1
|
Díaz-Gay M, Zhang T, Hoang PH, Khandekar A, Zhao W, Steele CD, Otlu B, Nandi SP, Vangara R, Bergstrom EN, Kazachkova M, Pich O, Swanton C, Hsiung CA, Chang IS, Wong MP, Leung KC, Sang J, McElderry J, Yang L, Nowak MA, Shi J, Rothman N, Wedge DC, Homer R, Yang SR, Lan Q, Zhu B, Chanock SJ, Alexandrov LB, Landi MT. The mutagenic forces shaping the genomic landscape of lung cancer in never smokers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307318. [PMID: 38798417 PMCID: PMC11118654 DOI: 10.1101/2024.05.15.24307318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lung cancer in never smokers (LCINS) accounts for up to 25% of all lung cancers and has been associated with exposure to secondhand tobacco smoke and air pollution in observational studies. Here, we evaluate the mutagenic exposures in LCINS by examining deep whole-genome sequencing data from a large international cohort of 871 treatment-naïve LCINS recruited from 28 geographical locations within the Sherlock-Lung study. KRAS mutations were 3.8-fold more common in adenocarcinomas of never smokers from North America and Europe, while a 1.6-fold higher prevalence of EGFR and TP53 mutations was observed in adenocarcinomas from East Asia. Signature SBS40a, with unknown cause, was found in most samples and accounted for the largest proportion of single base substitutions in adenocarcinomas, being enriched in EGFR-mutated cases. Conversely, the aristolochic acid signature SBS22a was almost exclusively observed in patients from Taipei. Even though LCINS exposed to secondhand smoke had an 8.3% higher mutational burden and 5.4% shorter telomeres, passive smoking was not associated with driver mutations in cancer driver genes or the activities of individual mutational signatures. In contrast, patients from regions with high levels of air pollution were more likely to have TP53 mutations while exhibiting shorter telomeres and an increase in most types of somatic mutations, including a 3.9-fold elevation of signature SBS4 (q-value=3.1 × 10-5), previously linked mainly to tobacco smoking, and a 76% increase of clock-like signature SBS5 (q-value=5.0 × 10-5). A positive dose-response effect was observed with air pollution levels, which correlated with both a decrease in telomere length and an elevation in somatic mutations, notably attributed to signatures SBS4 and SBS5. Our results elucidate the diversity of mutational processes shaping the genomic landscape of lung cancer in never smokers.
Collapse
Affiliation(s)
- Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H. Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher D. Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Shuvro P. Nandi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Maria Pik Wong
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kin Chung Leung
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, Department of Human Genetics, Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Martin A Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C. Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
- Manchester NIHR Biomedical Research Centre, Manchester, UK
| | - Robert Homer
- Yale Surgery Pathology Department, Yale University, New Haven, CT, USA
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
2
|
Rajaram R, Huang Q, Li RZ, Chandran U, Zhang Y, Amos TB, Wright GWJ, Ferko NC, Kalsekar I. Recurrence-Free Survival in Patients With Surgically Resected Non-Small Cell Lung Cancer: A Systematic Literature Review and Meta-Analysis. Chest 2024; 165:1260-1270. [PMID: 38065405 DOI: 10.1016/j.chest.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Standard treatment for early-stage or locoregionally advanced non-small cell lung cancer (NSCLC) includes surgical resection. Recurrence after surgery is commonly reported, but a summary estimate for postsurgical recurrence-free survival (RFS) in patients with NSCLC is lacking. RESEARCH QUESTION What is the RFS after surgery in patients with stage I-III NSCLC at different time points, and what factors are associated with RFS? STUDY DESIGN AND METHODS A systematic search was performed in MEDLINE, EMBASE, and Cochrane databases between January 2011 and June 2021. The primary outcome was RFS at 1, 2, 3, and 5 years postresection. Single-arm, random-effects meta-analyses were done to calculate effect estimates and 95% CIs. Analyses were stratified by stage/substage as per the AJCC Cancer Staging Manual, and RFS was estimated (1) after pooling studies, using seventh or eighth edition staging criteria; and (2) among studies using only the eighth edition. Meta-regressions were performed to assess associations between RFS and patient demographic/clinical characteristics of interest. RESULTS Data from 471 studies comprising 1,060 surgical study arms were extracted. RFS estimates from 60,695 patients staged with the seventh or eighth edition were analyzed. RFS ranged from 96% at 1 year postresection to 82% at 5 years for stage I, and from 68% at 1 year to 34% at 5 years for stage III. Estimates for patients staged using only eighth edition criteria were slightly higher. Older age, higher percentage of male patients, advancing stage, larger tumor size, and geographic region (North America/Europe vs Asia) were significantly associated with worse RFS. INTERPRETATION This study presents a comprehensive assessment of reported RFS from published clinical literature, offering estimates at multiple postsurgical time points and by geographic region. Findings can inform treatment decisions, clinical trial design, and future research to improve outcomes among patients with NSCLC.
Collapse
Affiliation(s)
- Ravi Rajaram
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Qing Huang
- Johnson & Johnson External Innovation, New Brunswick, NJ
| | | | - Urmila Chandran
- Global Epidemiology & Real-World Data Sciences, Johnson & Johnson, Titusville, NJ
| | | | - Tony B Amos
- Johnson & Johnson External Innovation, New Brunswick, NJ
| | | | | | | |
Collapse
|
3
|
Sun JD, Sugarbaker E, Byrne SC, Gagné A, Leo R, Swanson SJ, Hammer MM. Clinical Outcomes of Resected Pure Ground-Glass, Heterogeneous Ground-Glass, and Part-Solid Pulmonary Nodules. AJR Am J Roentgenol 2024; 222:e2330504. [PMID: 38323785 PMCID: PMC11161307 DOI: 10.2214/ajr.23.30504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND. Increased (but not definitively solid) attenuation within pure ground-glass nodules (pGGNs) may indicate invasive adenocarcinoma and the need for resection rather than surveillance. OBJECTIVE. The purpose of this study was to compare the clinical outcomes among resected pGGNs, heterogeneous ground-glass nodules (GGNs), and part-solid nodules (PSNs). METHODS. This retrospective study included 469 patients (335 female patients and 134 male patients; median age, 68 years [IQR, 62.5-73.5 years]) who, between January 2012 and December 2020, underwent resection of lung adenocarcinoma that appeared as a subsolid nodule on CT. Two radiologists, using lung windows, independently classified each nodule as a pGGN, a heterogeneous GGN, or a PSN, resolving discrepancies through discussion. A heterogeneous GGN was defined as a GGN with internal increased attenuation not quite as dense as that of pulmonary vessels, and a PSN was defined as having an internal solid component with the same attenuation as that of the pulmonary vessels. Outcomes included pathologic diagnosis of invasive adenocarcinoma, 5-year recurrence rates (locoregional or distant), and recurrence-free survival (RFS) and overall survival (OS) over 7 years, as analyzed by Kaplan-Meier and Cox proportional hazards regression analyses, with censoring of patients with incomplete follow-up. RESULTS. Interobserver agreement for nodule type, expressed as a kappa coefficient, was 0.69. Using consensus assessments, 59 nodules were pGGNs, 109 were heterogeneous GGNs, and 301 were PSNs. The frequency of invasive adenocarcinoma was 39.0% in pGGNs, 67.9% in heterogeneous GGNs, and 75.7% in PSNs (for pGGNs vs heterogeneous GGNs, p < .001; for pGGNs vs PSNs, p < .001; and for heterogeneous GGNs vs PSNs, p = .28). The 5-year recurrence rate was 0.0% in patients with pGGNs, 6.3% in those with heterogeneous GGNs, and 10.8% in those with PSNs (for pGGNs vs heterogeneous GGNs, p = .06; for pGGNs vs PSNs, p = .02; and for heterogeneous GGNs vs PSNs, p = .18). At 7 years, RFS was 97.7% in patients with pGGNs, 82.0% in those with heterogeneous GGNs, and 79.4% in those with PSNs (for pGGNs vs heterogeneous GGNs, p = .02; for pGGNs vs PSNs, p = .006; and for heterogeneous GGNs vs PSNs, p = .40); OS was 98.0% in patients with pGGNs, 84.6% in those with heterogeneous GGNs, and 82.9% in those with PSNs (for pGGNs vs heterogeneous GGNs, p = .04; for pGGNs vs PSNs, p = .01; and for heterogeneous GGNs vs PSNs, p = .50). CONCLUSION. Resected pGGNs had excellent clinical outcomes. Heterogeneous GGNs had relatively worse outcomes, more closely resembling outcomes for PSNs. CLINICAL IMPACT. The findings support surveillance for truly homogeneous pGGNs versus resection for GGNs showing internal increased attenuation even if not having a true solid component.
Collapse
Affiliation(s)
| | | | - Suzanne C. Byrne
- Departments of Radiology (J.D.S., S.C.B., M.M.H.), Surgery (E.S., R.L., S.J.S.), and Pathology (A.G.), Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115
| | - Andréanne Gagné
- Departments of Radiology (J.D.S., S.C.B., M.M.H.), Surgery (E.S., R.L., S.J.S.), and Pathology (A.G.), Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115
| | - Rachel Leo
- Departments of Radiology (J.D.S., S.C.B., M.M.H.), Surgery (E.S., R.L., S.J.S.), and Pathology (A.G.), Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115
| | | | | |
Collapse
|
4
|
Chang JC, Rekhtman N. Pathologic Assessment and Staging of Multiple Non-Small Cell Lung Carcinomas: A Paradigm Shift with the Emerging Role of Molecular Methods. Mod Pathol 2024; 37:100453. [PMID: 38387831 PMCID: PMC11102290 DOI: 10.1016/j.modpat.2024.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Non-small cell lung carcinomas (NSCLCs) commonly present as 2 or more separate tumors. Biologically, this encompasses 2 distinct processes: separate primary lung carcinomas (SPLCs), representing independently arising tumors, and intrapulmonary metastases (IPMs), representing intrapulmonary spread of a single tumor. The advent of computed tomography imaging has substantially increased the detection of multifocal NSCLCs. The strategies and approaches for distinguishing between SPLCs and IPMs have evolved significantly over the years. Recently, genomic sequencing of somatic mutations has been widely adopted to identify targetable alterations in NSCLC. These molecular techniques have enabled pathologists to reliably discern clonal relationships among multiple NSCLCs in clinical practice. However, a standardized approach to evaluating and staging multiple NSCLCs using molecular methods is still lacking. Here, we reviewed the historical context and provided an update on the growing applications of genomic testing as a clinically relevant benchmark for determining clonal relationships in multiple NSCLCs, a practice we have designated "comparative molecular profiling." We examined the strengths and limitations of the morphology-based distinction of SPLCs vs IPMs and highlighted pivotal clinical and pathologic insights that have emerged from studying multiple NSCLCs using genomic approaches as a gold standard. Lastly, we suggest a practical approach for evaluating multiple NSCLCs in the clinical setting, considering the varying availability of molecular techniques.
Collapse
Affiliation(s)
- Jason C Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
5
|
Lin CY, Guo SM, Lien JJJ, Tsai TY, Liu YS, Lai CH, Hsu IL, Chang CC, Tseng YL. Development of a modified 3D region proposal network for lung nodule detection in computed tomography scans: a secondary analysis of lung nodule datasets. Cancer Imaging 2024; 24:40. [PMID: 38509635 PMCID: PMC10953193 DOI: 10.1186/s40644-024-00683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Low-dose computed tomography (LDCT) has been shown useful in early lung cancer detection. This study aimed to develop a novel deep learning model for detecting pulmonary nodules on chest LDCT images. METHODS In this secondary analysis, three lung nodule datasets, including Lung Nodule Analysis 2016 (LUNA16), Lung Nodule Received Operation (LNOP), and Lung Nodule in Health Examination (LNHE), were used to train and test deep learning models. The 3D region proposal network (RPN) was modified via a series of pruning experiments for better predictive performance. The performance of each modified deep leaning model was evaluated based on sensitivity and competition performance metric (CPM). Furthermore, the performance of the modified 3D RPN trained on three datasets was evaluated by 10-fold cross validation. Temporal validation was conducted to assess the reliability of the modified 3D RPN for detecting lung nodules. RESULTS The results of pruning experiments indicated that the modified 3D RPN composed of the Cross Stage Partial Network (CSPNet) approach to Residual Network (ResNet) Xt (CSP-ResNeXt) module, feature pyramid network (FPN), nearest anchor method, and post-processing masking, had the optimal predictive performance with a CPM of 92.2%. The modified 3D RPN trained on the LUNA16 dataset had the highest CPM (90.1%), followed by the LNOP dataset (CPM: 74.1%) and the LNHE dataset (CPM: 70.2%). When the modified 3D RPN trained and tested on the same datasets, the sensitivities were 94.6%, 84.8%, and 79.7% for LUNA16, LNOP, and LNHE, respectively. The temporal validation analysis revealed that the modified 3D RPN tested on LNOP test set achieved a CPM of 71.6% and a sensitivity of 85.7%, and the modified 3D RPN tested on LNHE test set had a CPM of 71.7% and a sensitivity of 83.5%. CONCLUSION A modified 3D RPN for detecting lung nodules on LDCT scans was designed and validated, which may serve as a computer-aided diagnosis system to facilitate lung nodule detection and lung cancer diagnosis.
Collapse
Affiliation(s)
- Chia-Ying Lin
- Department of Medical Imaging, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.1, University Road, 701, Tainan City, Taiwan
| | - Shu-Mei Guo
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Jier James Lien
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tzung-Yi Tsai
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Sheng Liu
- Department of Medical Imaging, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No.1, University Road, 701, Tainan City, Taiwan
| | - Chao-Han Lai
- Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - I-Lin Hsu
- Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chun Chang
- Division of Thoracic Surgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Lloyd RM, Hunter JR, Diaz RS, Schechter M. Could well-established, widely available, and simple laboratory techniques explain a laboratory origin of SARS-CoV-2? Braz J Infect Dis 2023; 27:102808. [PMID: 37802129 PMCID: PMC10582828 DOI: 10.1016/j.bjid.2023.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023] Open
Affiliation(s)
| | - James R Hunter
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratório de Retrovirologia, São Paulo, SP, Brazil
| | - Ricardo Sobhie Diaz
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Laboratório de Retrovirologia, São Paulo, SP, Brazil
| | - Mauro Schechter
- Universidade Federal do Rio de Janeiro, Departamento de Doenças Infecciosas e Parasitárias, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Wang P, Sun S, Lam S, Lockwood WW. New insights into the biology and development of lung cancer in never smokers-implications for early detection and treatment. J Transl Med 2023; 21:585. [PMID: 37653450 PMCID: PMC10472682 DOI: 10.1186/s12967-023-04430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Despite never smokers comprising between 10 and 25% of all cases, lung cancer in never smokers (LCNS) is relatively under characterized from an etiological and biological perspective. The application of multi-omics techniques on large patient cohorts has significantly advanced the current understanding of LCNS tumor biology. By synthesizing the findings of multi-omics studies on LCNS from a clinical perspective, we can directly translate knowledge regarding tumor biology into implications for patient care. Primarily focused on never smokers with lung adenocarcinoma, this review details the predominance of driver mutations, particularly in East Asian patients, as well as the frequency and importance of germline variants in LCNS. The mutational patterns present in LCNS tumors are thoroughly explored, highlighting the high abundance of the APOBEC signature. Moreover, this review recognizes the spectrum of immune profiles present in LCNS tumors and posits how it can be translated to treatment selection. The recurring and novel insights from multi-omics studies on LCNS tumor biology have a wide range of clinical implications. Risk factors such as exposure to outdoor air pollution, second hand smoke, and potentially diet have a genomic imprint in LCNS at varying degrees, and although they do not encompass all LCNS cases, they can be leveraged to stratify risk. Germline variants similarly contribute to a notable proportion of LCNS, which warrants detailed documentation of family history of lung cancer among never smokers and demonstrates value in developing testing for pathogenic variants in never smokers for early detection in the future. Molecular driver subtypes and specific co-mutations and mutational signatures have prognostic value in LCNS and can guide treatment selection. LCNS tumors with no known driver alterations tend to be stem-like and genes contributing to this state may serve as potential therapeutic targets. Overall, the comprehensive findings of multi-omics studies exert a wide influence on clinical management and future research directions in the realm of LCNS.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Sun
- Department of Medical Oncology, British Columbia Cancer Agency Vancouver, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Borghesi A, Coviello FL, Scrimieri A, Ciolli P, Ravanelli M, Farina D. Software-based quantitative CT analysis to predict the growth trend of persistent nonsolid pulmonary nodules: a retrospective study. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01648-z. [PMID: 37227661 DOI: 10.1007/s11547-023-01648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Persistent nonsolid nodules (NSNs) usually exhibit an indolent course and may remain stable for several years; however, some NSNs grow quickly and require surgical excision. Therefore, identifying quantitative features capable of early discrimination between growing and nongrowing NSNs is becoming a crucial aspect of radiological analysis. The main purpose of this study was to evaluate the performance of an open-source software (ImageJ) to predict the future growth of NSNs detected in a Caucasian (Italian) population. MATERIAL AND METHODS We retrospectively selected 60 NSNs with an axial diameter of 6-30 mm scanned with the same acquisition-reconstruction parameters and the same computed tomography (CT) scanner. Software-based analysis was performed on thin-section CT images using ImageJ. For each NSNs, several quantitative features were extracted from the baseline CT images. The relationships of NSN growth with quantitative CT features and other categorical variables were analyzed using univariate and multivariable logistic regression analyses. RESULTS In multivariable analysis, only the skewness and linear mass density (LMD) were significantly associated with NSN growth, and the skewness was the strongest predictor of growth. In receiver operating characteristic curve analyses, the optimal cutoff values of skewness and LMD were 0.90 and 19.16 mg/mm, respectively. The two predictive models that included the skewness, with or without LMD, exhibited an excellent power for predicting NSN growth. CONCLUSION According to our results, NSNs with a skewness value > 0.90, specifically those with a LMD > 19.16 mg/mm, should require closer follow-up due to their higher growth potential, and higher risk of becoming an active cancer.
Collapse
Affiliation(s)
- Andrea Borghesi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy.
| | - Felice Leopoldo Coviello
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Alessandra Scrimieri
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Pietro Ciolli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Marco Ravanelli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| | - Davide Farina
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, Piazzale Spedali Civili, 1, 25123, Brescia, Italy
| |
Collapse
|
9
|
Kim BG, Um SW. A narrative review of the clinical approach to subsolid pulmonary nodules. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:217. [PMID: 37007560 PMCID: PMC10061480 DOI: 10.21037/atm-22-5246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/19/2023] [Indexed: 03/14/2023]
Abstract
Background and Objective The widespread use of chest computed tomography (CT) for lung cancer screening has led to increased detection of subsolid pulmonary nodules. The management of subsolid nodules (SSNs) is challenging since they are likely to grow slowly and a long-term follow-up is needed. In this review, we discuss the characteristics, natural history, genetic features, surveillance, and management of SSNs. Methods PubMed and Google Scholar were searched to identify relevant articles published in English between January 1998 and December 2022 using the following keywords: "subsolid nodule", "ground-glass nodule (GGN)", and "part-solid nodule (PSN)". Key Content and Findings The differential diagnosis of SSNs includes transient inflammatory lesions, focal fibrosis, and premalignant or malignant lesions. Long-term CT surveillance follow-up is needed to manage SSNs that persist for >3 months. Although most SSNs have an indolent clinical course, PSNs may have a more aggressive clinical course than pure GGNs. The proportion of growth and the time to grow is higher and shorter in PSN than pure GGN. In lung adenocarcinoma manifesting as SSNs, EGFR mutations were the major driver mutations. Guidelines are available for the management of incidentally detected and screening-detected SSNs. The size, solidity, location, and number of SSNs are important factors in determining the need for surveillance and surgical resection, as well as the interval of follow-up. Positron emission tomography/CT and brain magnetic resonance imaging (MRI) are not recommended for the diagnosis of SSNs, especially for pure GGNs. Periodic CT surveillance and lung-sparing surgery are the main strategies for the management of persistent SSNs. Nonsurgical treatment options for persistent SSNs include stereotactic body radiotherapy (SBRT) and radiofrequency ablation (RFA). For multifocal SSNs, the timing of repeated CT scans and the need for surgical treatment are decided based on the most dominant SSN(s). Conclusions The SSN is a heterogeneous disease and a personalized medicine approach is required in the future. Future studies of SSNs should focus on their natural history, optimal follow-up duration, genetic features, and surgical and nonsurgical treatments to improve the corresponding clinical management. All these efforts will lead to the personalized medicine approach for the SSNs.
Collapse
Affiliation(s)
- Bo-Guen Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Banks KC, Sumner ET, Alabaster A, Hsu DS, Quesenberry CP, Sakoda LC, Velotta JB. Sociodemographic and clinical characteristics associated with never-smoking status in patients with lung cancer: findings from a large integrated health system. Transl Cancer Res 2022; 11:3522-3534. [PMID: 36388017 PMCID: PMC9641079 DOI: 10.21037/tcr-22-1438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/26/2022] [Indexed: 01/17/2023]
Abstract
Background Evidence is limited characterizing sociodemographically diverse patient populations with lung cancer in relation to smoking status. Methods In a cross-sectional analysis of adults diagnosed with lung cancer at ages ≥30 years from 2007-2018 within an integrated healthcare system, overall and sex-specific prevalence of never smoking were estimated according to sociodemographic and clinical characteristics. Adjusted prevalence ratio (aPR) and 95% confidence interval (CI) were also estimated using modified Poisson regression to identify patient characteristics associated with never smoking, overall and by sex. Similar analyses were conducted to explore whether prevalence and association patterns differed between non-Hispanic White and Asian/Pacific Islander patients. Results Among 17,939 patients with lung cancer, 2,780 (15.5%) never smoked and 8,698 (48.5%) had adenocarcinoma. Overall prevalence of never smoking was higher among females than males (21.2% vs. 9.2%, aPR 2.13, 95% CI: 1.98-2.29); Asian/Pacific Islander (aPR 2.85, 95% CI: 2.65-3.07) and Hispanic (aPR 1.72, 95% CI: 1.51-1.95) than non-Hispanic White patients; patients who primarily spoke Spanish (aPR 1.60, 95% CI: 1.32-1.94), any Asian language (aPR 1.20, 95% CI: 1.10-1.30), or other languages (aPR 1.84, 95% CI: 1.27-2.65) than English; patients living in the least vs. most deprived neighborhoods (aPR 1.36, 95% CI: 1.24-1.50); and patients with adenocarcinoma (aPR 2.57, 95% CI: 2.18-3.03), other non-small cell lung cancer (NSCLC) (aPR 2.00, 95% CI: 1.63-2.45), or carcinoid (aPR 3.60, 95% CI: 2.96-4.37) than squamous cell carcinoma tumors. Patterns of never smoking associated with sociodemographic, but not clinical factors, differed by sex. The higher prevalence of never smoking associated with Asian/Pacific Islander race/ethnicity was more evident among females (aPR 3.30, 95% CI: 2.95-3.47) than males (aPR 2.25, 95% CI: 1.92-2.63), whereas the higher prevalence of never smoking associated with living in the least deprived neighborhoods was more evident among males (aPR 1.93, 95% CI: 1.56-2.38) than females (aPR 1.18, 95% CI: 1.06-1.31). Associations between primary language and never-smoking status were found only among females. Overall and sex-specific prevalence and association patterns differed between Asian/Pacific Islander and non-Hispanic white patients. Conclusions Our findings suggest that patterns of never-smoking status associated with sociodemographic and clinical characteristics are different across sex and race/ethnicity among patients with lung cancer. Such data are critical to increasing awareness and expediting diagnosis of this disease.
Collapse
Affiliation(s)
- Kian C. Banks
- Department of Thoracic Surgery, Kaiser Permanente Northern California, Oakland, CA, USA
- Department of Surgery, UCSF East Bay, Oakland, CA, USA
| | - Eric T. Sumner
- Department of Pulmonology and Critical Care Medicine, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Amy Alabaster
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Diana S. Hsu
- Department of Thoracic Surgery, Kaiser Permanente Northern California, Oakland, CA, USA
- Department of Surgery, UCSF East Bay, Oakland, CA, USA
| | | | - Lori C. Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Jeffrey B. Velotta
- Department of Thoracic Surgery, Kaiser Permanente Northern California, Oakland, CA, USA
| |
Collapse
|
11
|
Hsieh PC, Wu YK, Huang CY, Yang MC, Kuo CY, Tzeng IS, Lan CC. Comparison of T790M Acquisition After Treatment With First- and Second-Generation Tyrosine-Kinase Inhibitors: A Systematic Review and Network Meta-Analysis. Front Oncol 2022; 12:869390. [PMID: 35837103 PMCID: PMC9274284 DOI: 10.3389/fonc.2022.869390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background Lung adenocarcinoma is a common disease with a high mortality rate. Epidermal growth factor receptor (EGFR) mutations are found in adenocarcinomas, and oral EGFR-tyrosine kinase inhibitors (EGFR-TKIs) show good responses. EGFR-TKI therapy eventually results in resistance, with the most common being T790M. T790M is also a biomarker for predicting resistance to first- and second-generation EGFR-TKIs and is sensitive to osimertinib. The prognosis was better for patients with acquired T790M who were treated with osimertinib than for those treated with chemotherapy. Therefore, T790M mutation is important for deciding further treatment and prognosis. Previous studies based on small sample sizes have reported very different T790 mutation rates. We conducted a meta-analysis to evaluate the T790M mutation rate after EGFR-TKI treatment. Methods We systematic reviewed the electronic databases to evaluate the T790M mutation rate after treatment with first-generation (gefitinib, erlotinib, and icotinib) and second-generation (afatinib and dacomitinib) EGFR-TKIs. Random-effects network meta-analysis and single-arm meta-analysis were conducted to estimate the T790M mutation rate of the target EGFR-TKIs. Results A total of 518 studies were identified, of which 29 were included. Compared with afatinib, a higher odds ratio (OR) of the T790M mutation rate was observed after erlotinib [OR = 1.48; 95% confidence interval (CI):1.09–2.00] and gefitinib (OR = 1.45; 95% CI: 1.11–1.90) treatments. An even OR of the T790M mutation rate was noted after icotinib treatment (OR = 0.91, 95% CI: 0.46–1.79) compared with that after afatinib. The T790M mutation rate was significantly lower with afatinib (33%) than that with gefitinib (49%) and erlotinib treatments (47%) (p < 0.001). The acquired T790M mutation rate in all participants was slightly lower in Asians (43%) than that in Caucasians (47%). Conclusions Erlotinib and gefitinib had a higher OR for the T790M mutation than afatinib. The T790M mutation rate was significantly lower in afatinib than in gefitinib and erlotinib. T790M is of great significance because osimertinib shows a good prognosis in patients with T790M mutation. Systematic Review Registration PROSPERO, identifier CRD42021257824.
Collapse
Affiliation(s)
- Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yao-Kuang Wu
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Chun-Yao Huang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Mei-Chen Yang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu-Chi University, Hualien, Taiwan
- *Correspondence: Chou-Chin Lan,
| |
Collapse
|
12
|
Wei Z, Wang Z, Nie Y, Zhang K, Shen H, Wang X, Wu M, Yang F, Chen K. Molecular Alterations in Lung Adenocarcinoma With Ground-Glass Nodules: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:724692. [PMID: 34589430 PMCID: PMC8475014 DOI: 10.3389/fonc.2021.724692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Nodular ground-glass lesions have become increasingly common with the increased use of computed tomography (CT), while the genomic features of ground-glass opacities (GGOs) remain unclear. This study aims to comprehensively investigate the molecular alterations of GGOs and their correlation with radiological progression. METHODS Studies from PubMed, Embase, Cochrane Library, and Web of Science, using PCR, targeted panel sequencing, whole exosome sequencing, and immunohistochemistry, and reporting genomic alterations or PD-L1 expressions in lung nodules presenting as GGOs until January 21, 2021 were included in this study. Chi-square test, random-effects model, and Z-test analysis were adopted to analyze the data. RESULTS A total of 22 studies describing mutations in lung adenocarcinoma (LUAD) with GGOs were analyzed. EGFR was the most frequently mutative gene (51%, 95%CI 47%-56%), followed by TP53 (18%, 95%CI 6%-31%), HER2 (10%, 95%CI 0%-21%), ROS1 (6%, 95%CI 0%-18%), and KRAS (6%, 95%CI 3%-9%). The correlation between the frequency of EGFR mutation and radiological was observed and the differences were found to be not statistically significant in the subgroups, which are listed as below: radiological: gGGO 47.40%, 95%CI [38.48%; 56.40%]; sGGO 51.94%, 95%CI [45.15%; 58.69%]. The differences of the frequency of KRAS mutation in the different subgroups were also consistent with this conclusion, which are listed as: radiological gGGO 3.42, 95%CI [1.35%; 6.13%]; sGGO 12.27%, 95%CI [3.89%; 23.96%]. The pooled estimated rate of PD-L1 was 8.82%, 95%CI [5.20%-13.23%]. A total of 11.54% (3/26) of the SMGGNs were confirmed to be intrapulmonary spread by WES. CONCLUSIONS Somatic genetic alterations are considered in early-stage GGO patients without distinct changes of the frequency following the progress of the tumor. This review sheds insight on molecular alterations in LUAD with GGOs.
Collapse
Affiliation(s)
- Zihan Wei
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
- Health Science Center, Peking University, Beijing, China
| | - Ziyang Wang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
- Health Science Center, Peking University, Beijing, China
| | - Yuntao Nie
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Kai Zhang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Haifeng Shen
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Xin Wang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
- Health Science Center, Peking University, Beijing, China
| | - Manqi Wu
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
- Health Science Center, Peking University, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
13
|
Sarcopenia affects clinical efficacy of immune checkpoint inhibitors in non-small cell lung cancer patients: A systematic review and meta-analysis. Int Immunopharmacol 2020; 88:106907. [DOI: 10.1016/j.intimp.2020.106907] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
|