1
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Lahiri SK, Lu J, Aguilar-Sanchez Y, Li H, Moreira LM, Hulsurkar MM, Mendoza A, Turkieltaub Paredes MR, Navarro-Garcia JA, Munivez E, Horist B, Moore OM, Weninger G, Brandenburg S, Lenz C, Lehnart SE, Sayeed R, Krasopoulos G, Srivastava V, Zhang L, Karch JM, Reilly S, Wehrens XHT. Targeting calpain-2-mediated junctophilin-2 cleavage delays heart failure progression following myocardial infarction. J Mol Cell Cardiol 2024; 194:85-95. [PMID: 38960317 PMCID: PMC11519832 DOI: 10.1016/j.yjmcc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.
Collapse
Affiliation(s)
- Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jiao Lu
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Hui Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lucia M Moreira
- Cardiovascular Medicine, Radcliffe Dept of Medicine, University of Oxford, UK
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Arielys Mendoza
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Mara R Turkieltaub Paredes
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jose Alberto Navarro-Garcia
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Elda Munivez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Brooke Horist
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sören Brandenburg
- Department of Cardiology & Pneumology, Heart Research Center Göttingen; Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology & Pneumology, Heart Research Center Göttingen; Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
| | - Rana Sayeed
- Cardiothoracic Unit, John Radcliffe Hospital, Oxford, UK
| | | | | | - Lilei Zhang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jason M Karch
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Svetlana Reilly
- Cardiovascular Medicine, Radcliffe Dept of Medicine, University of Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine/Cardiology, Baylor College of Medicine, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Xiao Z, Wei X, Li M, Yang K, Chen R, Su Y, Yu Z, Liang Y, Ge J. Myeloid-specific deletion of Capns1 attenuates myocardial infarction injury via restoring mitochondrial function and inhibiting inflammasome activation. J Mol Cell Cardiol 2023; 183:54-66. [PMID: 37689005 DOI: 10.1016/j.yjmcc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Mitochondrial dysfunction of macrophage-mediated inflammatory response plays a key pathophysiological process in myocardial infarction (MI). Calpains are a well-known family of calcium-dependent cysteine proteases that regulate a variety of processes, including cell adhesion, proliferation, and migration, as well as mitochondrial function and inflammation. CAPNS1, the common regulatory subunit of calpain-1 and 2, is essential for the stabilization and activity of the catalytic subunit. Emerging studies suggest that calpains may serve as key mediators in mitochondria and NLRP3 inflammasome. This study investigated the role of myeloid cell calpains in MI. METHODS MI models were constructed using myeloid-specific Capns1 knockout mice. Cardiac function, cardiac fibrosis, and inflammatory infiltration were investigated. In vitro, bone marrow-derived macrophages (BMDMs) were isolated from mice. Mitochondrial function and NLRP3 activation were assessed in BMDMs under LPS stimulation. ATP5A1 knockdown and Capns1 knock-out mice were subjected to MI to investigate their roles in MI injury. RESULTS Ablation of calpain activities by Capns1 deletion improved the cardiac function, reduced infarct size, and alleviated cardiac fibrosis in mice subjected to MI. Mechanistically, Capns1 knockout reduced the cleavage of ATP5A1 and restored the mitochondria function thus inhibiting the inflammasome activation. ATP5A1 knockdown antagonized the protective effect of Capns1 mKO and aggravated MI injury. CONCLUSION This study demonstrated that Capns1 depletion in macrophages mitigates MI injury via maintaining mitochondrial homeostasis and inactivating the NLRP3 inflammasome signaling pathway. This study may offer novel insights into MI injury treatment.
Collapse
Affiliation(s)
- Zilong Xiao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Minghui Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Kun Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Ruizhen Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ziqing Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yixiu Liang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
4
|
Lin H, Chu J, Yuan D, Wang K, Chen F, Liu X. MiR-206 may regulate mitochondrial ROS contribute to the progression of Myocardial infarction via TREM1. BMC Cardiovasc Disord 2023; 23:470. [PMID: 37730550 PMCID: PMC10512505 DOI: 10.1186/s12872-023-03481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Myocardial infarction (MI) is a leading cause of mortality. To better understand its molecular and cellular mechanisms, we used bioinformatic tools and molecular experiments to explore the pathogenesis and prognostic markers. Differential gene expression analysis was conducted using GSE60993 and GSE66360 datasets. Hub genes were identified through pathway enrichment analysis and PPI network construction, and four hub genes (AQP9, MMP9, FPR1, and TREM1) were evaluated for their predictive performance using AUC and qRT-PCR. miR-206 was identified as a potential regulator of TREM1. Finally, miR-206 was found to induce EC senescence and ER stress through upregulating mitochondrial ROS levels via TREM1. These findings may contribute to understanding the pathogenesis of MI and identifying potential prognostic markers.
Collapse
Affiliation(s)
- Hao Lin
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Jiapeng Chu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Deqiang Yuan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Kangwei Wang
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China.
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, No.389, Xincun Road, Shanghai, 200092, Putuo District, China.
| |
Collapse
|
5
|
Puttabyatappa M, Saadat N, Elangovan VR, Dou J, Bakulski K, Padmanabhan V. Developmental programming: Impact of prenatal bisphenol-A exposure on liver and muscle transcriptome of female sheep. Toxicol Appl Pharmacol 2022; 451:116161. [PMID: 35817127 PMCID: PMC9618258 DOI: 10.1016/j.taap.2022.116161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Gestational Bisphenol A (BPA) exposure leads to peripheral insulin resistance, and hepatic and skeletal muscle oxidative stress and lipotoxicity during adulthood in the female sheep offspring. To investigate transcriptional changes underlying the metabolic outcomes, coding and non-coding (nc) RNA in liver and muscle from 21-month-old control and prenatal BPA-treated (0.5 mg/kg/day from days 30 to 90 of gestation; Term: 147 days) female sheep were sequenced. Prenatal BPA-treatment dysregulated: expression of 194 genes (138 down, 56 up) in liver and 112 genes (32 down, 80 up) in muscle (FDR < 0.05 and abs log2FC > 0.5); 155 common gene pathways including mitochondrial-related genes in both tissues; 1415 gene pathways including oxidative stress and lipid biosynthetic process specifically in the liver (FDR < 0.01); 192 gene pathways including RNA biosynthetic processes in muscle (FDR < 0.01); 77 lncRNA (49 down, 28 up), 14 microRNAs (6 down, 8 up), 127 snoRNAs (63 down, 64 up) and 55 snRNAs (15 down, 40 up) in the liver while upregulating 6 lncRNA and dysregulating 65 snoRNAs (47 down, 18 up) in muscle (FDR < 0.1, abs log2FC > 0.5). Multiple ncRNA correlated with LCORL, MED17 and ZNF41 mRNA in liver but none of them in the muscle. Discriminant analysis identified (p < 0.05) PECAM, RDH11, ABCA6, MIR200B, and MIR30B in liver and CAST, NOS1, FASN, MIR26B, and MIR29A in muscle as gene signatures of gestational BPA exposure. These findings provide mechanistic clues into the development and/or maintenance of the oxidative stress and lipid accumulation and potential for development of mitochondrial and fibrotic defects contributing to the prenatal BPA-induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
6
|
Tunicamycin-Induced Endoplasmic Reticulum Stress Damages Complex I in Cardiac Mitochondria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081209. [PMID: 36013387 PMCID: PMC9409705 DOI: 10.3390/life12081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Induction of acute ER (endoplasmic reticulum) stress using thapsigargin contributes to complex I damage in mouse hearts. Thapsigargin impairs complex I by increasing mitochondrial calcium through inhibition of Ca2+-ATPase in the ER. Tunicamycin (TUNI) is used to induce ER stress by inhibiting protein folding. We asked if TUNI-induced ER stress led to complex I damage. METHODS TUNI (0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 24 or 72 h following TUNI treatment for mitochondrial functional analysis. RESULTS ER stress was only increased in mice following 72 h of TUNI treatment. TUNI treatment decreased oxidative phosphorylation with complex I substrates compared to vehicle with a decrease in complex I activity. The contents of complex I subunits including NBUPL and NDUFS7 were decreased in TUNI-treated mice. TUNI treatment activated both cytosolic and mitochondrial calpain 1. Our results indicate that TUNI-induced ER stress damages complex I through degradation of its subunits including NDUFS7. CONCLUSION Induction of the ER stress using TUNI contributes to complex I damage by activating calpain 1.
Collapse
|
7
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. The mitochondrial electron transport chain contributes to calpain 1 activation during ischemia-reperfusion. Biochem Biophys Res Commun 2022; 613:127-132. [PMID: 35550199 DOI: 10.1016/j.bbrc.2022.04.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Activation of calpain1 (CPN1) contributes to mitochondrial dysfunction during cardiac ischemia (ISC) - reperfusion (REP). Blockade of electron transport using amobarbital (AMO) protects mitochondria during ISC-REP, indicating that the electron transport chain (ETC) is a key source of mitochondrial injury. We asked if AMO treatment can decrease CPN1 activation as a potential mechanism of mitochondrial protection during ISC-REP. Buffer-perfused adult rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was administered for 1 min before ISC to block electron flow in the ETC. Hearts in the time control group were untreated and buffer perfused without ISC. Hearts were collected at the end of perfusion and used for mitochondrial isolation. ISC-REP increased both the cleavage of spectrin (indicating cytosolic CPN1 activation) in cytosol and the truncation of AIF (apoptosis inducing factor, indicating mitochondrial CPN1 activation) in subsarcolemmal mitochondria compared to time control. Thus, ISC-REP activated both cytosolic and mitochondrial CPN1. AMO treatment prevented the cleavage of spectrin and AIF during ISC-REP, suggesting that the transient blockade of electron transport during ISC decreases CPN1 activation. AMO treatment decreased the activation of PARP [poly(ADP-ribose) polymerase] downstream of AIF that triggers caspase-independent apoptosis. AMO treatment also decreased the release of cytochrome c from mitochondria during ISC-REP that prevented caspase 3 activation. These results support that the damaged ETC activates CPN1 in cytosol and mitochondria during ISC-REP, likely via calcium overload and oxidative stress. Thus, AMO treatment to mitigate mitochondrial-driven cardiac injury can decrease both caspase-dependent and caspase-independent programmed cell death during ISC-REP.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| |
Collapse
|
8
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
9
|
Shi H, Yu Y, Wang Y, Liu X, Yu Y, Li M, Zou Y, Chen R, Ge J. Inhibition of Calpain Alleviates Apoptosis in Coxsackievirus B3-induced Acute Virus Myocarditis Through Suppressing Endoplasmic Reticulum Stress. Int Heart J 2021; 62:900-909. [PMID: 34234076 DOI: 10.1536/ihj.20-803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Virus myocarditis (VMC) is a common cardiovascular disease and a major cause of sudden death in young adults. However, there is still a lack of effective treatments. Our previous studies found that calpain activation was involved in VMC pathogenesis. This study aims to explore the underlying mechanisms further. Neonatal rat cardiomyocytes (NRCMs) and transgenic mice overexpressing calpastatin (Tg-CAST), the endogenous calpain inhibitor, were used to establish VMC model. Hematoxylin and eosin and Masson staining revealed inflammatory cell infiltration and fibrosis. An ELISA array detected myocardial injury. Cardiac function was measured using echocardiography. CVB3 replication was assessed by capsid protein VP1. Apoptosis was measured by TUNEL staining, flow cytometry, and western blot. The endoplasmic reticulum (ER) stress-related proteins were detected by western blot. Our data showed that CVB3 infection resulted in cardiac injury, as evidenced by increased inflammatory responses and fibrosis, which induced myocardial apoptosis. Inhibiting calpain, both by PD150606 and calpastatin overexpression, could attenuate these effects. Furthermore, ER stress was activated during CVB3 infection. However, calpain inhibition could downregulate some ER stress-associated protein levels such as GRP78, pancreatic ER kinase-like ER kinase (PERK), and inositol-requiring enzyme-1α (IRE-1α), and ER stress-related apoptotic factors, during CVB3 infection. In conclusion, calpain inhibition attenuated CVB3-induced myocarditis by suppressing ER stress, thereby inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Hui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yucheng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Xiaoxiao Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Minghui Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| |
Collapse
|
10
|
He J, Gong M, Wang Z, Liu D, Xie B, Luo C, Li G, Tse G, Liu T. Cardiac abnormalities after induction of endoplasmic reticulum stress are associated with mitochondrial dysfunction and connexin43 expression. Clin Exp Pharmacol Physiol 2021; 48:1371-1381. [PMID: 34133785 DOI: 10.1111/1440-1681.13541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is responsible for protein synthesis and calcium storage. ER stress, reflected by protein unfolding and calcium handling abnormalities, has been studied as a pathogenic factor in cardiovascular diseases. The aim of this study is to examine the effects of ER stress on mechanical and electrophysiological functions in the heart and explore the underlying molecular mechanisms. A total of 30 rats were randomly divided into control, ER stress inducer (tunicamycin[TN]) and ER stress inhibitor (tunicamycin+4-phenylbutyric acid [4-PBA]) groups. ER stress induction led to significantly systolic and diastolic dysfunction as reflected by maximal increasing/decreasing rate of left intraventricular pressure (±dp/dt), left ventricular peaksystolic pressure(LVSP) and LV end-diastolic pressure(LVEDP). Epicardial mapping performed in vivo revealed reduced conduction velocity and increased conduction heterogeneity associated with the development of spontaneous ventricular tachycardia. Masson's trichrome staining revealed marked fibrosis in the myocardial interstitial and sub-pericardial regions, and thickened epicardium. Western blot analysis revealed increased pro-fibrotic factor transforming growth factor-β1 (TGF-β1), decreased mitochondrial biogenesis protein peroxlsome proliferator-activated receptor-γ coactlvator-1α (PGC-1a), and decreased mitochondrial fusion protein mitofusin-2 (MFN2). These changes were associated with mitochondria dysfunction and connexin 43(CX43)translocation to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA. Our study shows that ER stress induction can produce cardiac electrical and mechanism dysfunction as well as structural remodelling. Mitochondrial function alterations are contributed by CX43 transposition to mitochondria. These abnormalities can be partially prevented by the ER stress inhibitor 4-PBA.
Collapse
Affiliation(s)
- Jinli He
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zaojia Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Kent and Medway Medical School, Canterbury, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Thompson J, Maceyka M, Chen Q. Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart. Mech Ageing Dev 2020; 192:111380. [PMID: 33045249 DOI: 10.1016/j.mad.2020.111380] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Severity of cardiovascular disease increases markedly in elderly patients. In addition, many therapeutic strategies that decrease cardiac injury in adult patients are invalid in elderly patients. Thus, it is a challenge to protect the aged heart in the context of underlying chronic or acute cardiac diseases including ischemia-reperfusion injury. The cause(s) of this age-related increased damage remain unknown. Aging impairs the function of the mitochondrial electron transport chain (ETC), leading to decreased energy production and increased oxidative stress due to generation of reactive oxygen species (ROS). Additionally, ROS-induced oxidative stress can increase cardiac injury during ischemia-reperfusion by potentiating mitochondrial permeability transition pore (MPTP) opening. Aging leads to increased endoplasmic reticulum (ER) stress, which contributes to mitochondrial dysfunction, including reduced function of the ETC. The activation of both cytosolic and mitochondrial calcium-activated proteases termed calpains leads to mitochondrial dysfunction and decreased ETC function. Intriguingly, mitochondrial ROS generation also induces ER stress, highlighting the dynamic interaction between mitochondria and ER. Here, we discuss the role of ER stress in sensitizing and potentiating mitochondrial dysfunction in response to ischemia-reperfusion, and the promising potential therapeutic benefit of inhibition of ER stress and / or calpains to attenuate cardiac injury in elderly patients.
Collapse
Affiliation(s)
- Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Michael Maceyka
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, United States
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, 23298, United States.
| |
Collapse
|
12
|
Chen Q, Samidurai A, Thompson J, Hu Y, Das A, Willard B, Lesnefsky EJ. Endoplasmic reticulum stress-mediated mitochondrial dysfunction in aged hearts. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165899. [PMID: 32698045 DOI: 10.1016/j.bbadis.2020.165899] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
Aging impairs the mitochondrial electron transport chain (ETC), especially in interfibrillar mitochondria (IFM). Mitochondria are in close contact with the endoplasmic reticulum (ER). Induction of ER stress leads to ETC injury in adult heart mitochondria. We asked if ER stress contributes to the mitochondrial dysfunction during aging. Subsarcolemmal mitochondria (SSM) and IFM were isolated from 3, 18, and 24 mo. C57Bl/6 mouse hearts. ER stress progressively increased with age, especially in 24 mo. mice that manifest mitochondrial dysfunction. OXPHOS was decreased in 24 mo. IFM oxidizing complex I and complex IV substrates. Proteomic analysis showed that the content of multiple complex I subunits was decreased in IFM from 24 mo. hearts, but remained unchanged in in 18 mo. IFM without a decrease in OXPHOS. Feeding 24 mo. old mice with 4-phenylbutyrate (4-PBA) for two weeks attenuated the ER stress and improved mitochondrial function. These results indicate that ER stress contributes to the mitochondrial dysfunction in aged hearts. Attenuation of ER stress is a potential approach to improve mitochondrial function in aged hearts.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Arun Samidurai
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Jeremy Thompson
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Ying Hu
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Anindita Das
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Belinda Willard
- Proteomics Core, Cleveland Clinic, Cleveland, OH 44106, United States of America
| | - Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, United States of America; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States of America; McGuire Department of Veterans Affairs Medical Center, Richmond, VA 23249, United States of America.
| |
Collapse
|
13
|
Mohsin AA, Thompson J, Hu Y, Hollander J, Lesnefsky EJ, Chen Q. Endoplasmic reticulum stress-induced complex I defect: Central role of calcium overload. Arch Biochem Biophys 2020; 683:108299. [PMID: 32061585 DOI: 10.1016/j.abb.2020.108299] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND ER (endoplasmic reticulum) stress leads to decreased complex I activity in cardiac mitochondria. The aim of the current study is to explore the potential mechanisms by which ER stress leads to the complex I defect. ER stress contributes to intracellular calcium overload and oxidative stress that are two key factors to induce mitochondrial dysfunction. Since oxidative stress is often accompanied by intracellular calcium overload during ER stress in vivo, the role of oxidative stress and calcium overload in mitochondrial dysfunction was studied using in vitro models. ER stress results in intracellular calcium overload that favors activation of calcium-dependent calpains. The contribution of mitochondrial calpain activation in ER stress-mediated complex I damage was studied. METHODS Thapsigargin (THAP) was used to induce acute ER stress in H9c2 cells and C57BL/6 mice. Exogenous calcium (25 μM) and H2O2 (100 μM) were used to induce modest calcium overload and oxidative stress in isolated mitochondria. Calpain small subunit 1 (CAPNS1) is essential to maintain calpain 1 and calpain 2 (CPN1/2) activities. Deletion of CAPNS1 eliminates the activities of CPN1/2. Wild type and cardiac-specific CAPNS1 deletion mice were used to explore the role of CPN1/2 activation in calcium-induced mitochondrial damage. RESULTS In isolated mitochondria, exogenous calcium but not H2O2 treatment led to decreased oxidative phosphorylation, supporting that calcium overload contributes a key role in the mitochondrial damage. THAP treatment of H9c2 cells decreased respiration selectively with complex I substrates. THAP treatment activated cytosolic and mitochondrial CPN1/2 in C57BL/6 mice and led to degradation of complex I subunits including NDUFS7. Calcium treatment decreased NDUFS7 content in wild type but not in CAPNS1 knockout mice. CONCLUSION ER stress-mediated activation of mitochondria-localized CPN1/2 contributes to complex I damage by cleaving component subunits.
Collapse
Affiliation(s)
- Ahmed A Mohsin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Radiological Techniques Department, Health and Medical Technology College-Baghdad, Middle Technical University (MTU), Iraq
| | - Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - John Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, 25606, USA; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 25606, USA
| | - Edward J Lesnefsky
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|