1
|
Liu Y, Jia J, Zeng F, Jiang X. Numerical simulation and fast method for the 0D-1D multi-scale coupled model and its application in ischemic brain tissue blood flow problems. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3828. [PMID: 38646858 DOI: 10.1002/cnm.3828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024]
Abstract
As living standards rise, more and more people are paying attention to their own health, especially issues such as cerebral thrombosis, cerebral infarction, and other cerebral blood flow problems. An accurate simulation of blood flow within cerebral vessels has emerged as a crucial area of research. In this study, we focus on microcirculatory blood flow in ischemic brain tissue and employ a 0D-1D geometric multi-scale coupled model to characterize this process. Given the intricate nature of human cerebral vessels, we apply a numerical method combining the finite element method and the third-order Runge-Kutta method to resolve the coupled model. To enhance computational efficiency, we introduce a fast method based on the reduced-order extrapolation algorithm. Our numerical example underscores the stability of the method and convergence accuracy to O h 3 + τ 3 , while significantly improving the accuracy and efficiency of blood flow simulation, making the mechanism analysis more accurate. Additionally, we present examples detailing variations and distribution of intracranial pressure and blood flow in ischemic brain tissue throughout a cardiac cycle. Both reduced vascular compliance and vascular stenosis can have adverse effects on intracranial cerebral pressure and blood flow, leading to insufficient local oxygen supply and negative effects on brain function. Meanwhile, there will also be corresponding changes in volume flow and pulsatile blood pressure.
Collapse
Affiliation(s)
- Yi Liu
- School of Mathematics, Shandong University, Jinan, China
- School of Mathematics, Qilu Normal University, Jinan, China
| | - Junqing Jia
- School of Mathematics, Shandong University, Jinan, China
| | - Fanhai Zeng
- School of Mathematics, Shandong University, Jinan, China
| | - Xiaoyun Jiang
- School of Mathematics, Shandong University, Jinan, China
| |
Collapse
|
2
|
Liu H, Wang Y, Zhang Q, Liu C, Ma Y, Huang P, Ge R, Ma L. Macrophage-derived inflammation promotes pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension mice. Immunol Lett 2023; 263:113-122. [PMID: 37875238 DOI: 10.1016/j.imlet.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
The role of inflammation in pulmonary hypertension is gradually gaining increasing research attention. However, no previous study has evaluated the characteristics of inflammation during chronic hypoxia-induced pulmonary hypertension. Therefore, the aim of this study was to investigate the characteristics of the inflammatory process involved in hypoxia-induced pulmonary hypertension in mice. The current study evaluated from day 4 to day 28 of hypoxia, the PAAT and PAAT/PET decreased, accompanied by pulmonary vascular remodeling and right ventricular hypertrophy, as well as increased numbers of CD68 macrophages. The expression of the pro-inflammatory factors IL-1β and IL-33 increased, but decreased on day 28. The expression of IL-12 increased from day 4 to day 28, whereas that of the anti-inflammatory factor IL-10 in lung tissue decreased. Furthermore, the expression of the IL-33/ST2 signaling pathway also increased over time under hypoxic conditions. In conclusion, pulmonary artery remodeling in HPH mice worsens progressively in a time-dependent manner, with inflammatory cell infiltration predominating in the early stage and pulmonary vascular remodeling occurring in the later stage.
Collapse
Affiliation(s)
- Hong Liu
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Yuxiang Wang
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Qingqing Zhang
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China; Affiliated Hospital of Qinghai University, Xining, QingHai, China
| | - Chuanchuan Liu
- Affiliated Hospital of Qinghai University, Xining, QingHai, China
| | - Yougang Ma
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Pan Huang
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of the Ministry of High Altitude Medicine, Qinghai university, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai university, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai university, Xining, Qinghai, China.
| |
Collapse
|
3
|
Wu Y, Su X, Wang J, Zhang H, Zeng X, Zhang S, Zhang N, Wu K. Can Pulmonary Arterial Compliance Be a Prognostic Marker for Pulmonary Hypertension? Am J Respir Crit Care Med 2023; 208:822-823. [PMID: 37562031 PMCID: PMC10563186 DOI: 10.1164/rccm.202306-1076le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Yanjuan Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofen Su
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingcun Wang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haojie Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangxia Zeng
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sun Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nuofu Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kang Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Colunga AL, Colebank MJ, Olufsen MS. Parameter inference in a computational model of haemodynamics in pulmonary hypertension. J R Soc Interface 2023; 20:20220735. [PMID: 36854380 PMCID: PMC9974303 DOI: 10.1098/rsif.2022.0735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023] Open
Abstract
Pulmonary hypertension (PH), defined by a mean pulmonary arterial pressure (mPAP) greater than 20 mmHg, is characterized by increased pulmonary vascular resistance and decreased pulmonary arterial compliance. There are few measurable biomarkers of PH progression, but a conclusive diagnosis of the disease requires invasive right heart catheterization (RHC). Patient-specific cardiovascular systems-level computational models provide a potential non-invasive tool for determining additional indicators of disease severity. Using computational modelling, this study quantifies physiological parameters indicative of disease severity in nine PH patients. The model includes all four heart chambers, the pulmonary and systemic circulations. We consider two sets of calibration data: static (systolic and diastolic values) RHC data and a combination of static and continuous, time-series waveform data. We determine a subset of identifiable parameters for model calibration using sensitivity analyses and multi-start inference and perform posterior uncertainty quantification. Results show that additional waveform data enables accurate calibration of the right atrial reservoir and pump function across the PH cohort. Model outcomes, including stroke work and pulmonary resistance-compliance relations, reflect typical right heart dynamics in PH phenotypes. Lastly, we show that estimated parameters agree with previous, non-modelling studies, supporting this type of analysis in translational PH research.
Collapse
Affiliation(s)
- Amanda L. Colunga
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Mitchel J. Colebank
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
- University of California, Irvine—Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - REU Program
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| | - Mette S. Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
The effects of severe functional mitral regurgitation on right ventricular function in patients with advanced heart failure who were on waiting list for heart transplant. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2022; 30:506-516. [PMID: 36605327 PMCID: PMC9801464 DOI: 10.5606/tgkdc.dergisi.2022.22791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/19/2022] [Indexed: 01/07/2023]
Abstract
Background This study aims to investigate the effects of severe functional mitral regurgitation on the parameters that reflect right ventricular function such as tricuspid annular plane systolic excursion and right ventricular stroke work index in potential heart transplant recipients. Methods Between January 2015 and January 2017, a total of 282 consecutive patients (250 males, 32 females; mean age: 46±10 years; range, 18 to 66 years) with advanced heart failure who were referred for heart transplantation were retrospectively analyzed. The patients were divided into two groups as severe (n=84) and non-severe functional mitral regurgitation (n=198). Patients" medical histories, demographic characteristics, echocardiographic evaluations, and findings of right heart catheterization were recorded. Results The two groups were similar in terms of left ventricular ejection fraction, the New York Heart Association functional class, Interagency Registry for Mechanically Assisted Circulatory Support profile, and the duration of heart failure (p>0.05). Both groups were also similar with respect to tricuspid annular plane systolic excursion and right ventricular stroke work index. Functional mitral regurgitation was the only statistically significant variable in the univariate analysis for tricuspid annular plane systolic excursion (odds ratio [OR]: 0.58; 95% confidence interval [CI] 0.34-0.97; p=0.04), with no significant effect in the multivariate analysis. In the univariate analysis for right ventricular stroke work index, pulmonary arterial systolic pressure (OR: 0.77; 95% CI 0.67-0.88; p<0.001) was a significant variable and also had a significant effect in the multivariate analysis (OR: 0.92; 95% CI 0.87-0.97; p=0.003). In the tertile analyses, there were no significant differences between the two groups with respect to tricuspid annular plane systolic excursion and right ventricular stroke work index. Conclusion We found no significant difference in right ventricular functions between the severe and non-severe functional mitral regurgitation groups in patients with advanced heart failure who had relatively short follow-up. Right ventricle can maintain its normal function at early stage. Adaptive remodeling of right ventricle may have an effect on these findings. Severe functional mitral regurgitation may be associated with adverse effects on advanced heart failure by increasing the right ventricular afterload.
Collapse
|
6
|
Li Y, Guo D, Gong J, Wang J, Huang Q, Yang S, Zhang X, Hu H, Jiang Z, Yang Y, Lu X. Right Ventricular Function and Its Coupling With Pulmonary Circulation in Precapillary Pulmonary Hypertension: A Three-Dimensional Echocardiographic Study. Front Cardiovasc Med 2021; 8:690606. [PMID: 34277739 PMCID: PMC8282926 DOI: 10.3389/fcvm.2021.690606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To assess right ventricular (RV) function and RV-pulmonary arterial (PA) coupling by three-dimensions echocardiography and investigate the ability of RV-PA coupling to predict adverse clinical outcomes in patients with precapillary pulmonary hypertension (PH). Methods: We retrospectively collected a longitudinal cohort of 203 consecutive precapillary PH patients. RV volume, RV ejection fraction (RVEF), and RV longitudinal strain (RVLS) were quantitatively determined offline by 3D echocardiography. RV-PA coupling parameters including the RVEF/PA systolic pressure (PASP) ratio, pulmonary arterial compliance (PAC), and total pulmonary resistance (TPR) were recorded. Results: Over a median follow-up period of 20.9 months (interquartile range, 0.1-67.4 months), 87 (42.9%) of 203 patients experienced adverse clinical outcomes. With increasing World Health Organization functional class (WHO-FC), significant trends were observed in increasing RV volume, decreasing RVEF, and worsening RVLS. RV arterial coupling (RVAC) and PAC were lower and TPR was higher for WHO-FC III+IV than WHO-FC I or II. The RVEF/PASP ratio showed a significant correlation with RVLS. RVAC had a stronger correlation with the RVEF/PASP ratio than other indices. Multivariate Cox proportional-hazard analysis identified a lower 3D RVEF and worse RVLS as strong predictors of adverse clinical events. RVAC, TPR, and PAC had varying degrees of predictive value, with optimal cutoff values of 0.74, 11.64, and 1.18, respectively. Conclusions: Precapillary-PH with RV-PA uncoupling as expressed by a RVEF/PASP ratio <0.44 was associated with adverse clinical outcomes. PAC decreased and TPR increased with increasing WHO-FC, with TPR showing better independent predictive value.
Collapse
Affiliation(s)
- Yidan Li
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dichen Guo
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Juanni Gong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianfeng Wang
- Department of Intervention, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qiang Huang
- Department of Intervention, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shu Yang
- Philips (China) Investment Co. Ltd., Beijing, China
| | - Xinyuan Zhang
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huimin Hu
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhe Jiang
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuanhua Yang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiuzhang Lu
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|