1
|
Zhang M, Wang H, Wang M, Zhang H, Li H, Ma P, Zheng J, Wang G, Li S. EphA2 specific chimeric antigen receptor engineered T cells for the treatment of prostate cancer. Transl Oncol 2024; 50:102111. [PMID: 39255722 PMCID: PMC11413685 DOI: 10.1016/j.tranon.2024.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/27/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Erythropoietin-producing hepatocyte receptor A2 (EphA2) is an attractive target for immunotherapy due to its high expression in a variety of solid tumors including prostate cancer. Among various types of immunotherapeutics, chimeric antigen receptor T (CAR-T) cell therapy has made promising progress in hematological and solid tumors. Here, we detected the expression of EphA2 in prostate cancer cells and developed a second-generation CAR targeting EphA2 with CD28 as a co-stimulatory receptor to explore its tumor suppressive potential for prostate cancer in vitro and in vivo. EphA2 was highly expressed on the surface of PC3 and DU145 cells. EphA2 CART cells effectively inhibited prostate cancer growth in an antigen-dependent manner in vitro and in vivo. In addition, tumor cells could stimulate the proliferation of CAR-T cells and the release of cytokine IFN-γ in vitro. These findings shed light on EphA2 as a potential target for prostate cancer, promising EphA2 specific CAR-T cells for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiting Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haoliang Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huizhong Li
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Ma
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shibao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in Cancer: Molecular Complexity and Therapeutic Opportunities. Int J Mol Sci 2024; 25:12191. [PMID: 39596256 PMCID: PMC11594831 DOI: 10.3390/ijms252212191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a member of the Eph tyrosine kinase receptor family that has been linked to various biological processes. In tumors, EphA2 overexpression is associated with noncanonical pathway activation, tumor progression, and a poor prognosis, which has emphasized its importance as a marker of malignancy. Studies on numerous cancer models have highlighted EphA2's dual and often contradictory action, which can be attributed to EphA2's interactions involving multiple pathways and different ligands, as well as the heterogeneity of the tumor microenvironment. In this review, we summarize the main mechanisms underlying EphA2 dysregulation in cancer, highlighting its molecular complexity. Then, we analyze therapies that have been developed over time to counteract its action. We discuss the limitations of the described approaches, emphasizing the fact that the goal of new options is high specificity without losing therapeutic efficacy. For this reason, immunotherapy or the emerging field of targeted protein degradation with proteolysis-targeting chimeras (PROTACs) may represent a promising solution that can be developed based on a deeper understanding of the molecular mechanisms sustaining EphA2 oncogenic activity.
Collapse
Affiliation(s)
- Lisa Toracchio
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| |
Collapse
|
3
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Zhang Y, Gu A, An Z, Huang S, Zhang C, Zhong X, Hu Y. B cells enhance EphA2 chimeric antigen receptor T cells cytotoxicity against glioblastoma via improving persistence. Hum Immunol 2024; 85:111093. [PMID: 39243423 DOI: 10.1016/j.humimm.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a powerful adoptive immunotherapy against blood cancers, but the therapeutic effect was not efficient enough on solid tumors. B cells have been reported to play a critical role in regulating memory T differentiation and cytotoxic T development. However, as of yet the influence of such B cells on CAR T cells has not been discussed. In this study, using ephrin type-A receptor 2 (EphA2) specific CAR T cells, we cultured B cells successfully to stimulate CAR T cells in vitro, and investigated the cell differentiation and anti-tumor efficiency. We observed that EphA2-CAR T cells stimulated by B cells performed increased interferon γ (IFN γ) production and upregulated OX40 expression, as well as the enhanced anti-tumor activity and reduced PD-1 expression. The persistence of CAR T cells was enhanced after B cells stimulation for more than 7 days with the increased subset of central memory T cells (TCM). In addition, next generation sequencing was performed to explore the underlying mechanisms. The up-regulated genes clustered in, immune response activation, chemokine signaling pathway, calcium signaling pathway, cGMP-PKG signaling pathway and et al. which contributed to the upregulated anti-glioblastoma (GBM) activity of CAR T cells stimulated by B cell. Furthermore, MEF2C, CD40, SYK and TNFRSF13B were upregulated in CAR T cells after co-culturing with B cells. These genes functionally enriched in promoting lymphocytes proliferation and may contribute to the enhanced persistence of CAR T cells. In conclusion, these results indicated the critical role of B cells in prolonging CAR T cells longevity and enhancing anti-tumor activity, which paves the way for the therapeutic exploitation of EphA2-CAR T cells against GBM in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Aiqin Gu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhijing An
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuai Huang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Can Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yi Hu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
5
|
Tognolini M, Ferrari FR, Zappia A, Giorgio C. Ephrin receptor type-A2 (EphA2) targeting in cancer: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:1009-1018. [PMID: 39259047 DOI: 10.1080/13543776.2024.2402382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION EphA2 is a tyrosine kinase receptor and is considered a promising target in cancer. Different approaches are used to target EphA2 receptor, and a lot of preclinical data demonstrate the potential exploitation of this receptor in clinical oncology for diagnosis and cancer therapy, including immunotherapy. AREAS COVERED In this review, we have summarized the recent patents involving the EphA2 targeting in cancer. For this aim, we used the patent database Patentscope covering the time period of 2018-present. Preclinical and clinical data of the inventions were considered when published on peer reviewed journals. Moreover, the clinicalTrial.gov identifiers (NCT numbers) were included when available. For an easier and more immediate reading, we classify the patents in different categories, considering the nature (aptamers, small molecules, antibodies, peptides, antigens and chimeric antigen receptors) of the inventions exploiting EphA2 in clinical oncology. EXPERT OPINION Despite the availability of a plethora of chemically diverse agents, there are no approved anticancer drugs targeting EphA2 yet. However, these intellectual properties, some of which supported by strong preclinical evidence, keep the hope that, after more than 30 years from its discovery, we will finally see the first EphA2 targeting agent approved in clinical oncology.
Collapse
Affiliation(s)
| | | | - Alfonso Zappia
- Food and Drug Department, University of Parma, Parma, Italy
| | | |
Collapse
|
6
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
7
|
Yu M, Xie F, Xu C, Yu T, Wang Y, Liang S, Dong Q, Wang L. Characterization of cytotoxic Citrobacter braakii isolated from human stomach. FEBS Open Bio 2024; 14:487-497. [PMID: 38268325 PMCID: PMC10909985 DOI: 10.1002/2211-5463.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Citrobacter braakii (C. braakii) is an anaerobic, gram-negative bacterium that has been isolated from the environment, food, and humans. Infection by C. braakii has been associated with acute mucosal inflammation in the intestine, respiratory tract, and urinary tract. However, the pathogenesis of C. braakii in the gastric mucosa has not yet been clarified. In this study, the bacterium was detected in 35.5% (61/172) of patients with chronic gastritis (CG) and was closely associated with the severity of mucosal inflammation. Citrobacter braakii P1 isolated from a patient with CG exhibited urease activity and acid resistance. It contained multiple secretion systems, including a complete type I secretion system (T1SS), T5aSS and T6SS. We then predicted the potential pilus-related adhesins. Citrobacter braakii P1 diffusely adhered to AGS cells and significantly increased lactate dehydrogenase (LDH) release; the adhesion rate and LDH release were much lower in HEp-2 cells. Strain P1 also induced markedly increased mRNA and protein expression of IL-8 and TNF-α in AGS cells, and the fold increase was much higher than that in HEp-2 cells. Our results demonstrate proinflammatory and cytotoxic role of C. braakii in gastric epithelial cells, indicating the bacterium is potentially involved in inducing gastric mucosa inflammation.
Collapse
Affiliation(s)
- Mengchao Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Fangyu Xie
- Department of Cardiology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Chengzhen Xu
- Department of Chinese MedicineQingdao No. 6 People's HospitalChina
| | - Ting Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Yixuan Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Shuzhen Liang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Quanjiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Lili Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| |
Collapse
|
8
|
Ren Y, Ju Q, Zhang J, Gu W, Du J. MiR-302a-3p reduces cisplatin resistance of esophageal squamous cell carcinoma cells by targeting EphA2. J Chemother 2024; 36:72-81. [PMID: 37198946 DOI: 10.1080/1120009x.2023.2213490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Platinum-based chemotherapy is a common clinical treatment for esophageal squamous cell carcinoma (ESCC), and chemoresistance is a major leading reason for cancer treatment failure. MiR-302a-3p is involved in the development of many diseases. Here, we investigated the role of miR-302a-3p in the cisplatin resistance of ESCC cells and explored its potential mechanism via molecular techniques. The expression of miR-302a-3p was significantly reduced, while the expressions of EphA2 were increased in ESCC tumor tissues and cells. EphA2 was one target gene of miR-302a-3p, and was negatively regulated by miR-302a-3p. By regulating EphA2, miR-302a-3p reduced the viability and promoted the apoptosis of ECA109 cells treated with cisplatin, suggesting that miR-302a-3p could enhance the sensitivity of ECA109 cells to cisplatin treatment by targeting EphA2. MiR-302a-3p plays an important role in reducing cisplatin resistance by inhibiting EphA2, suggesting that it may be a promising therapeutic strategy for cisplatin resistance in ESCC in the future.
Collapse
Affiliation(s)
- Yali Ren
- Department of Pharmacy, Nantong Health College of Jiangsu Province, Nantong, Jiangsu, China
| | - Qianqian Ju
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinlin Zhang
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Wei Gu
- Department of Pharmacy, Nantong Health College of Jiangsu Province, Nantong, Jiangsu, China
| | - Jin Du
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Park D, Jeon WJ, Yang C, Castillo DR. Advancing Esophageal Cancer Treatment: Immunotherapy in Neoadjuvant and Adjuvant Settings. Cancers (Basel) 2024; 16:318. [PMID: 38254805 PMCID: PMC10813716 DOI: 10.3390/cancers16020318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Locally advanced esophageal cancer (LAEC) poses a significant and persistent challenge in terms of effective treatment. Traditionally, the primary strategy for managing LAEC has involved concurrent neoadjuvant chemoradiation followed by surgery. However, achieving a pathologic complete response (pCR) has proven to be inconsistent, and despite treatment, roughly half of patients experience locoregional recurrence or metastasis. Consequently, there has been a paradigm shift towards exploring the potential of immunotherapy in reshaping the landscape of LAEC management. Recent research has particularly focused on immune checkpoint inhibitors, investigating their application in both neoadjuvant and adjuvant settings. These inhibitors, designed to block specific proteins in immune cells, are meant to enhance the immune system's ability to target and combat cancer cells. Emerging evidence from these studies suggests the possibility of a mortality benefit, indicating that immunotherapy may contribute to improved overall survival rates for individuals grappling with esophageal cancer. This manuscript aims to meticulously review the existing literature surrounding neoadjuvant and adjuvant immunotherapy in the context of LAEC management. The intention is to thoroughly examine the methodologies and findings of relevant studies, providing a comprehensive synthesis of the current understanding of the impact of immunotherapy on esophageal cancer.
Collapse
Affiliation(s)
- Daniel Park
- University of California, San Francisco-Fresno Branch Campus, Fresno, CA 93701, USA;
| | - Won Jin Jeon
- Loma Linda University Medical Center, Loma Linda, CA 92354, USA;
| | - Chieh Yang
- Department of Internal Medicine for UCSF, University of California, and UC Riverside, Riverside, CA 92521, USA;
| | - Dani Ran Castillo
- City of Hope-Duarte, Department of Hematology & Oncology, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Tian C, Wang X, Zhang S. CTLA-4 and its inhibitors in esophageal cancer: efficacy of therapy and potential mechanisms of adverse events. Am J Cancer Res 2023; 13:3140-3156. [PMID: 37559996 PMCID: PMC10408473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Esophageal cancer is one of the most prevalent diseases in the world, and its prognosis remains poor. Surgery, chemotherapy, and radiotherapy are the most common treatment strategies for esophageal cancer. Although these conventional treatment methods are sometimes beneficial, patients with esophageal cancer still have a high risk of local relapse and metastasis. Thus, novel and effective therapies are needed. Immune checkpoint inhibitors are a type of immunotherapy being studied as a treatment for patients with advanced cancers, and strategies using such inhibitors have rapidly progressed to be recognized as transformative treatments for various cancers in recent years. Immune checkpoint inhibitors combined with chemotherapy or radiotherapy have become the first-line and second-line treatment strategies for advanced esophageal cancer. In addition, immune checkpoint inhibitors have also been recognized as another option for patients with terminal esophageal cancer who cannot benefit from chemotherapy, and they even have potential benefits as a novel neoadjuvant treatment option for locally advanced esophageal cancer. Currently, there are two types of immune checkpoint inhibitors commonly applied in clinical practice: immune checkpoint inhibitors targeting programmed death 1/programmed cell death ligand 1 and immune checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated protein 4. However, cytotoxic T-lymphocyte-associated protein 4 immune checkpoint inhibitors are rarely used compared with programmed death 1/programmed cell death ligand 1 inhibitors in esophageal cancer and other cancers, and the clinical benefit is unclear. We analyzed and summarized the efficacy and safety of cytotoxic T-lymphocyte-associated protein 4 immune checkpoint inhibitors in the treatment of esophageal cancer. Due to the lack of clinical applications, it is expected that cytotoxic T-lymphocyte-associated protein 4 immune checkpoint inhibitors in combination with other treatments may provide superior benefits and improve the prognosis of patients with esophageal cancer.
Collapse
Affiliation(s)
- Chenrui Tian
- Henan Provincial Peoples Hospital, Xinxiang Medical UniversityNo. 601, Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China
| | - Xiaohui Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|
11
|
Hovhannisyan L, Riether C, Aebersold DM, Medová M, Zimmer Y. CAR T cell-based immunotherapy and radiation therapy: potential, promises and risks. Mol Cancer 2023; 22:82. [PMID: 37173782 PMCID: PMC10176707 DOI: 10.1186/s12943-023-01775-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
CAR T cell-based therapies have revolutionized the treatment of hematological malignancies such as leukemia and lymphoma within the last years. In contrast to the success in hematological cancers, the treatment of solid tumors with CAR T cells is still a major challenge in the field and attempts to overcome these hurdles have not been successful yet. Radiation therapy is used for management of various malignancies for decades and its therapeutic role ranges from local therapy to a priming agent in cancer immunotherapy. Combinations of radiation with immune checkpoint inhibitors have already proven successful in clinical trials. Therefore, a combination of radiation therapy may have the potential to overcome the current limitations of CAR T cell therapy in solid tumor entities. So far, only limited research was conducted in the area of CAR T cells and radiation. In this review we will discuss the potential and risks of such a combination in the treatment of cancer patients.
Collapse
Affiliation(s)
- Lusine Hovhannisyan
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, 3010, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, 3010, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, 3008, Switzerland.
- Department for Biomedical Research, Radiation Oncology, University of Bern, Murtenstrasse 35, Bern, 3008, Switzerland.
| |
Collapse
|
12
|
Furukawa T, Kimura H, Sasaki M, Yamada T, Iwasawa T, Yagi Y, Kato K, Yasui H. Novel [ 111 In]In-BnDTPA-EphA2-230-1 Antibody for Single-Photon Emission Computed Tomography Imaging Tracer Targeting of EphA2. ACS OMEGA 2023; 8:7030-7035. [PMID: 36844571 PMCID: PMC9948553 DOI: 10.1021/acsomega.2c07849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2) is overexpressed in cancer cells and causes abnormal cell proliferation. Therefore, it has attracted attention as a target for diagnostic agents. In this study, the EphA2-230-1 monoclonal antibody (EphA2-230-1) was labeled with [111In]In and evaluated as an imaging tracer for single-photon emission computed tomography (SPECT) of EphA2. EphA2-230-1 was conjugated with 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-BnDTPA) and then labeled with [111In]In. [111In]In-BnDTPA-EphA2-230-1 was evaluated in cell-binding, biodistribution, and SPECT/computed tomography (CT) studies. The cellular uptake ratio of [111In]In-BnDTPA-EphA2-230-1 was 14.0 ± 2.1%/mg protein at 4 h in the cell-binding study. In the biodistribution study, a high uptake of [111In]In-BnDTPA-EphA2-230-1 was observed in tumor tissue (14.6 ± 3.2% injected dose/g at 72 h). The superior accumulation of [111In]In-BnDTPA-EphA2-230-1 in tumors was also confirmed using SPECT/CT. Therefore, [111In]In-BnDTPA-EphA2-230-1 has potential as a SPECT imaging tracer for EphA2.
Collapse
Affiliation(s)
- Takenori Furukawa
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Minon Sasaki
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takumu Yamada
- Department
of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Nakanodai, Kujirai, Kawagoe, Saitama 350-0815, Japan
| | - Takumi Iwasawa
- Department
of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Nakanodai, Kujirai, Kawagoe, Saitama 350-0815, Japan
| | - Yusuke Yagi
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
- Department
of Radiological Technology, Faculty of Medicinal Science, Kyoto College of Medical Science, 1-3 Imakita, Oyama-higashi, Sonobe,
Nantan, Kyoto 622-0022, Japan
| | - Kazunori Kato
- Department
of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Nakanodai, Kujirai, Kawagoe, Saitama 350-0815, Japan
| | - Hiroyuki Yasui
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Science, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
13
|
Fang P, Zhou J, Liang Z, Yang Y, Luan S, Xiao X, Li X, Zhang H, Shang Q, Zeng X, Yuan Y. Immunotherapy resistance in esophageal cancer: Possible mechanisms and clinical implications. Front Immunol 2022; 13:975986. [PMID: 36119033 PMCID: PMC9478443 DOI: 10.3389/fimmu.2022.975986] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Esophageal cancer (EC) is a common malignant gastrointestinal (GI) cancer in adults. Although surgical technology combined with neoadjuvant chemoradiotherapy has advanced rapidly, patients with EC are often diagnosed at an advanced stage and the five-year survival rate remains unsatisfactory. The poor prognosis and high mortality in patients with EC indicate that effective and validated therapy is of great necessity. Recently, immunotherapy has been successfully used in the clinic as a novel therapy for treating solid tumors, bringing new hope to cancer patients. Several immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell therapy, and tumor vaccines, have achieved significant breakthroughs in EC treatment. However, the overall response rate (ORR) of immunotherapy in patients with EC is lower than 30%, and most patients initially treated with immunotherapy are likely to develop acquired resistance (AR) over time. Immunosuppression greatly weakens the durability and efficiency of immunotherapy. Because of the heterogeneity within the immune microenvironment and the highly disparate oncological characteristics in different EC individuals, the exact mechanism of immunotherapy resistance in EC remains elusive. In this review, we provide an overview of immunotherapy resistance in EC, mainly focusing on current immunotherapies and potential molecular mechanisms underlying immunosuppression and drug resistance in immunotherapy. Additionally, we discuss prospective biomarkers and novel methods for enhancing the effect of immunotherapy to provide a clear insight into EC immunotherapy.
Collapse
Affiliation(s)
- Pinhao Fang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiwen Liang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaokun Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlu Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qixin Shang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yong Yuan,
| |
Collapse
|
14
|
Anlotinib Inhibits Tumor Angiogenesis and Promotes the Anticancer Effect of Radiotherapy on Esophageal Cancer through Inhibiting EphA2. JOURNAL OF ONCOLOGY 2022; 2022:5632744. [PMID: 36090890 PMCID: PMC9452983 DOI: 10.1155/2022/5632744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Background Anlotinib is a novel multitarget tyrosine kinase inhibitor for tumor angiogenesis and has antitumor activity in a variety of solid tumors. Given that, our study was designed to unearth the mechanism of anlotinib in radioresistant esophageal cancer (EC) cells. Methods Radioresistant EC cell lines TE-1R and KYSE-150R were established by multiple fractionated irradiation. Detection of cell proliferation was governed by the MTT assay, angiogenesis by the tube formation assay, and cell migration and invasion by the transwell assay. Lastly, RT-qPCR Western blotting was employed to detect the expression of related genes. Cancerous cells showing tumor growth were then detected by tumor xenografts in mice. Results Radioresistant EC cell lines TE-1R and KYSE-150R were successfully established. Anlotinib downregulated EphA2 inhibited proliferation, angiogenesis, migration, and invasion of radioresistant EC cells in vitro. The up-regulated expression of EphA2 in both EC cell lines and radioresistant EC cells, along with anlotinib, in turn, inhibited the expression of EphA2 in radioresistant EC cells. Inhibiting EphA2 also enhanced anlotinib-mediated effects on radioresistant EC cells, so as to restrain cell proliferation, angiogenesis, migration, and invasion. Correspondingly, overexpression of EphA2 is capable of reversing the therapeutic effect of anlotinib on radioresistant EC cells. Also, anlotinib enhances the inhibitory effect of irradiation on mice. Conclusion It is concluded that anlotinib inhibits EphA2 expression, thereby suppressing angiogenesis and resensitizing EC cells to radiotherapy, providing another perspective to overcome radioresistance in EC.
Collapse
|
15
|
Zheng S, Liu B, Guan X. The Role of Tumor Microenvironment in Invasion and Metastasis of Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:911285. [PMID: 35814365 PMCID: PMC9257257 DOI: 10.3389/fonc.2022.911285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the world, with a high rate of morbidity. The invasion and metastasis of ESCC is the main reason for high mortality. More and more evidence suggests that metastasized cancer cells require cellular elements that contribute to ESCC tumor microenvironment (TME) formation. TME contains many immune cells and stromal components, which are critical to epithelial–mesenchymal transition, immune escape, angiogenesis/lymphangiogenesis, metastasis niche formation, and invasion/metastasis. In this review, we will focus on the mechanism of different microenvironment cellular elements in ESCC invasion and metastasis and discuss recent therapeutic attempts to restore the tumor-suppressing function of cells within the TME. It will represent the whole picture of TME in the metastasis and invasion process of ESCC.
Collapse
Affiliation(s)
- Shuyue Zheng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Beilei Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xinyuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xinyuan Guan,
| |
Collapse
|
16
|
Zhu YG, Xiao BF, Zhang JT, Cui XR, Lu ZM, Wu N. Genetically Modified T Cells for Esophageal Cancer Therapy: A Promising Clinical Application. Front Oncol 2021; 11:763806. [PMID: 34858843 PMCID: PMC8630679 DOI: 10.3389/fonc.2021.763806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Esophageal cancer is an exceedingly aggressive and malignant cancer that imposes a substantial burden on patients and their families. It is usually treated with surgery, chemotherapy, radiotherapy, and molecular-targeted therapy. Immunotherapy is a novel treatment modality for esophageal cancer wherein genetically engineered adoptive cell therapy is utilized, which modifies immune cells to attack cancer cells. Using chimeric antigen receptor (CAR) or T cell receptor (TCR) modified T cells yielded demonstrably encouraging efficacy in patients. CAR-T cell therapy has shown robust clinical results for malignant hematological diseases, particularly in B cell-derived malignancies. Natural killer (NK) cells could serve as another reliable and safe CAR engineering platform, and CAR-NK cell therapy could be a more generalized approach for cancer immunotherapy because NK cells are histocompatibility-independent. TCR-T cells can detect a broad range of targeted antigens within subcellular compartments and hold great potential for use in cancer therapy. Numerous studies have been conducted to evaluate the efficacy and feasibility of CAR and TCR based adoptive cell therapies (ACT). A comprehensive understanding of genetically-modified T cell technologies can facilitate the clinical translation of these adoptive cell-based immunotherapies. Here, we systematically review the state-of-the-art knowledge on genetically-modified T-cell therapy and provide a summary of preclinical and clinical trials of CAR and TCR-transgenic ACT.
Collapse
Affiliation(s)
- Yu-Ge Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bu-Fan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing-Tao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin-Run Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhe-Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
17
|
He S, Xu J, Liu X, Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B 2021; 11:3379-3392. [PMID: 34900524 PMCID: PMC8642427 DOI: 10.1016/j.apsb.2021.03.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common cancers with high morbidity and mortality rates. EC includes two histological subtypes, namely esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC primarily occurs in East Asia, whereas EAC occurs in Western countries. The currently available treatment strategies for EC include surgery, chemotherapy, radiation therapy, molecular targeted therapy, and combinations thereof. However, the prognosis remains poor, and the overall five-year survival rate is very low. Therefore, achieving the goal of effective treatment remains challenging. In this review, we discuss the latest developments in chemotherapy and molecular targeted therapy for EC, and comprehensively analyze the application prospects and existing problems of immunotherapy. Collectively, this review aims to provide a better understanding of the currently available drugs through in-depth analysis, promote the development of new therapeutic agents, and eventually improve the treatment outcomes of patients with EC.
Collapse
Affiliation(s)
- Shiming He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jian Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Xu Y, Fu L, Pan D, Wei J, Xia H, Wang S, Sun G. Folic Acid Inhibited Vasculogenic Mimicry in Esophageal Cancer Cell Line Eca-109, the One Target Was EphA2. Nutr Cancer 2021; 74:2235-2242. [PMID: 34678082 DOI: 10.1080/01635581.2021.1988992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The degree of vasculogenic mimicry(VM) is correlated with the prognosis of esophageal cancer, and folic acid supplementation could decrease esophagus cancer deaths among populations. This study aimed to explore the effect of folic acid on VM formation of esophageal cancer cell, and the target. Human esophageal squamous cancer cell lines(Eca-109) were cultured with different concentrations of folic acid (0,1,10,100,200,400, 600,800 μg/ml). A cell counting kit-8 (CCK-8) assay was used to measure the cell proliferation. Then, the amount of VM under the effect of different concentrations of folic acid was observed. Target genes were screened out from several possible targets genes including MMP2, MMP9, EphA2, VE-cad or Ln-5γ2 by employing reverse transcription-quantitative polymerase chain reaction(RT-qPCR). Finally, western blot analysis was used to verify the target proteins. In conclusion, this study found that folic acid inhibited the formation of VM in Eca-109 cells, and the one target protein was EphA2.
Collapse
Affiliation(s)
- YuLing Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - LingMeng Fu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Jie Wei
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - ShaoKang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - GuiJu Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Dhasmana A, Dhasmana S, Kotnala S, A A, Kashyap VK, Shaji PD, Laskar P, Khan S, Pellicano R, Fagoonee S, Haque S, Yallapu MM, Chauhan SC, Jaggi M. A topography of immunotherapies against gastrointestinal malignancies. Panminerva Med 2021; 64:56-71. [PMID: 34664484 DOI: 10.23736/s0031-0808.21.04541-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gastrointestinal (GI) cancers are one of the leading causes of death worldwide. Although various approaches are implemented to improve the health condition of GI patients, none of the treatment protocols promise for eradicating cancer. However, a treatment mechanism against any kind of disease condition is already existing executing inside the human body. The 'immune system' is highly efficient to detect and destroy the unfavourable events of the body including tumor cells. The immune system can restrict the growth and proliferation of cancer. Cancer cells behave much smarter and adopt new mechanisms for hiding from the immune cells. Thus, cancer immunotherapy might play a decisive role to train the immune system against cancer. In this review, we have discussed the immunotherapy permitted for the treatment of GI cancers. We have discussed various methods and mechanisms, periodic development of cancer immunotherapies, approved biologicals, completed and ongoing clinical trials, role of various biopharmaceuticals, and epigenetic factors involved in GI cancer immunotherapies (graphical abstract Figure 1).
Collapse
Affiliation(s)
- Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sudhir Kotnala
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Anukriti A
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University, Lakshamgarh, Rajasthan, India
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Poornima D Shaji
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA - meena.jaggi @utrgv.edu.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
20
|
Adoptive T-cell immunotherapy in digestive tract malignancies: Current challenges and future perspectives. Cancer Treat Rev 2021; 100:102288. [PMID: 34525422 DOI: 10.1016/j.ctrv.2021.102288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Multiple systemic treatments are currently available for advanced cancers of the digestive tract, but none of them is curative. Adoptive T-cell immunotherapy refers to the extraction, modification and re-infusion of autologous or allogenic T lymphocytes for therapeutic purposes. A number of clinical trials have investigated either non-engineered T cells (i.e., lymphokine-activated killer cells, cytokine induced killer cells, or tumor-infiltrating lymphocytes) or engineered T cells (T cell receptor-redirected T cells or chimeric antigen receptor T cells) in patients with digestive tract malignancies over the past two decades, with variable degrees of success. While the majority of completed trials have been primarily aimed at assessing the safety of T-cell transfer strategies, a new generation of studies is being designed to formally evaluate the antitumor potential of adoptive T-cell immunotherapy in both the metastatic and adjuvant settings. In this review, we provide an overview of completed and ongoing clinical trials of passive T-cell immunotherapy in patients with cancers of the digestive tract, focusing on present obstacles and future strategies for achieving potential success.
Collapse
|
21
|
Wang L, Han H, Wang Z, Shi L, Yang M, Qin Y. Targeting the Microenvironment in Esophageal Cancer. Front Cell Dev Biol 2021; 9:684966. [PMID: 34513829 PMCID: PMC8427432 DOI: 10.3389/fcell.2021.684966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer (EC) is the eighth most common type of cancer and the sixth leading cause of cancer-related deaths worldwide. At present, the clinical treatment for EC is based mainly on radical surgery, chemotherapy, and radiotherapy. However, due to the limited efficacy of conventional treatments and the serious adverse reactions, the outcome is still unsatisfactory (the 5-year survival rate for patients is less than 25%). Thus, it is extremely important and urgent to identify new therapeutic targets. The concept of tumor microenvironment (TME) has attracted increased attention since it was proposed. Recent studies have shown that TME is an important therapeutic target for EC. Microenvironment-targeting therapies such as immunotherapy and antiangiogenic therapy have played an indispensable role in prolonging survival and improving the prognosis of patients with EC. In addition, many new drugs and therapies that have been developed to target microenvironment may become treatment options in the future. We summarize the microenvironment of EC and the latest advances in microenvironment-targeting therapies in this review.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Litong Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Mei Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Wang DK, Zuo Q, He QY, Li B. Targeted Immunotherapies in Gastrointestinal Cancer: From Molecular Mechanisms to Implications. Front Immunol 2021; 12:705999. [PMID: 34447376 PMCID: PMC8383067 DOI: 10.3389/fimmu.2021.705999] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is a leading cause of cancer-related mortality and remains a major challenge for cancer treatment. Despite the combined administration of modern surgical techniques and chemoradiotherapy (CRT), the overall 5-year survival rate of gastrointestinal cancer patients in advanced stage disease is less than 15%, due to rapid disease progression, metastasis, and CRT resistance. A better understanding of the mechanisms underlying cancer progression and optimized treatment strategies for gastrointestinal cancer are urgently needed. With increasing evidence highlighting the protective role of immune responses in cancer initiation and progression, immunotherapy has become a hot research topic in the integrative management of gastrointestinal cancer. Here, an overview of the molecular understanding of colorectal cancer, esophageal cancer and gastric cancer is provided. Subsequently, recently developed immunotherapy strategies, including immune checkpoint inhibitors, chimeric antigen receptor T cell therapies, tumor vaccines and therapies targeting other immune cells, have been described. Finally, the underlying mechanisms, fundamental research and clinical trials of each agent are discussed. Overall, this review summarizes recent advances and future directions for immunotherapy for patients with gastrointestinal malignancies.
Collapse
Affiliation(s)
| | | | | | - Bin Li
- Ministry of Education (MOE), Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
23
|
Gu YM, Zhuo Y, Chen LQ, Yuan Y. The Clinical Application of Neoantigens in Esophageal Cancer. Front Oncol 2021; 11:703517. [PMID: 34386424 PMCID: PMC8353328 DOI: 10.3389/fonc.2021.703517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer (EC) is a common malignant tumor with poor prognosis, and current treatments for patients with advanced EC remain unsatisfactory. Recently, immunotherapy has been recognized as a new and promising approach for various tumors. EC cells present a high tumor mutation burden and harbor abundant tumor antigens, including tumor-associated antigens and tumor-specific antigens. The latter, also referred to as neoantigens, are immunogenic mutated peptides presented by major histocompatibility complex class I molecules. While current genomics and bioinformatics technologies have greatly facilitated the identification of tumor neoantigens, identifying individual neoantigens systematically for successful therapies remains a challenging problem. Owing to the initiation of strong, specific tumor-killing cytotoxic T cell responses, neoantigens are emerging as promising targets to develop personalized treatment and have triggered the development of cancer vaccines, adoptive T cell therapies, and combination therapies. This review aims to give a current understanding of the clinical application of neoantigens in EC and provide direction for future investigation.
Collapse
Affiliation(s)
- Yi-Min Gu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Zhuo
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Long-Qi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Miao L, Zhang Z, Ren Z, Li Y. Reactions Related to CAR-T Cell Therapy. Front Immunol 2021; 12:663201. [PMID: 33995389 PMCID: PMC8113953 DOI: 10.3389/fimmu.2021.663201] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
The application of chimeric antigen receptor (CAR) T-cell therapy as a tumor immunotherapy has received great interest in recent years. This therapeutic approach has been used to treat hematological malignancies solid tumors. However, it is associated with adverse reactions such as, cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), off-target effects, anaphylaxis, infections associated with CAR-T-cell infusion (CTI), tumor lysis syndrome (TLS), B-cell dysplasia, hemophagocytic lymphohistiocytosis (HLH)/macrophage activation syndrome (MAS) and coagulation disorders. These adverse reactions can be life-threatening, and thus they should be identified early and treated effectively. In this paper, we review the adverse reactions associated with CAR-T cells, the mechanisms driving such adverse reactions, and strategies to subvert them. This review will provide important reference data to guide clinical application of CAR-T cell therapy.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhijian Ren
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Hsu K, Middlemiss S, Saletta F, Gottschalk S, McCowage GB, Kramer B. Chimeric Antigen Receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours. Cancer Gene Ther 2021; 28:321-334. [PMID: 32873870 PMCID: PMC8057949 DOI: 10.1038/s41417-020-00221-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy, as an approved treatment option for patients with B cell malignancies, demonstrates that genetic modification of autologous immune cells is an effective anti-cancer regimen. Erythropoietin-producing Hepatocellular receptor tyrosine kinase class A2 (EphA2) is a tumour associated antigen expressed on a range of sarcomas, including paediatric osteosarcoma (OS) and Ewing sarcoma (ES). We tested human EphA2 directed CAR T cells for their capacity to target and kill human OS and ES tumour cells using in vitro and in vivo assays, demonstrating that EphA2 CAR T cells have potent anti-tumour efficacy in vitro and can eliminate established OS and ES tumours in vivo in a dose and delivery route dependent manner. Next, in an aggressive metastatic OS model we demonstrated that systemically infused EphA2 CAR T cells can traffic to and eradicate tumour deposits in murine livers and lungs. These results support further pre-clinical evaluation of EphA2 CAR T cells to inform the design of early phase clinical trial protocols to test the feasibility and safety of this immune cell therapy in paediatric bone sarcoma patients.
Collapse
Affiliation(s)
- Kenneth Hsu
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Shiloh Middlemiss
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Federica Saletta
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey B McCowage
- Children's Cancer Centre, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Belinda Kramer
- Children's Cancer Research Unit, Kid's Research, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
| |
Collapse
|
26
|
EPHA2 Promotes the Invasion and Migration of Human Tongue Squamous Cell Carcinoma Cal-27 Cells by Enhancing AKT/mTOR Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4219690. [PMID: 33834064 PMCID: PMC8016562 DOI: 10.1155/2021/4219690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
EPHA2 is a member of the ephrin receptor tyrosine kinase family and is closely related to the malignant tumor progression. The effect of EPHA2 on OSCC is not clear. This study explored the role of EPHA2 and AKT/mTOR signaling pathways in Cal-27 cell invasion and migration. The expression of EPHA2 and EPHA4 in human OSCC and normal oral tissue was detected by immunohistochemistry. EPHA2-overexpressing and EPHA2-knockdown Cal-27 cells were established, and the cells were treated with an AKT inhibitor (MK2206) and mTOR inhibitor (RAD001). The expression of EPHA2 was detected by qRT-PCR, cell proliferation was evaluated by MTT assay, cell migration and invasion were examined by scratch and Transwell assay, and cell morphology and apoptosis were assessed by Hoechst 33258 staining. Western blot was performed to detect the expression of proteins related to AKT/mTOR signaling, cell cycle, and pseudopod invasion. EPHA2 and EPHA4 were highly expressed in clinical human OSCC. Overexpression of EPHA2 promoted the proliferation, migration, and invasion of Cal-27 cells, inhibited cell cycle blockage and apoptosis, and enhanced the activity of the AKT/mTOR signaling pathway. MK2206 (AKT inhibitor) and RAD001 (mTOR inhibitor) reversed the effect of EPHA2 overexpression on the biological behavior of Cal-27 cells. EPHA2 promotes the invasion and migration of Cal-27 human OSCC cells by enhancing the AKT/mTOR signaling pathway.
Collapse
|
27
|
Yu F, Wang X, Shi H, Jiang M, Xu J, Sun M, Xu Q, Addai FP, Shi H, Gu J, Zhou Y, Liu L. Development of chimeric antigen receptor-modified T cells for the treatment of esophageal cancer. TUMORI JOURNAL 2020; 107:341-352. [PMID: 32988314 DOI: 10.1177/0300891620960223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) is an overexpressed antigen in esophageal squamous cell carcinomas (ESCCs) but with limited expression levels in normal esophageal tissues. Therefore, employing the adoptive transfer of T cells genetically modified to express chimeric antigen receptor (CAR) targeting HER2 could be a promising therapeutic strategy against ESCC. METHODS Two different second-generation CAR-T cells expressing antibodies for HER2 and CD19 antigens were developed using retroviral vector transduction. The expression of HER2 antigen in ESCC tissue and cell lines was examined by immunohistochemistry and flow cytometry, respectively. The tumor killing efficacy of the CAR-T cells in mice model and ESCC cell lines and its potential for the treatment of ESCC was evaluated by determining tumor size in mice xenograft, and by crystal violet staining, MTS assay, and cytokine release. RESULTS In vitro, HER2.CAR-T cells efficiently recognized and killed HER2-positive tumor cells as evidenced by the secretion of proinflammatory cytokines, interferon-γ, and interleukin 2 and by cytotoxicity assays. In vivo, intratumor injection of HER2.CAR-T cells resulted in a significant suppression of established ESCCs in a subcutaneous xenograft BALB/c nude mouse model. In contrast, the injection of CD19.CAR-T cells did not affect the tumor growth pattern. CONCLUSIONS An effective HER2 CAR targeting ESCC was developed successfully. The HER2.CAR-T cell showed promising immunotherapeutic potential for the treatment of HER2-positive esophageal cancer.
Collapse
Affiliation(s)
- Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Wang
- Department of Gastroenterology, the First People's Hospital of Suqian, Suqian, China
| | - Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Maorong Jiang
- Medical College, Laboratory Animals Center, Nantong University, Nantong, China
| | - Jun Xu
- Department of Cognitive Neurology, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tian Tan Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Min Sun
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qinggang Xu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liqiong Liu
- Department of Hematology, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
28
|
Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M. Targeting EphA2 in cancer. J Hematol Oncol 2020; 13:114. [PMID: 32811512 PMCID: PMC7433191 DOI: 10.1186/s13045-020-00944-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Eph receptors and the corresponding Eph receptor-interacting (ephrin) ligands jointly constitute a critical cell signaling network that has multiple functions. The tyrosine kinase EphA2, which belongs to the family of Eph receptors, is highly produced in tumor tissues, while found at relatively low levels in most normal adult tissues, indicating its potential application in cancer treatment. After 30 years of investigation, a large amount of data regarding EphA2 functions have been compiled. Meanwhile, several compounds targeting EphA2 have been evaluated and tested in clinical studies, albeit with limited clinical success. The present review briefly describes the contribution of EphA2-ephrin A1 signaling axis to carcinogenesis. In addition, the roles of EphA2 in resistance to molecular-targeted agents were examined. In particular, we focused on EphA2's potential as a target for cancer treatment to provide insights into the application of EphA2 targeting in anticancer strategies. Overall, EphA2 represents a potential target for treating malignant tumors.
Collapse
Affiliation(s)
- Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Yuhang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan Yan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Min Su
- Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
29
|
Accordino G, Lettieri S, Bortolotto C, Benvenuti S, Gallotti A, Gattoni E, Agustoni F, Pozzi E, Rinaldi P, Primiceri C, Morbini P, Lancia A, Stella GM. From Interconnection between Genes and Microenvironment to Novel Immunotherapeutic Approaches in Upper Gastro-Intestinal Cancers-A Multidisciplinary Perspective. Cancers (Basel) 2020; 12:cancers12082105. [PMID: 32751137 PMCID: PMC7465773 DOI: 10.3390/cancers12082105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the progress during the last decade, patients with advanced gastric and esophageal cancers still have poor prognosis. Finding optimal therapeutic strategies represents an unmet need in this field. Several prognostic and predictive factors have been evaluated and may guide clinicians in choosing a tailored treatment. Data from large studies investigating the role of immunotherapy in gastrointestinal cancers are promising but further investigations are necessary to better select those patients who can mostly benefit from these novel therapies. This review will focus on the treatment of metastatic esophageal and gastric cancer. We will review the standard of care and the role of novel therapies such as immunotherapies and CAR-T. Moreover, we will focus on the analysis of potential predictive biomarkers such as Modify as: Microsatellite Instability (MSI) and PD-L1, which may lead to treatment personalization and improved treatment outcomes. A multidisciplinary point of view is mandatory to generate an integrated approach to properly exploit these novel antiproliferative agents.
Collapse
Affiliation(s)
- Giulia Accordino
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
| | - Sara Lettieri
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (C.B.); (A.G.)
| | - Silvia Benvenuti
- Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia (FPO)-IRCCS-Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy;
| | - Anna Gallotti
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (C.B.); (A.G.)
| | - Elisabetta Gattoni
- Department of Oncology, Azienda Sanitaria Locale (ASL) AL, 27000 Casale Monferrato (AL), Italy;
| | - Francesco Agustoni
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (F.A.); (E.P.)
| | - Emma Pozzi
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (F.A.); (E.P.)
| | - Pietro Rinaldi
- Department of Intensive Medicine, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (P.R.); (C.P.)
| | - Cristiano Primiceri
- Department of Intensive Medicine, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (P.R.); (C.P.)
| | - Patrizia Morbini
- Department of Diagnostic Medicine, Unit of Pathology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy;
| | - Andrea Lancia
- Department of Medical Sciences and Infective Diseases, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy;
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
- Correspondence: ; Tel.: +39-0382503369; Fax: +39-0382502719
| |
Collapse
|
30
|
Developing Covalent Protein Drugs via Proximity-Enabled Reactive Therapeutics. Cell 2020; 182:85-97.e16. [DOI: 10.1016/j.cell.2020.05.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023]
|
31
|
Sur D, Havasi A, Cainap C, Samasca G, Burz C, Balacescu O, Lupan I, Deleanu D, Irimie A. Chimeric Antigen Receptor T-Cell Therapy for Colorectal Cancer. J Clin Med 2020; 9:jcm9010182. [PMID: 31936611 PMCID: PMC7019711 DOI: 10.3390/jcm9010182] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a new genetically engineered method of immunotherapy for cancer. The patient’s T-cells are modified to express a specific receptor that sticks to the tumor antigen. This modified cell is then reintroduced into the patient’s body to fight the resilient cancer cells. After exhibiting positive results in hematological malignancies, this therapy is being proposed for solid tumors like colorectal cancer. The clinical data of CAR T-cell therapy in colorectal cancer is rather scarce. In this review, we summarize the current state of knowledge, challenges, and future perspectives of CAR T-cell therapy in colorectal cancer. A total of 22 articles were included in this review. Eligible studies were selected and reviewed by two researchers from 49 articles found on Pubmed, Web of Science, and clinicaltrials.gov. This therapy, at the moment, provides modest benefits in solid tumors. Not taking into consideration the high manufacturing and retail prices, there are still limitations like increased toxicities, relapses, and unfavorable tumor microenvironment for CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Daniel Sur
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Andrei Havasi
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Gabriel Samasca
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
- Correspondence:
| | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Molecular Biology and Biotehnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Diana Deleanu
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, “IuliuHatieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| |
Collapse
|
32
|
Abstract
Esophageal cancer (EC) seriously threatens human health, and a promising new avenue for EC treatment involves cancer immunotherapy. To improve the efficacy of EC immunotherapy and to develop novel strategies for EC prognosis prediction or clinical treatment, understanding the immune landscapes in EC is required. EC cells harbor abundant tumor antigens, including tumor-associated antigens and neoantigens, which have the ability to initiate dendritic cell-mediated tumor-killing cytotoxic T lymphocytes in the early stage of cancer development. As EC cells battle the immune system, they obtain an ability to suppress antitumor immunity through immune checkpoints, secreted factors, and negative regulatory immune cells. Cancer-associated fibroblasts also contribute to the immune evasion of EC cells. Some factors of the immune landscape in EC tumor microenvironment are associated with cancer development, patient survival, or treatment response. Based on the immune landscape, peptide vaccines, adoptive T cell therapy, and immune checkpoint blockade can be used for EC immunotherapy. Combined strategies are required for better clinical outcome in EC. This review provides directions to design novel and effective strategies for prognosis prediction and immunotherapy in EC.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology and Shenzhen International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, P. R. China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology and Shenzhen International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, P. R. China.
| |
Collapse
|
33
|
Darling TK, Lamb TJ. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front Immunol 2019; 10:1473. [PMID: 31333644 PMCID: PMC6620610 DOI: 10.3389/fimmu.2019.01473] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and mediate a myriad of essential processes in humans from embryonic development to adult tissue homeostasis through interactions with membrane-bound ephrin ligands. The ubiquitous expression of Eph receptors and ephrin ligands among the cellular players of the immune system underscores the importance of these molecules in orchestrating an optimal immune response. This review provides an overview of the various roles of Eph receptors and ephrin ligands in immune cell development, activation, and migration. We also discuss the role of Eph receptors in disease pathogenesis as well as the implications of Eph receptors as future immunotherapy targets. Given the diverse and critical roles of Eph receptors and ephrin ligands throughout the immune system during both resting and activated states, this review aims to highlight the critical yet underappreciated roles of this family of signaling molecules in the immune system.
Collapse
Affiliation(s)
- Thayer K Darling
- Immunology and Molecular Pathogenesis Program, Emory University Laney Graduate School, Atlanta, GA, United States.,Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Tracey J Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|