosis. Anal Chem 2024; 96:6794-6801. [PMID: 38624007 DOI: 10.1021/acs.analchem.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Identification of protein profiling on plasma exosomes by SERS can be a promising strategy for early cancer diagnosis. However, it is still challenging to detect multiple exosomal proteins simultaneously by SERS since the Raman signals of exosomes detected by conventional colloidal nanocrystals or two-dimensional SERS substrates are incomplete and complex. Herein, we develop a novel three-dimensional (3D) surround-enhancing SERS platform, named 3D se-SERS, for the multiplex detection of exosomal proteins. In this 3D se-SERS, proteins and exosomes are covered with "hotspots" generated by the gold nanoparticles, which surround the analytes densely and three-dimensionally, providing sensitive and comprehensive SERS signals. Combining this 3D se-SERS with a deep learning model, we successfully quantitatively profiled seven proteins including CD63, CD81, CD9, CD151, CD171, TSPAN8, and PD-L1 on the surface of plasma exosomes from patients, which can predict the occurrence and advancement of lung cancer. This 3D se-SERS integrating deep learning technique benefits from high sensitivity and significant multiplexing ability for comprehensive analysis of proteins and exosomes, demonstrating the potential of deep learning-driven 3D se-SERS technology for plasma exosome-based early cancer diagnosis.
Collapse
Affiliation(s)
- Miao Chen
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Haoyang Wang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yibin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hanyu Jiang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Tan Li
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Lixin Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yuetao Zhao
- School of Life Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
3
|
Bibikova M, Fan J. Liquid biopsy for early detection of lung cancer. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:200-206. [PMID: 39171286 PMCID: PMC11332910 DOI: 10.1016/j.pccm.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 08/23/2024]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Early cancer detection plays an important role in improving treatment success and patient prognosis. In the past decade, liquid biopsy became an important tool for cancer diagnosis, as well as for treatment selection and response monitoring. Liquid biopsy is a broad term that defines a non-invasive test done on a sample of blood or other body fluid to look for cancer cells or other analytes that can include DNA, RNA, or other molecules released by tumor cells. Liquid biopsies mainly include circulating tumor DNA, circulating RNA, microRNA, proteins, circulating tumor cells, exosomes, and tumor-educated platelets. This review summarizes the progress and clinical application potential of liquid biopsy for early detection of lung cancer.
Collapse
Affiliation(s)
- Marina Bibikova
- AnchorDx, Inc., 46305 Landing Parkway, Fremont, CA 94538, USA
| | - Jianbing Fan
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
4
|
Lobera ES, Varela MA, Jimenez RL, Moreno RB. miRNA as biomarker in lung cancer. Mol Biol Rep 2023; 50:9521-9527. [PMID: 37741809 PMCID: PMC10635960 DOI: 10.1007/s11033-023-08695-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/18/2023] [Indexed: 09/25/2023]
Abstract
Lung cancer has a high prevalence and mortality due to its late diagnosis and limited treatment, so it is essential to find biomarkers that allow a faster diagnosis and improve the survival of these patients. In this sense, biomarkers based on miRNAs have supposed a considerable advance. miRNAs, which are small RNA sequences, can regulate gene expression, so they play an essential role not only as a diagnostic biomarker but also as a therapeutic and prognostic one. Also, miRNA biomarkers can be obtained from liquid biopsies, which are less intrusive than lung biopsies, and have better accessibility, safety and repeatability, which allows using those biomarkers both for diagnosis and monitoring of patients. In this review, we highlight the importance of miRNAs and collect the existing evidence of their relationship with lung cancer.
Collapse
Affiliation(s)
- Esperanza Salcedo Lobera
- U.G.C. Medico-Quirurgica de Enfermedades Respiratorias, Hospital Regional Universitario de Malaga, Malaga, Spain
| | - Macarena Arroyo Varela
- U.G.C. Medico-Quirurgica de Enfermedades Respiratorias, Hospital Regional Universitario de Malaga, Malaga, Spain.
| | - Rafael Larrosa Jimenez
- Department of Computer Architecture, University of Malaga, Malaga, Spain
- Andalusian Platform for Bioinformatics at SCBI, University of Malaga, Malaga, Spain
| | | |
Collapse
|
5
|
Zhou C, Qin Y, Zhao W, Liang Z, Li M, Liu D, Bai L, Chen Y, Chen Y, Cheng Y, Chu T, Chu Q, Deng H, Dong Y, Fang W, Fu X, Gao B, Han Y, He Y, Hong Q, Hu J, Hu Y, Jiang L, Jin Y, Lan F, Li Q, Li S, Li W, Li Y, Liang W, Lin G, Lin X, Liu M, Liu X, Liu X, Liu Z, Lv T, Mu C, Ouyang M, Qin J, Ren S, Shi H, Shi M, Su C, Su J, Sun D, Sun Y, Tang H, Wang H, Wang K, Wang K, Wang M, Wang Q, Wang W, Wang X, Wang Y, Wang Z, Wang Z, Wu L, Wu D, Xie B, Xie M, Xie X, Xie Z, Xu S, Xu X, Yang X, Yin Y, Yu Z, Zhang J, Zhang J, Zhang J, Zhang X, Zhang Y, Zhong D, Zhou Q, Zhou X, Zhou Y, Zhu B, Zhu Z, Zou C, Zhong N, He J, Bai C, Hu C, Li W, Song Y, Zhou J, Han B, Varga J, Barreiro E, Park HY, Petrella F, Saito Y, Goto T, Igai H, Bravaccini S, Zanoni M, Solli P, Watanabe S, Fiorelli A, Nakada T, Ichiki Y, Berardi R, Tsoukalas N, Girard N, Rossi A, Passaro A, Hida T, Li S, Chen L, Chen R. International expert consensus on diagnosis and treatment of lung cancer complicated by chronic obstructive pulmonary disease. Transl Lung Cancer Res 2023; 12:1661-1701. [PMID: 37691866 PMCID: PMC10483081 DOI: 10.21037/tlcr-23-339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
Background Lung cancer combined by chronic obstructive pulmonary disease (LC-COPD) is a common comorbidity and their interaction with each other poses significant clinical challenges. However, there is a lack of well-established consensus on the diagnosis and treatment of LC-COPD. Methods A panel of experts, comprising specialists in oncology, respiratory medicine, radiology, interventional medicine, and thoracic surgery, was convened. The panel was presented with a comprehensive review of the current evidence pertaining to LC-COPD. After thorough discussions, the panel reached a consensus on 17 recommendations with over 70% agreement in voting to enhance the management of LC-COPD and optimize the care of these patients. Results The 17 statements focused on pathogenic mechanisms (n=2), general strategies (n=4), and clinical application in COPD (n=2) and lung cancer (n=9) were developed and modified. These statements provide guidance on early screening and treatment selection of LC-COPD, the interplay of lung cancer and COPD on treatment, and considerations during treatment. This consensus also emphasizes patient-centered and personalized treatment in the management of LC-COPD. Conclusions The consensus highlights the need for concurrent treatment for both lung cancer and COPD in LC-COPD patients, while being mindful of the mutual influence of the two conditions on treatment and monitoring for adverse reactions.
Collapse
Affiliation(s)
- Chengzhi Zhou
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yinyin Qin
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Wei Zhao
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyu Liang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Bai
- Department of Respiratory Medicine, Xinqiao Hospital Army Medical University, Chongqing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Tianqing Chu
- Department of Respiratory Medicine, Shanghai Chest Hospital, Jiaotong University, Shanghai, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyi Deng
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yuchao Dong
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiuhua Fu
- Division of Respiratory Diseases, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Beili Gao
- Department of Respiratory, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiping Han
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yong He
- Department of Pulmonary and Critical Care Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qunying Hong
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Hu
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Hu
- Department of Medical Oncology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Liyan Jiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Jiaotong University, Shanghai, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Lan
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China
| | - Qiang Li
- Department of Respiratory Medicine, Shanghai Dongfang Hospital, Shanghai, China
| | - Shuben Li
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wenhua Liang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Xinqing Lin
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ming Liu
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xiaofang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhefeng Liu
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chuanyong Mu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Ouyang
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jianwen Qin
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Huanzhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Minhua Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Su
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dejun Sun
- Department of Respiratory and Critical Care Medicine, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Huaping Tang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Huijuan Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kai Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhejiang University of Medicine, Hangzhou, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Pulmonary and Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoping Wang
- Department of Respiratory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Yuehong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zirui Wang
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lin Wu
- Thoracic Medicine Department II, Hunan Cancer Hospital, Changsha, China
| | - Di Wu
- Department of Respiratory Medicine, Shenzhen People’s Hospital, Shenzhen, China
| | - Baosong Xie
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Xie
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhanhong Xie
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Shufeng Xu
- Department of Respiratory and Critical Care Medicine, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaoman Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Zongyang Yu
- Department of Pulmonary and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Jian Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianqing Zhang
- Second Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Zhang
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Zhang
- Department of Medical Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yanbin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Zhu
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chenxi Zou
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Nanshan Zhong
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jianxing He
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chengping Hu
- Department of Pulmonary Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing, China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Baohui Han
- Department of Pulmonology, Shanghai Chest Hospital, Shanghai, China
| | - Janos Varga
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Esther Barreiro
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University (UPF), CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII) Barcelona, Spain
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Francesco Petrella
- Division of Thoracic Surgery, IRCCS European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Yuichi Saito
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Hitoshi Igai
- Department of General Thoracic Surgery, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Piergiorgio Solli
- Department of Cardio-Thoracic Surgery and Hearth & Lung Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, Universitàdella Campania Luigi Vanvitelli, Naples, Italy
| | - Takeo Nakada
- Division of Thoracic Surgery, Department of Surgery, the Jikei University School of Medicine, Tokyo, Japan
| | - Yoshinobu Ichiki
- Department of General Thoracic Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Rossana Berardi
- Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | | | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
- Paris Saclay, UVSQ, Versailles, France
| | - Antonio Rossi
- Oncology Center of Excellence, Therapeutic Science & Strategy Unit, IQVIA, Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Toyoaki Hida
- Lung Cancer Center, Central Japan International Medical Center, Minokamo, Japan
| | - Shiyue Li
- The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Liang’an Chen
- Department of Respiratory and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Rongchang Chen
- Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital, Shenzhen, China
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Liu Z, Zhang F, Jiang J, Zhao C, Zhu L, Liu C, Li N, Qiu L, Shen C, Sheng D, Zeng Q. Early detection of lung cancer in a real-world cohort via tumor-associated immune autoantibody and imaging combination. Front Oncol 2023; 13:1166894. [PMID: 37081975 PMCID: PMC10110964 DOI: 10.3389/fonc.2023.1166894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundEfficient early detection methods for lung cancer can significantly decrease patient mortality. One promising approach is the use of tumor-associated autoantibodies (TAABs) as a diagnostic tool. In this study, the researchers aimed to evaluate the potential of seven TAABs in detecting lung cancer within a population undergoing routine health examinations. The results of this study could provide valuable insights into the utility of TAABs for lung cancer screening and diagnosis.MethodsIn this study, the serum concentrations of specific antibodies were measured using enzyme-linked immunosorbent assay (ELISA) in a cohort of 15,430 subjects. The efficacy of both a 7-TAAB panel and LDCT for lung cancer detection were evaluated through receiver operating characteristic (ROC) analyses, with sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) being assessed and compared. These results could have significant implications for the development of improved screening methods for lung cancer.ResultsOver the 12-month observation period, 26 individuals were diagnosed with lung cancer. The 7-TAAB panel demonstrated promising sensitivity (61.5%) and a high degree of specificity (88.5%). The panel’s area under the receiver operating characteristic (ROC) curve was 0.8062, which was superior to that of any individual TAAB. In stage I patients, the sensitivity of the panel was 50%. In our cohort, there was no gender or age bias observed. This 7-TAAB panel showed a sensitivity of approximately 60% in detecting lung cancer, regardless of histological subtype or lesion size. Notably, ground-glass nodules had a higher diagnostic rate than solid nodules (83.3% vs. 36.4%, P = 0.021). The ROC analyses further revealed that the combination of LDCT with the 7-TAAB assay exhibited a significantly superior diagnostic efficacy than LDCT alone.ConclusionIn the context of the study, it was demonstrated that the 7-TAAB panel showed improved detective efficacy of LDCT, thus serving as an effective aid for the detection of lung cancer in real-world scenarios.
Collapse
Affiliation(s)
- Zhong Liu
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhang
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwen Jiang
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chenzhao Zhao
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Zhu
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chenbing Liu
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Li
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lihong Qiu
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Shen
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Di Sheng
- Health Management Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Zeng
- Department of Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Qiang Zeng,
| |
Collapse
|
7
|
Yang M, Shi L, Huang T, Li G, Shao H, Shen Y, Zhu J, Ni B. Value of contrast-enhanced magnetic resonance imaging-T2WI-based radiomic features in distinguishing lung adenocarcinoma from lung squamous cell carcinoma with solid components >8 mm. J Thorac Dis 2023; 15:635-648. [PMID: 36910079 PMCID: PMC9992614 DOI: 10.21037/jtd-23-142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Background Radiomics is one of the research frontiers in the field of imaging and has excellent diagnostic performance. However, there is a lack of magnetic resonance imaging (MRI)-based omics studies on identifying pathological subtypes of lung cancer. Here we explored the value of the contrast-enhanced MRI-T2-weighted imaging (T2WI)-based radiomic analysis in distinguishing adenocarcinoma (Ade) from squamous cell carcinoma (Squ) with solid components >8 mm. Methods A retrospective analysis was performed of a total of 71 lung cancer patients who undergoing contrast-enhanced MRI and computed tomography (CT) before treatment, and the nodules had solid components ≥8 mm in our center from January 2020 to September 2021. All enrolled patients were divided into Squ and Ade groups according to the pathological results. In addition, the two groups were randomly divided into training set and validation set in a ratio of about 7:3. Radiomics software was used to extract the relevant radiomic features. The least absolute shrinkage and selection operator (Lasso) was used to screen radiomic features that were most relevant to lung cancer subtypes, thus calculating the radiomic scores (Rad-score) and constructing the radiomic models. Multivariate logistic regression was used to combine relevant clinical features with Rad-score to form combined model nomograms. The receiver operating characteristic (ROC) curves. the area under the ROC curve (AUC), the decision curve analysis (DCA) and the DeLong's test were used to evaluate the clinical application potentials. Results The sensitivity and specificity of the clinical model based on smoking was 75.0% and 93.8%. The AUC of the constructed magnetic resonance (MR)-Rad model for differentiating the pathological subtypes of lung cancer was 0.8651 in the validation sets. The AUC of the CT-Rad model in the validation set were 0.9286. The combined model constructed by combining clinical features and Rad-score had AUC of 0.8016, for identifying the 2 pathological subtypes of lung cancer in the validation set. There was no significant difference in diagnostic performance between MR-Rad model and CT-Rad model (P>0.05). Conclusions The MR-Rad model has a diagnostic performance similar to that of CT-Rad model, while the diagnostic performance of the combined mode was better than the single MR model.
Collapse
Affiliation(s)
- Maoyuan Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Shi
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianwei Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangzheng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hancheng Shao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yijun Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Yin H, Hong H, Yin P, Lu W, Niu S, Chen X, Xia Y, Jiang P, Huang Z. Increased levels of N6-methyladenosine in peripheral blood RNA: a perspective diagnostic biomarker and therapeutic target for non-small cell lung cancer. Clin Chem Lab Med 2023; 61:473-484. [PMID: 36542027 DOI: 10.1515/cclm-2022-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Due to lack of effective biomarkers for non-small cell lung cancer (NSCLC), many patients are diagnosed at an advanced stage, which leads to poor prognosis. Dysregulation of N6-methyladenosine (m6A) RNA contributes significantly to tumorigenesis and tumor progression. However, the diagnostic value of m6A RNA status in peripheral blood to screen NSCLC remains unclear. METHODS Peripheral blood samples from 152 NSCLC patients and 64 normal controls (NCs) were applied to assess the m6A RNA levels. Bioinformatics and qRT-PCR analysis were performed to identify the specific immune cells in peripheral blood cells and investigate the mechanism of the alteration of m6A RNA levels. RESULTS Robust elevation of m6A RNA levels of peripheral blood cells was exhibited in the NSCLC group. Moreover, the m6A levels increased as NSCLC progressed, and reduced after treatment. The m6A levels contained area under the curve (AUC) was 0.912, which was remarkably greater than the AUCs for CEA (0.740), CA125 (0.743), SCC (0.654), and Cyfra21-1 (0.730). Furthermore, the combination of these traditional biomarkers with m6A levels elevated the AUC to 0.970. Further analysis established that the expression of m6A erasers FTO and ALKBH5 were both markedly reduced and negatively correlated with m6A levels in peripheral blood of NSCLC. Additionally, GEO database and flow cytometry analysis implied that FTO and ALKBH5 attributes to peripheral CD4+ T cells proportion and activated the immune functions of T cells. CONCLUSIONS These findings unraveled that m6A RNA of peripheral blood immune cells was a prospective biomarker for the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Haofan Yin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China.,Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China.,Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P.R. China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ping Yin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wenhua Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Shiqiong Niu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P.R. China
| | - Xinchun Chen
- Blood Transfusion Department, University of Chineses Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Yong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ping Jiang
- Department of Clinical Medical Laboratory, Guangzhou First' People Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Zhijian Huang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
9
|
Huang H, Yang Y, Zhu Y, Chen H, Yang Y, Zhang L, Li W. Blood protein biomarkers in lung cancer. Cancer Lett 2022; 551:215886. [PMID: 35995139 DOI: 10.1016/j.canlet.2022.215886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Lung cancer has consistently ranked first as the cause of cancer-associated mortality. The 5-year survival rate has risen slowly, and the main obstacle to improving the prognosis of patients has been that lung cancer is usually diagnosed at an advanced or incurable stage. Thus, early detection and timely intervention are the most effective ways to reduce lung cancer mortality. Tumor-specific molecules and cellular elements are abundant in circulation, providing real-time information in a noninvasive and cost-effective manner during lung cancer development. These circulating biomarkers are emerging as promising tools for early detection of lung cancer and can be used to supplement computed tomography screening, as well as for prognosis prediction and treatment response monitoring. Serum and plasma are the main sources of circulating biomarkers, and protein biomarkers have been most extensively studied. In this review, we summarize the research progress on three most common types of blood protein biomarkers (tumor-associated antigens, autoantibodies, and exosomal proteins) in lung cancer. This review will potentially guide researchers toward a more comprehensive understanding of candidate lung cancer protein biomarkers in the blood to facilitate their translation to the clinic.
Collapse
Affiliation(s)
- Hong Huang
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yongfeng Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yihan Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongyu Chen
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Li Zhang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, China.
| |
Collapse
|
10
|
Ma G, Yang D, Li Y, Li M, Li J, Fu J, Peng Z. Combined measurement of circulating tumor cell counts and serum tumor marker levels enhances the screening efficiency for malignant versus benign pulmonary nodules. Thorac Cancer 2022; 13:3393-3401. [PMID: 36284506 PMCID: PMC9715841 DOI: 10.1111/1759-7714.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The high false-positive rate for pulmonary nodules (PNs) from using low-dose computed tomography (LDCT) screening can lead to overuse of invasive procedures, overtreatment, and patient anxiety. Therefore, it is very important to develop new diagnostic methods. METHODS A negative enrichment-fluorescence in situ hybridization (NE-FISH) approach was used to detect circulating tumor cells (CTCs) in patients with PNs. We evaluated whether or not the combination of CTC counts with serum tumor marker levels (CEA, CA 125, CYFRA 21-1, SCC) could improve the diagnostic ability for distinguishing patients with malignant pulmonary nodules (MPNs) from those with benign pulmonary nodules (BPNs). Moreover, the potential clinical application of this combination for the diagnosis of solitary pulmonary nodules (SPNs) with a diameter ≤2 cm was also investigated. RESULTS The combination of CTC counts and tumor marker levels had a sensitivity of 80.12% and the area under the receiver operating characteristics curve (AUCROC ) of 0.853 (95% confidence interval [CI]: 0.800-0.897, p < 0.001) for the differential diagnosis of PNs. For early cancer stages, the sensitivity was 75.38% (AUCROC = 0.780, 95% CI: 0.713-0.838, p < 0.001). In addition, for SPNs within 2 cm the combination of CTC counts and tumor marker levels was still the most valuable diagnostic tool with a sensitivity of 78.95% and AUCROC of 0.888. CONCLUSION The combination of CTC counts and serum tumor marker levels is helpful for improving the diagnosis of PNs, especially in the early stages of cancer and for SPNs within 2 cm.
Collapse
Affiliation(s)
- Guojun Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina,Department of Thoracic SurgeryLiaocheng People's HospitalLiaochengChina
| | - Dawei Yang
- Zhong Yuan Academy of Biological MedicineLiaocheng People's HospitalLiaochengChina
| | - Yang Li
- Zhong Yuan Academy of Biological MedicineLiaocheng People's HospitalLiaochengChina
| | - Meng Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jingtao Li
- Department of Thoracic SurgeryLiaocheng People's HospitalLiaochengChina
| | - Jianhua Fu
- Department of Thoracic SurgeryLiaocheng People's HospitalLiaochengChina
| | - Zhongmin Peng
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
11
|
Singh S, Pathak A, Kumar S, Malik PS, Elangovan R. Rapid immunomagnetic co-capture assay for quantification of lung Cancer associated exosomes. J Immunol Methods 2022; 508:113324. [PMID: 35878721 DOI: 10.1016/j.jim.2022.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 12/09/2022]
Abstract
Exosomes derived from biological fluids have the potential to serve as a biomarker for the early detection of various cancers. However, the lack of reliable enrichment and detection methods posed a challenge for its clinical utility. In this work, we designed a rapid co-capture-based approach for targeted enrichment and detection of lung cancer-derived exosomes from human plasma. This method relies on the formation of a sandwich complex around the exosomes that involves magnetic nanoparticles coupled to CD151 to assist in the immunomagnetic selection of lung-derived exosomes and a secondary detection antibody (CD81) coupled to horseradish peroxidase for signal amplification. The performance of the co-capture method to detect exosomes has been optimized with known exosome concentrations in human plasma and exhibited good linearity (108-105 exosomes mL-1) with a detection limit of 60.4 exosomes μL-1. This study further investigated the potential of the developed assay to differentiate healthy and lung cancer patients using 18 clinical samples by quantifying the CD151+/ CD81+ lung-derived exosomes. In conclusion, this study demonstrated a rapid co-capture-based approach that offers simultaneous isolation and detection of exosomes compatible with low sample volume for detecting lung cancer patients.
Collapse
Affiliation(s)
- Shefali Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Abhishek Pathak
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India
| | - Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi 110029, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi 110029, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
12
|
Konoshenko M, Lansukhay Y, Krasilnikov S, Laktionov P. MicroRNAs as Predictors of Lung-Cancer Resistance and Sensitivity to Cisplatin. Int J Mol Sci 2022; 23:7594. [PMID: 35886942 PMCID: PMC9321818 DOI: 10.3390/ijms23147594] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Platinum-based chemotherapy, cisplatin (DDP) specifically, is the main strategy for treating lung cancer (LC). However, currently, there is a lack of predictive drug-resistance markers, and there is increased interest in the development of a reliable and sensitive panels of markers for DDP chemotherapy-effectiveness prediction. MicroRNAs represent a perspective pool of markers for chemotherapy effectiveness. OBJECTIVES Data on miRNAs associated with LC DDP chemotherapy response are summarized and analyzed. MATERIALS AND METHODS A comprehensive review of the data in the literature and an analysis of bioinformatics resources were performed. The gene targets of miRNAs, as well as their reciprocal relationships with miRNAs, were studied using several databases. RESULTS AND DISCUSSION The complex analysis of bioinformatics resources and the literature indicated that the expressions of 12 miRNAs have a high predictive potential for LC DDP chemotherapy responses. The obtained information was discussed from the point of view of the main mechanisms of LC chemoresistance. CONCLUSIONS An overview of the published data and bioinformatics resources, with respect to the predictive microRNA markers of chemotherapy response, is presented in this review. The selected microRNAs and gene panel have a high potential for predicting LC DDP sensitiveness or DDP resistance as well as for the development of a DDP co-therapy.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Yuriy Lansukhay
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Sergey Krasilnikov
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, 630055 Novosibirsk, Russia; (Y.L.); (S.K.)
| |
Collapse
|
13
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
14
|
GCC2 as a New Early Diagnostic Biomarker for Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13215482. [PMID: 34771645 PMCID: PMC8582534 DOI: 10.3390/cancers13215482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Lung cancer, including non-small cell lung cancer, is the leading cause of cancer-related death worldwide. A better prognosis is associated with early diagnosis of lung cancer patients. Although annual screening guidelines for lung cancer are recommended, using various tools such as chest X-ray, low-dose computed tomography, and positron emission tomography, these screening procedures are expensive and difficult to repeat. They are also invasive and have a high risk of radiation exposure. Therefore, a low-risk, convenient diagnostic method using liquid biopsy and biomarkers is required for the early diagnosis of lung cancer. The newly proposed biomarker GCC2 was identified through proteomic analysis of exosomes secreted from lung cancer cell lines. GCC2 expression levels in peripheral blood of the patients showed high specificity and sensitivity in early lung cancer, demonstrating that our novel exosomal biomarker GCC2 can greatly contribute to improving the diagnosis of lung cancer patients, even though it has been tested in only a few pilot studies. Abstract No specific markers have been identified to detect non-small cell lung cancer (NSCLC) cell-derived exosomes circulating in the blood. Here, we report a new biomarker that distinguishes between cancer and non-cancer cell-derived exosomes. Exosomes isolated from patient plasmas at various pathological stages of NSCLC, NSCLC cell lines, and human pulmonary alveolar epithelial cells isolated using size exclusion chromatography were characterized. The GRIP and coiled-coil domain-containing 2 (GCC2) protein, involved in endosome-to-Golgi transport, was identified by proteomics analysis of NSCLC cell line-derived exosomes. GCC2 protein levels in the exosomes derived from early-stage NSCLC patients were higher than those from healthy controls. Receiver operating characteristic curve analysis revealed the diagnostic sensitivity and specificity of exosomal GCC2 to be 90% and 75%, respectively. A high area under the curve, 0.844, confirmed that GCC2 levels could effectively distinguish between the exosomes. These results demonstrate GCC2 as a promising early diagnostic biomarker for NSCLC.
Collapse
|
15
|
Zhou S, Yang Y, Wu Y, Liu S. Review: Multiplexed profiling of biomarkers in extracellular vesicles for cancer diagnosis and therapy monitoring. Anal Chim Acta 2021; 1175:338633. [PMID: 34330441 DOI: 10.1016/j.aca.2021.338633] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale vesicles secreted by normal and pathological cells. The types and levels of surface proteins and internal nucleic acids in EVs are closely related to their original cells, tumor occurrence, and development. Thus, the sensitive and accurate detection of EV biomarkers is a reliable approach for noninvasive disease diagnosis and treatment response monitoring. However, the purification and molecular profiling of these EVs are technically challenging. Much effort has been dedicated to developing new methods for the detection of multiple EV biomarkers. In this review, we summarize the recent progress in EV protein and nucleic acid biomarker analysis. Additionally, we systematically discuss the advantages of multiplexed EV biomarker detection for accurate cancer diagnosis, therapy monitoring, and cancer screening. This article aims to present an overview of all kinds of analytical technologies for assessing EVs and their applications in clinical settings.
Collapse
Affiliation(s)
- Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
16
|
Zhang J, Dong A, Li S, Ren X, Zhang X. Consistency of genotyping data from simultaneously collected plasma circulating tumor DNA and tumor-DNA in lung cancer patients. J Thorac Dis 2021; 12:7290-7297. [PMID: 33447418 PMCID: PMC7797830 DOI: 10.21037/jtd-20-3162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background To clarify the rate of concordance between the results of concurrent sequencing of circulating tumor DNA (ctDNA) and tumor tissue samples based in clinic settings, and to explore potential factors influencing consistency. Methods A retrospective analysis of 27 patients with lung cancer who underwent gene sequencing at the Department of Biotherapy of Tianjin Medical University Cancer Hospital from February 2016 to April 2019, was conducted by synchronous sequencing of tumor and plasma DNA samples and the concordance of mutations in nine known driver genes was calculated. Results The overall concordance, sensitivity, and specificity for sequencing driver genes in plasma samples, were 85.2%, 87.0%, and 75%, respectively, relative to tumor samples. Concordance was 100% in patients with bone metastases, while the rate in those without bone metastases was 69.2%. Moreover, in patients where both the driver gene and TP53 mutations in plasma were detected, the findings of plasma sequencing of the driver gene were identical to those of tumor sequencing (concordance: 100%). Conclusions Overall, our data show that circulating tumor DNA (ctDNA) was able to identify 75% of the identical information in driver genes, with higher rates of concordance in lung cancer patients with bone metastases or TP53 mutation-positive plasma samples.
Collapse
Affiliation(s)
- Jiali Zhang
- Department of Biotherapy, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Aoran Dong
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuzhan Li
- Department of Biotherapy, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xinwei Zhang
- Department of Biotherapy, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
17
|
González Maldonado S, Johnson T, Motsch E, Delorme S, Kaaks R. Can autoantibody tests enhance lung cancer screening?-an evaluation of EarlyCDT ®-Lung in context of the German Lung Cancer Screening Intervention Trial (LUSI). Transl Lung Cancer Res 2021; 10:233-242. [PMID: 33569307 PMCID: PMC7867751 DOI: 10.21037/tlcr-20-727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Tumor-associated autoantibodies are considered promising markers for early lung cancer detection; so far, however, their capacity to detect cancer has been tested mostly in a clinical context, but not in population screening settings. This study evaluates the early detection accuracy, in terms of sensitivity and specificity, of EarlyCDT®-Lung-a test panel of seven tumor-associated autoantibodies optimized for lung cancer detection-using blood samples originally collected as part of the German Lung Cancer Screening Intervention Trial. Methods The EarlyCDT®-Lung test was performed for all participants with lung cancer detected via low-dose computed tomography and with available blood samples taken at detection, and for 180 retrospectively selected cancer-free participants at the end of follow-up: 90 randomly selected from among all cancer-free participants (baseline controls) and 90 randomly selected from among cancer-free participants with suspicious imaging findings (suspicious nodules controls). Sensitivity and specificity of lung cancer detection were estimated in the case group and the two control groups, respectively. Results In the case group, the test panel showed a sensitivity of only 13.0% (95% CI: 4.9-26.3%). Specificity was estimated at 88.9% (95% CI: 80.5-94.5%) in the baseline control group, and 91.1% (95% CI: 83.2-96.1%) among controls presenting CT-detected nodules. Conclusions The test panel showed insufficient sensitivity for detecting lung cancer at an equally early stage as with low-dose computed tomography screening.
Collapse
Affiliation(s)
- Sandra González Maldonado
- Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Erna Motsch
- Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research, Heidelberg, Germany
| | - Stefan Delorme
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
18
|
Lee WC, Reuben A, Hu X, McGranahan N, Chen R, Jalali A, Negrao MV, Hubert SM, Tang C, Wu CC, Lucas AS, Roh W, Suda K, Kim J, Tan AC, Peng DH, Lu W, Tang X, Chow CW, Fujimoto J, Behrens C, Kalhor N, Fukumura K, Coyle M, Thornton R, Gumbs C, Li J, Wu CJ, Little L, Roarty E, Song X, Lee JJ, Sulman EP, Rao G, Swisher S, Diao L, Wang J, Heymach JV, Huse JT, Scheet P, Wistuba II, Gibbons DL, Futreal PA, Zhang J, Gomez D, Zhang J. Multiomics profiling of primary lung cancers and distant metastases reveals immunosuppression as a common characteristic of tumor cells with metastatic plasticity. Genome Biol 2020; 21:271. [PMID: 33148332 PMCID: PMC7640699 DOI: 10.1186/s13059-020-02175-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metastasis is the primary cause of cancer mortality accounting for 90% of cancer deaths. Our understanding of the molecular mechanisms driving metastasis is rudimentary. RESULTS We perform whole exome sequencing (WES), RNA sequencing, methylation microarray, and immunohistochemistry (IHC) on 8 pairs of non-small cell lung cancer (NSCLC) primary tumors and matched distant metastases. Furthermore, we analyze published WES data from 35 primary NSCLC and metastasis pairs, and transcriptomic data from 4 autopsy cases with metastatic NSCLC and one metastatic lung cancer mouse model. The majority of somatic mutations are shared between primary tumors and paired distant metastases although mutational signatures suggest different mutagenesis processes in play before and after metastatic spread. Subclonal analysis reveals evidence of monoclonal seeding in 41 of 42 patients. Pathway analysis of transcriptomic data reveals that downregulated pathways in metastases are mainly immune-related. Further deconvolution analysis reveals significantly lower infiltration of various immune cell types in metastases with the exception of CD4+ T cells and M2 macrophages. These results are in line with lower densities of immune cells and higher CD4/CD8 ratios in metastases shown by IHC. Analysis of transcriptomic data from autopsy cases and animal models confirms that immunosuppression is also present in extracranial metastases. Significantly higher somatic copy number aberration and allelic imbalance burdens are identified in metastases. CONCLUSIONS Metastasis is a molecularly late event, and immunosuppression driven by different molecular events, including somatic copy number aberration, may be a common characteristic of tumors with metastatic plasticity.
Collapse
Affiliation(s)
- Won-Chul Lee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Runzhe Chen
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shawna M Hubert
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anthony San Lucas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Whijae Roh
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kenichi Suda
- Department of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Jihye Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aik-Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi-Wan Chow
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kazutaka Fukumura
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcus Coyle
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Thornton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Latasha Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Roarty
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik P Sulman
- New York University Langone School of Medicine, New York, NY, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Swisher
- Department of Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Current Address: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Liu WR, Zhang B, Chen C, Li Y, Ye X, Tang DJ, Zhang JC, Ma J, Zhou YL, Fan XJ, Yue DS, Li CG, Zhang H, Ma YC, Huo YS, Zhang ZF, He SY, Wang CL. Detection of circulating genetically abnormal cells in peripheral blood for early diagnosis of non-small cell lung cancer. Thorac Cancer 2020; 11:3234-3242. [PMID: 32989915 PMCID: PMC7606026 DOI: 10.1111/1759-7714.13654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Circulating genetically abnormal cells (CACs) with specific chromosome variations have been confirmed to be present in non-small cell lung cancer (NSCLC). However, the diagnostic performance of CAC detection remains unclear. This study aimed to evaluate the potential clinical application of the CAC test for the early diagnosis of NSCLC. METHODS In this prospective study, a total of 339 participants (261 lung cancer patients and 78 healthy volunteers) were enrolled. An antigen-independent fluorescence in situ hybridization was used to enumerate the number of CACs in peripheral blood. RESULTS Patients with early-stage NSCLC were found to have a significantly higher number of CACs than those of healthy participants (1.34 vs. 0.19; P < 0.001). The CAC test displayed an area under the receiver operating characteristic (ROC) curve of 0.76139 for discriminating stage I NSCLC from healthy participants with 67.2% sensitivity and 80.8% specificity, respectively. Compared with serum tumor markers, the sensitivity of CAC assays for distinguishing early-stage NSCLC was higher (67.2% vs. 48.7%, P < 0.001), especially in NSCLC patients with small nodules (65.4% vs. 36.5%, P = 0.003) and ground-glass nodules (pure GGNs: 66.7% vs. 40.9%, P = 0.003; mixed GGNs: 73.0% vs. 43.2%, P < 0.001). CONCLUSIONS CAC detection in early stage NSCLC was feasible. Our study showed that CACs could be used as a promising noninvasive biomarker for the early diagnosis of NSCLC. KEY POINTS What this study adds: This study aimed to evaluate the potential clinical application of the CAC test for the early diagnosis of NSCLC. Significant findings of the study: CAC detection in early stage NSCLC was feasible. Our study showed that CACs could be used as a promising noninvasive biomarker for the early diagnosis of NSCLC.
Collapse
Affiliation(s)
- Wei-Ran Liu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chen Chen
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yue Li
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xin Ye
- Joint Research Center of Liquid Biopsy in Guangdong, Hong kong, and Macao, Zhuhai, China.,Zhuhai Sanmed Biotech Ltd., Zhuhai, China.,Guangdong Postdoctoral Innovation Practice Bases, School of Biology and Biological Engineering, South China University of Technology, China
| | - Dong-Jiang Tang
- Joint Research Center of Liquid Biopsy in Guangdong, Hong kong, and Macao, Zhuhai, China.,Zhuhai Sanmed Biotech Ltd., Zhuhai, China
| | - Jun-Cheng Zhang
- Joint Research Center of Liquid Biopsy in Guangdong, Hong kong, and Macao, Zhuhai, China.,Zhuhai Sanmed Biotech Ltd., Zhuhai, China
| | - Jing Ma
- Department of Respiratory and Critical Care, Henan University Huaihe Hospital, Kaifeng, China
| | - Yan-Ling Zhou
- Joint Research Center of Liquid Biopsy in Guangdong, Hong kong, and Macao, Zhuhai, China.,Zhuhai Sanmed Biotech Ltd., Zhuhai, China
| | - Xian-Jun Fan
- Joint Research Center of Liquid Biopsy in Guangdong, Hong kong, and Macao, Zhuhai, China.,Zhuhai Sanmed Biotech Ltd., Zhuhai, China
| | - Dong-Sheng Yue
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chen-Guang Li
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hua Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yu-Chen Ma
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan-Song Huo
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shu-Yu He
- Joint Research Center of Liquid Biopsy in Guangdong, Hong kong, and Macao, Zhuhai, China.,Zhuhai Sanmed Biotech Ltd., Zhuhai, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
20
|
Malapelle U, Vigliar E, Troncone G. Biomarkers predictive value in early stage non-small cell lung cancer. Transl Lung Cancer Res 2020; 9:956-959. [PMID: 32953474 PMCID: PMC7481621 DOI: 10.21037/tlcr.2020.04.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Chia BSH, Nei WL, Charumathi S, Fong KW, Tan MH. Baseline Plasma EGFR Circulating Tumour DNA Levels in a Pilot Cohort of EGFR-Mutant Limited-Stage Lung Adenocarcinoma Patients Undergoing Radical Lung Radiotherapy. Case Rep Oncol 2020; 13:896-903. [PMID: 32884537 PMCID: PMC7443655 DOI: 10.1159/000508932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022] Open
Abstract
The use of circulating cell-free tumour DNA (ctDNA) is established in metastatic lung adenocarcinoma to detect and monitor sensitising EGFR mutations. In early-stage disease, there is very little data supporting its role as a potential biomarker. We report on a prospective cohort of 9 limited-stage EGFR mutant lung cancer patients who were treated with radical radiotherapy. We looked at baseline plasma EGFR ctDNA and noted the detection rates to be higher in locally advanced disease. At a median follow-up of 13.5 months, an association between a detectable pre-radiotherapy plasma EGFR ctDNA and early tumour relapse (155 days vs. NR, p = 0.004) was noted. One patient with persistent plasma EGFR ctDNA predated radiological progression. The role of ctDNA in early-stage lung cancer is developing. Plasma EGFR ctDNA could be a useful biomarker in lung cancer patients undergoing radical treatments for staging, prognostication, and follow-up. These preliminary findings should be explored in larger studies.
Collapse
Affiliation(s)
- Brendan Seng Hup Chia
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wen Long Nei
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Kam Weng Fong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Min-Han Tan
- Institute of Bioengineering and Nanotechnology, ASTAR Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Wang W, Chen D, Chen W, Xin Z, Huang Z, Zhang X, Xi K, Wang G, Zhang R, Zhao D, Liu L, Zhang L. Early Detection of Non-Small Cell Lung Cancer by Using a 12-microRNA Panel and a Nomogram for Assistant Diagnosis. Front Oncol 2020; 10:855. [PMID: 32596148 PMCID: PMC7301755 DOI: 10.3389/fonc.2020.00855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background: We previously identified a 12-microRNA (miRNA) panel (miRNA-17, miRNA-146a, miRNA-200b, miRNA-182, miRNA-155, miRNA-221, miRNA-205, miRNA-126, miRNA-7, miRNA-21, miRNA-145, and miRNA-210) that aided in the early diagnosis of non-small cell lung cancer (NSCLC). We validated the diagnostic value of this miRNA panel and compared it with that of traditional tumor markers and radiological diagnosis. We constructed a nomogram based on the miRNA panel's results to predict the risk of NSCLC. Methods: Eighty-two participants with pulmonary nodules on a CT scan and who underwent a pathological examination and surgical treatment were enrolled in our study. Patients were randomly divided into a training group or a validation group. The miRNA concentrations were quantified by RT-PCR and log-transformed for analysis. The cutoff value was determined in the training group and then applied in the validation group. A comparison between the miRNAs and traditional tumor markers [CEA, NSE, and cytokeratin 19 fragment 21-1 (Cyfra21-1)] and radiological diagnosis was performed. A nomogram based on the miRNA panel's results to predict the risk of NSCLC was constructed. Results: The expression level of these 12 miRNAs was significantly higher in NSCLC patients than in benign patients. In the validation group, the specificity and positive predictive value were 96.4 and 95.8%, respectively, which were significantly higher than those using traditional tumor markers or radiological diagnosis. The sensitivity was 42.6%, which was also higher than that using tumor markers. Moreover, the sensitivity increased to 63.6% when the nodule diameters were larger than 2 cm. The miRNAs and seven clinical factors were integrated into the nomogram, and the calibration curves showed optimal agreement between the predicted and actual probabilities. Conclusions: Our miRNA panel has clinical value for the early detection of NSCLC. A nomogram was constructed and internally validated, and the results indicate that it can assist clinicians in making treatment recommendations in the clinic.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dongni Chen
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weiwei Chen
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ziya Xin
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zirui Huang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuewen Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kexing Xi
- Department of Colorectal Surgery, Peking Union Medical College, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gongming Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rusi Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dechang Zhao
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Liu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lanjun Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
23
|
Lee SH, Kim EY, Kim T, Chang YS. Compared to plasma, bronchial washing fluid shows higher diagnostic yields for detecting EGFR-TKI sensitizing mutations by ddPCR in lung cancer. Respir Res 2020; 21:142. [PMID: 32517757 PMCID: PMC7281949 DOI: 10.1186/s12931-020-01408-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The rate of diagnosis of advanced lung adenocarcinoma must be improved. In this study, we compared the detection rates of EGFR-tyrosine kinase inhibitor-sensitizing mutations (mEGFRs) in bronchial washing fluid (BWF) and the plasma of patients with lung adenocarcinoma using the tissue genotype as the standard reference. METHODS Paired blood and BWF specimens were collected from 73 patients with lung cancer. The tumor EGFR mutation status was determined by genotyping of the plasma and BWF samples using droplet digital PCR (ddPCR). RESULTS The study cohort included 26, 10, 10, and 27 patients with stage I, II, III, and IV disease. Of the 73 cases, 35 had a wild-type EGFR, and 19 had the L858R substitution and exon 19 deletion mutations. The areas under the receiver operator characteristic curves for sensitivity vs. specificity of ddPCR were 0.895 [95% confidence interval (CI): 0.822-0.969] for BWF and 0.686 (95% CI: 0.592-0.780) for plasma (p < 0.001). The fractional abundance was higher in BWF of the mEGFR-positive cases than in the plasma (p = 0.004), facilitating easy threshold setting and discrimination between mEGFR-positive and negative cases. When genotyping results obtained using plasma and BWF were compared for early lung cancer (stages I-IIIA), the diagnostic yields were significantly higher for BWF ddPCR, and the same tendency was observed for the advanced stages, suggesting that the BWF data may reflect the genotype status in early-stage patients. CONCLUSIONS The mEGFR genotyping results obtained using BWF showed a higher diagnostic efficacy than did those obtained using the plasma. Thus, BWF-based genotyping may be a useful substitute for that using plasma in lung cancer.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taehee Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Shin H, Oh S, Hong S, Kang M, Kang D, Ji YG, Choi BH, Kang KW, Jeong H, Park Y, Hong S, Kim HK, Choi Y. Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes. ACS NANO 2020; 14:5435-5444. [PMID: 32286793 DOI: 10.1021/acsnano.9b09119] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seunghyun Oh
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soonwoo Hong
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minsung Kang
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Daehyeon Kang
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yong-Gu Ji
- Exopert Corporation, Seoul 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Ka-Won Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyesun Jeong
- School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yong Park
- Division of Hematology-Oncology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sunghoi Hong
- School of Biosystems and Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Koo Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- Exopert Corporation, Seoul 02841, Republic of Korea
| |
Collapse
|
25
|
Wang W, Zhuang R, Ma H, Fang L, Wang Z, Lv W, Hu J. The diagnostic value of a seven-autoantibody panel and a nomogram with a scoring table for predicting the risk of non-small-cell lung cancer. Cancer Sci 2020; 111:1699-1710. [PMID: 32108977 PMCID: PMC7226194 DOI: 10.1111/cas.14371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022] Open
Abstract
The early detection of non-small-cell lung cancer (NSCLC) remains a common concern. The aim of our study was to validate the diagnostic value of a seven-autoantibody (7-AAB) panel compared with radiological diagnosis for NSCLC. We constructed a nomogram and a scoring table based on the 7-AAB panel's result to predict the risk of NSCLC. We prospectively enrolled 268 patients who presented with radiological lesions and underwent both the 7-AAB panel test and pathological diagnosis by surgical resection. A comparison between the 7-AAB panel and radiological diagnosis was performed. A nomogram and a scoring table based on the 7-AAB panel's result to predict the risk of NSCLC were constructed and internally validated. The 7-AAB panel test had a specificity of 90.2% and a positive predictive value (PPV) of 92.7%, which were significantly higher than those of the radiological diagnosis. The 7-AAB panel also showed a preferable sensitivity in patients with early-stage disease. Seven factors, including the 7-AAB panel results, were integrated into the nomogram. For more convenient application, we formulated a scoring table based on the nomogram. The area under the receiver operating characteristic curve was 0.840 and 0.860 in the training group and validation group, respectively, which was higher than that using the 7-AAB panel or radiological diagnosis alone. This study reveals that our 7-AAB panel has clinical value in the diagnosis of NSCLC. The utility of our nomogram and the scoring table indicated that they have the potential to assist clinicians in avoiding unnecessary treatment or needless follow-up.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Runzhou Zhuang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Honghai Ma
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Likui Fang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhitian Wang
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Wang Lv
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jian Hu
- Department of Thoracic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
26
|
Denlinger CE, Krantz SB. Commentary: Sifting the needles from the hay. J Thorac Cardiovasc Surg 2019; 159:1567-1568. [PMID: 31735385 DOI: 10.1016/j.jtcvs.2019.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Chadrick E Denlinger
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC.
| | - Seth B Krantz
- Division of Thoracic Surgery, NorthShore University Health System, Evanston, Ill
| |
Collapse
|
27
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|
28
|
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Campbell PT, Ambrosone CB, Nishihara R, Aerts HJWL, Bondy M, Chatterjee N, Garcia-Closas M, Giannakis M, Golden JA, Heng YJ, Kip NS, Koshiol J, Liu XS, Lopes-Ramos CM, Mucci LA, Nowak JA, Phipps AI, Quackenbush J, Schoen RE, Sholl LM, Tamimi RM, Wang M, Weijenberg MP, Wu CJ, Wu K, Yao S, Yu KH, Zhang X, Rebbeck TR, Ogino S. Proceedings of the fourth international molecular pathological epidemiology (MPE) meeting. Cancer Causes Control 2019; 30:799-811. [PMID: 31069578 PMCID: PMC6614001 DOI: 10.1007/s10552-019-01177-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/27/2019] [Indexed: 02/06/2023]
Abstract
An important premise of epidemiology is that individuals with the same disease share similar underlying etiologies and clinical outcomes. In the past few decades, our knowledge of disease pathogenesis has improved, and disease classification systems have evolved to the point where no complex disease processes are considered homogenous. As a result, pathology and epidemiology have been integrated into the single, unified field of molecular pathological epidemiology (MPE). Advancing integrative molecular and population-level health sciences and addressing the unique research challenges specific to the field of MPE necessitates assembling experts in diverse fields, including epidemiology, pathology, biostatistics, computational biology, bioinformatics, genomics, immunology, and nutritional and environmental sciences. Integrating these seemingly divergent fields can lead to a greater understanding of pathogenic processes. The International MPE Meeting Series fosters discussion that addresses the specific research questions and challenges in this emerging field. The purpose of the meeting series is to: discuss novel methods to integrate pathology and epidemiology; discuss studies that provide pathogenic insights into population impact; and educate next-generation scientists. Herein, we share the proceedings of the Fourth International MPE Meeting, held in Boston, MA, USA, on 30 May-1 June, 2018. Major themes of this meeting included 'integrated genetic and molecular pathologic epidemiology', 'immunology-MPE', and 'novel disease phenotyping'. The key priority areas for future research identified by meeting attendees included integration of tumor immunology and cancer disparities into epidemiologic studies, further collaboration between computational and population-level scientists to gain new insight on exposure-disease associations, and future pooling projects of studies with comparable data.
Collapse
Affiliation(s)
- Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, 250 Williams Street NW, Atlanta, GA, 30303, USA.
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Ave, Room SM1036, Boston, MA, 02215, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hugo J W L Aerts
- Departments of Radiation Oncology and Radiology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa Bondy
- Cancer Prevention and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - N Sertac Kip
- Sema4, Mount Sinai Icahn School of Medicine, Genetics & Genomic Sciences and Pathology, Branford, CT, USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Camila M Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert E Schoen
- Departments of Medicine and Epidemiology, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matty P Weijenberg
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kun-Hsing Yu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Timothy R Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Ave, Room SM1036, Boston, MA, 02215, USA.
- Broad Institute of Harvard & MIT, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
30
|
Nanjo S, Bivona TG. Circulating tumor DNA analysis in patients with EGFR mutant lung cancer. J Thorac Dis 2018; 10:S4061-S4064. [PMID: 30631555 PMCID: PMC6297447 DOI: 10.21037/jtd.2018.09.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Shigeki Nanjo
- Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|