1
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410416. [PMID: 39665319 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ya Li
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jingwen Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Tianyue Li
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Banghua Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
2
|
Shah DD, Chorawala MR, Pandya AJ, Kothari N, Prajapati BG, Parekh PS. Advancing the Battle against Cystic Fibrosis: Stem Cell and Gene Therapy Insights. Curr Med Sci 2024; 44:1155-1174. [PMID: 39676146 DOI: 10.1007/s11596-024-2936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/03/2024] [Indexed: 12/17/2024]
Abstract
Cystic fibrosis (CF) is a hereditary disorder characterized by mutations in the CFTR gene, leading to impaired chloride ion transport and subsequent thickening of mucus in various organs, particularly the lungs. Despite significant progress in CF management, current treatments focus mainly on symptom relief and do not address the underlying genetic defects. Stem cell and gene therapies present promising avenues for tackling CF at its root cause. Stem cells, including embryonic, induced pluripotent, mesenchymal, hematopoietic, and lung progenitor cells, offer regenerative potential by differentiating into specialized cells and modulating immune responses. Similarly, gene therapy aims to correct CFTR gene mutations by delivering functional copies of the gene into affected cells. Various approaches, such as viral and nonviral vectors, gene editing with CRISPR-Cas9, small interfering RNA (siRNA) therapy, and mRNA therapy, are being explored to achieve gene correction. Despite their potential, challenges such as safety concerns, ethical considerations, delivery system optimization, and long-term efficacy remain. This review provides a comprehensive overview of the current understanding of CF pathophysiology, the rationale for exploring stem cell and gene therapies, the types of therapies available, their mechanisms of action, and the challenges and future directions in the field. By addressing these challenges, stem cell and gene therapies hold promise for transforming CF management and improving the quality of life of affected individuals.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Aanshi J Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, 384012, India.
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | | |
Collapse
|
3
|
Zhang Y, Xia Y, Zhang R, Zhou X, Jiang J. Urine-Derived Stem Cells Reverse Bleomycin‑Induced Experimental Pulmonary Fibrosis by Inhibition of the TGF-β1-Smad2/3 Pathway. Cytotherapy 2024; 26:1236-1244. [PMID: 38852093 DOI: 10.1016/j.jcyt.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung interstitial lesions with the disease pathophysiology incompletely understood, which is a serious and fatal disorder with limited treatment options. Mesenchymal stem cells (MSCs) have exhibited promising therapeutic capability for IPF. While most types of MSCs are obtained invasively, urine-derived stem cells (USCs) can be gained in a safe, noninvasive, and inexpensive procedure, which are readily available and reported to exhibit no risk of teratoma formation or oncogenic potential in vivo, sounding alternative to other MSCs. This study aims to investigate the therapeutic effect and mechanism of USCs on IPF, using a bleomycin (BLM)-induced IPF model in mice. METHODS Cell surface marker examination by flow cytometry analysis and cell differentiation culture were used to characterize USCs obtained from healthy individuals. BLM was instilled endotracheally in adult C57BL/6 mice, followed by USCs or human bone marrow-derived mesenchymal stem cells (BMSCs) treatment by tail vein injection on day 14. Mice were euthanized on day 14 before administration or day 21 for the evaluation of pulmonary histopathology and hydroxyproline (HYP) content. Inflammatory factors of the lung, including transforming growth factor (TGF)-β1, TNF-α, IL-6, MMP2 were analyzed by quantitative real-time PCR (qRT-PCR). Additionally, immunohistochemistry (IHC) and western blotting (WB) were applied to evaluate the expression of α-SMA and activation of TGF-β1-Smad2/3 in lung. RESULTS USCs highly expressed CD29 and CD90, showing negative expression of hematopoietic stem cell markers (CD45, CD34) and could differentiate into, at least, bone and fat in vitro. In mice challenged with BLM, septal thickening and prominent fibrosis were observed on day 14, with higher HYP content and mRNA levels of TGF-β1, TNF-α and IL-6 exhibited, compared to untreated mice. USCs could migrate to lung and accumulate there in mouse model after intravenous injection. Transplantation of USCs into BLM-induced mice improved their pulmonary histopathology, decreasing Ashcroft score, Szapiel score, HYP content and mRNA levels of TGF-β1 and MMP2 of lung, similar to the effects of BMSCs. IHC and WB further revealed that USCs could inhibit activation of the TGF‑β1-Smad2/3 pathway of lung in vivo. CONCLUSIONS Transplantation of USCs effectively reverses pulmonary fibrotic phenotype in an experimental IPF model, inhibiting the TGF-β1-Smad2/3 pathway, a key driver of fibrosis. These results suggest the therapeutic application of USCs for IPF, instead of other types of MSCs obtained invasively.
Collapse
Affiliation(s)
- Yanju Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China; Infection Management Office, Affiliated Hospital of Nantong University, Nantong, China; Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodi Zhou
- Infection Management Office, Affiliated Hospital of Nantong University, Nantong, China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Yuan D, Bao Y, El-Hashash A. Mesenchymal stromal cell-based therapy in lung diseases; from research to clinic. AMERICAN JOURNAL OF STEM CELLS 2024; 13:37-58. [PMID: 38765802 PMCID: PMC11101986 DOI: 10.62347/jawm2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/02/2024] [Indexed: 05/22/2024]
Abstract
Recent studies demonstrated that mesenchymal stem cells (MSCs) are important for the cell-based therapy of diseased or injured lung due to their immunomodulatory and regenerative properties as well as limited side effects in experimental animal models. Preclinical studies have shown that MSCs have also a remarkable effect on the immune cells, which play major roles in the pathogenesis of multiple lung diseases, by modulating their activity, proliferation, and functions. In addition, MSCs can inhibit both the infiltrated immune cells and detrimental immune responses in the lung and can be used in treating lung diseases caused by a virus infection such as Tuberculosis and SARS-COV-2. Moreover, MSCs are a source for alveolar epithelial cells such as type 2 (AT2) cells. These MSC-derived functional AT2-like cells can be used to treat and diminish serious lung disorders, including acute lung injury, asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis in animal models. As an alternative MSC-based therapy, extracellular vesicles that are derived from MSC-derived can be employed in regenerative medicine. Herein, we discussed the key research findings from recent clinical and preclinical studies on the functions of MSCs in treating some common and well-studied lung diseases. We also discussed the mechanisms underlying MSC-based therapy of well-studied lung diseases, and the recent employment of MSCs in both the attenuation of lung injury/inflammation and promotion of the regeneration of lung alveolar cells after injury. Finally, we described the role of MSC-based therapy in treating major pulmonary diseases such as pneumonia, COPD, asthma, and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Dailin Yuan
- Zhejiang UniversityHangzhou 310058, Zhejiang, PR China
| | - Yufei Bao
- School of Biomedical Engineering, University of SydneyDarlington, NSW 2008, Australia
| | - Ahmed El-Hashash
- Texas A&M University, 3258 TAMU, College StationTX 77843-3258, USA
| |
Collapse
|
6
|
Tao H, Lv Q, Zhang J, Chen L, Yang Y, Sun W. Different Levels of Autophagy Activity in Mesenchymal Stem Cells Are Involved in the Progression of Idiopathic Pulmonary Fibrosis. Stem Cells Int 2024; 2024:3429565. [PMID: 38390035 PMCID: PMC10883747 DOI: 10.1155/2024/3429565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/17/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related lung interstitial disease that occurs predominantly in people over 65 years of age and for which there is a lack of effective therapeutic agents. It has demonstrated that mesenchymal stem cells (MSCs) including alveolar epithelial cells (AECs) can perform repair functions. However, MSCs lose their repair functions due to their distinctive aging characteristics, eventually leading to the progression of IPF. Recent breakthroughs have revealed that the degree of autophagic activity influences the renewal and aging of MSCs and determines the prognosis of IPF. Autophagy is a lysosome-dependent pathway that mediates the degradation and recycling of intracellular material and is an efficient way to renew the nonnuclear (cytoplasmic) part of eukaryotic cells, which is essential for maintaining cellular homeostasis and is a potential target for regulating MSCs function. Therefore, this review focuses on the changes in autophagic activity of MSCs, clarifies the relationship between autophagy and health status of MSCs and the effect of autophagic activity on MSCs senescence and IPF, providing a theoretical basis for promoting the clinical application of MSCs.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin Lv
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Jing Zhang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
7
|
Matsumoto D, Toba H, Kenzaki K, Sakiyama S, Sakamoto S, Takashima M, Kawakita N, Takizawa H. Lung regeneration with rat fetal lung implantation and promotion of alveolar stem cell differentiation by corticosteroids. Regen Ther 2023; 24:426-433. [PMID: 37744680 PMCID: PMC10514393 DOI: 10.1016/j.reth.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The lung is a difficult organ to regenerate, and the development of functional lungs has still not been achieved. In this study, we investigated lung regeneration using a rat fetal lung tissue-implanted model. This study aimed to evaluate the functioning of the implanted fetal lung tissue and investigate the graft differentiation and maturation mechanism, focusing on alveolar stem cells. Methods Fetal lung tissue fragments were obtained from Lewis rats on day 17 and implanted into adult lungs. Animals were divided into the following three groups: group 1, injection into the adult left lung parenchyma; group 2, injection with post-caval lobectomy; and group 3, injection with post-caval lobectomy and corticosteroid administration. Computed tomography was performed on weeks 1, 2, 4, and 8. The presence of alveolar pore, CD31 expression, and bipotential progenitor cell (podoplanin+/surfactant protein C+) localization were histologically evaluated. MiRNA expression was comprehensively compared among the three groups. Results The grafts comprised type I and type II alveolar cells connected to the recipient lungs with alveolar pores and capillary networks in the interstitial tissue. The alveolar space was the largest and the computed tomography value was the lowest in the grafts of the corticosteroid-administered group. The number of bipotential progenitor cells was the lowest in the corticosteroid administration group on day 7. Moreover, microRNA-487-3p, 374-5p, and 20b-5p expression was changed by more than 2-fold between the post-caval lobectomy and corticosteroid administration groups. Conclusions Implanted fetal lung tissues established airway and capillary communication with the recipient lungs, and corticosteroids accelerated their maturation by promoting the differentiation of progenitor cells. The study findings provide new insights into lung regeneration research.
Collapse
Affiliation(s)
- Daisuke Matsumoto
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hiroaki Toba
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Koichiro Kenzaki
- Department of Thoracic and Breast Surgery, Takamatsu Red Cross Hospital, Takamatsu, Japan
| | - Shoji Sakiyama
- Department of Thoracic Surgery, National Hospital Organization Kochi National Hospital, Kochi, Japan
| | - Shinichi Sakamoto
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Mika Takashima
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Naoya Kawakita
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic and Endocrine Surgery and Oncology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
8
|
Guo Z, Zhang Y, Yan F. Potential of Mesenchymal Stem Cell-Based Therapies for Pulmonary Fibrosis. DNA Cell Biol 2022; 41:951-965. [DOI: 10.1089/dna.2022.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhihou Guo
- Stem Cell Lab, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yaping Zhang
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Furong Yan
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
9
|
Promises and Challenges of Cell-Based Therapies to Promote Lung Regeneration in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11162595. [PMID: 36010671 PMCID: PMC9406501 DOI: 10.3390/cells11162595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/17/2022] Open
Abstract
The lung epithelium is constantly exposed to harmful agents present in the air that we breathe making it highly susceptible to damage. However, in instances of injury to the lung, it exhibits a remarkable capacity to regenerate injured tissue thanks to the presence of distinct stem and progenitor cell populations along the airway and alveolar epithelium. Mechanisms of repair are affected in chronic lung diseases such as idiopathic pulmonary fibrosis (IPF), a progressive life-threatening disorder characterized by the loss of alveolar structures, wherein excessive deposition of extracellular matrix components cause the distortion of tissue architecture that limits lung function and impairs tissue repair. Here, we review the most recent findings of a study of epithelial cells with progenitor behavior that contribute to tissue repair as well as the mechanisms involved in mouse and human lung regeneration. In addition, we describe therapeutic strategies to promote or induce lung regeneration and the cell-based strategies tested in clinical trials for the treatment of IPF. Finally, we discuss the challenges, concerns and limitations of applying these therapies of cell transplantation in IPF patients. Further research is still required to develop successful strategies focused on cell-based therapies to promote lung regeneration to restore lung architecture and function.
Collapse
|
10
|
Surtaieva YV, Mazurkevich AY, Bokotko RR. Effects of transplanted mesenchymal stem cells on repair of the lung tissue of rats with experimental pulmonary fibrosis. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pulmonary fibrosis is one of the commonest forms of interstitial lung diseases with poorly studied methods of its treatment in both human and veterinary medicines. Therefore, this paper focused on seeking alternative methods of its diagnostics and treatment. The article provides the results of the study of bronchoalveolar lavage fluid of rats with experimental lung fibrosis and influence of transplanted allogeneic mesenchymal stem cells of the bone marrow on stimulation of regenerative processes in damaged lung tissues. The studies were conducted on female Wistar rats with pulmonary fibrosis modeled using single transthoracic injection of solution of bleomycin hydrochloride. For the purpose of treatment, we used allogeneic mesenchymal stem cells introduced by various methods and the traditional treatment. We determined that best normalization of the parameters of the studied brochoalveolar lavage occurred in animals that received mesenchymal stem cells. The most active repair processes were in the experimental group that received the mesenchymal stem cells directly to the lung tissue. The animals that received intravenous injection of mesenchymal stemm cells were observed to have lower clinical parameters of the brochoalveolar lavage, but still better than such in the group treated traditionally. The lowest parameters were in animals that received the traditional treatment; they were greater than the phisological parameters, but significantly exceeded them in animals of the control group, indicating presence of inflammatory process in the lung tissue. The conducted cytological assays of the samples of the brochoalveolar lavage revealed that experimental animals with experimental pulmonary fibrosis had development of macrophage and lymphocytic reactions under the influence of transplanted mesenchymal stemm cells. We observed no atypical cells in all the experimental groups. This allows us to draw a conclusion that using stem cells by various methods of transplantation does not stimulate the onset of negative reactons (formation of atypical cells, metastatic processes, etc). Thus, the results of the study of the influence of transplanted mesenchymal stem cells demonstrate that in the conditions of experimental pulmonary fibrosis, the activity of regenerative processes in pathologically altered lung tissue may be an effective method of treatment of animals with this kind of pathology.
Collapse
|
11
|
Yang S, Liu P, Gao T, Song D, Zhao X, Li Y, Wu J, Wang L, Wang Z, Hao J, Wang C, Dai H. Every road leads to Rome: therapeutic effect and mechanism of the extracellular vesicles of human embryonic stem cell-derived immune and matrix regulatory cells administered to mouse models of pulmonary fibrosis through different routes. Stem Cell Res Ther 2022; 13:163. [PMID: 35413874 PMCID: PMC9006546 DOI: 10.1186/s13287-022-02839-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. Whether extracellular vesicles are effective in treating IPF and what is the optimal administrative route is not clear. Our previous studies have shown that immunity and matrix regulatory cells (IMRCs) derived from human embryonic stem cells can safely treat lung injury and fibrosis in mouse models, and its mechanism of action is related to the paracrine effect. In this study, we investigated the therapeutic effects of IMRC-derived extracellular vesicles (IMRC-EVs) on a bleomycin-induced pulmonary fibrosis mouse model and explored the optimal route of administration. Methods To study the biodistribution of IMRC-EVs after administration via different routes, NIR labeled-IMRC-EVs were delivered by intratracheal (IT) or intravenous (IV) route, and in vivo imaging was acquired at different time points. The therapeutic effects of IMRC-EVs delivered by different routes were analyzed by assessing histology, lung function, cytokines levels, and transcriptome profiling. RNA-seq of lung tissues was performed to investigate the mechanisms of EV treatment through IT or IV administrations. Results IMRC-EVs mainly reserved in the liver and spleen when administrated via IV route; and mainly retained in the lungs via the IT route. IMRC-EVs administrated via both routes demonstrated a therapeutic effect as attenuated pulmonary fibrosis, improved lung function, and histological parameters. Based on our RNA-seq results, different pathways may be affected by IMRC-EVs administrated via IT or IV routes. In addition, in vitro experiments showed that IMRC-EVs inhibited epithelial-to-mesenchymal transition induced by TGF-β. Conclusion IMRC-EVs administrated via IT or IV routes generate different biodistributions, but are both effective for the treatment of bleomycin-induced pulmonary fibrosis. The therapeutic mechanisms of IMRC-EVs administrated via different routes may be different. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02839-7.
Collapse
Affiliation(s)
- Shengnan Yang
- Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Peipei Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Tingting Gao
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingyun Song
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Xinyu Zhao
- Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Yupeng Li
- Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Jun Wu
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liu Wang
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jie Hao
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100190, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chen Wang
- Harbin Medical University, Harbin, 150081, Heilongjiang Province, China. .,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China. .,National Center for Respiratory Medicine, Beijing, 100029, China. .,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China. .,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China. .,National Center for Respiratory Medicine, Beijing, 100029, China. .,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.
| |
Collapse
|
12
|
Ding L, Tang S, Tang W, Mosley DD, Yu A, Sil D, Romanova S, Bailey KL, Knoell DL, Wyatt TA, Oupický D. Perfluorocarbon Nanoemulsions Enhance Therapeutic siRNA Delivery in the Treatment of Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103676. [PMID: 34994102 PMCID: PMC8922118 DOI: 10.1002/advs.202103676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Local pulmonary administration of therapeutic siRNA represents a promising approach to the treatment of lung fibrosis, which is currently hampered by inefficient delivery. Development of perfluorooctylbromide (PFOB) nanoemulsions as a way of improving the efficiency of pulmonary polycation-based delivery of siRNA is reported. The results show that the polycation/siRNA/PFOB nanoemulsions are capable of efficiently silencing the expression of STAT3 and inhibiting chemokine receptor CXCR4-two validated targets in pulmonary fibrosis. Both in vitro and in vivo results demonstrate that the nanoemulsions improve mucus penetration and facilitate effective cellular delivery of siRNA. Pulmonary treatment of mice with bleomycin-induced pulmonary fibrosis shows strong inhibition of the progression of the disease and significant prolongation of animal survival. Overall, the study points to a promising local treatment strategy of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siyuan Tang
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Weimin Tang
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Deanna D. Mosley
- Department of Internal MedicineDivision of Pulmonary and Critical Care and SleepUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Ao Yu
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Diptesh Sil
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Svetlana Romanova
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Kristina L. Bailey
- Department of Internal MedicineDivision of Pulmonary and Critical Care and SleepUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Daren L. Knoell
- Department of Pharmacy Practice and ScienceCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Todd A. Wyatt
- Department of Internal MedicineDivision of Pulmonary and Critical Care and SleepUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of EnvironmentalAgricultural and Occupational HealthUniversity of Nebraska Medical CenterOmahaNE68198USA
- Research ServiceDepartment of Veterans Affairs Omaha‐Western Iowa Health Care SystemOmahaNE68105USA
| | - David Oupický
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| |
Collapse
|
13
|
Yanagihara T, Scallan C, Ask K, Kolb MR. Emerging therapeutic targets for idiopathic pulmonary fibrosis: preclinical progress and therapeutic implications. Expert Opin Ther Targets 2021; 25:939-948. [PMID: 34784834 DOI: 10.1080/14728222.2021.2006186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high associated morbidity and mortality. The therapeutic landscape has significantly changed in the last 20 years with two drugs currently approved that have demonstrated the ability to slow disease progression. Despite these developments, survival in IPF is limited, so there is a major interest in therapeutic targets which could serve to open up new therapeutic avenues. AREAS COVERED We review the most recent information regarding drug targets and therapies currently being investigated in preclinical and early-stage clinical trials. EXPERT OPINION The complex pathogenesis of IPF and variability in disease course and response to therapy highlights the importance of a precision approach to therapy. Novel technologies including transcriptomics and the use of serum biomarkers, will become essential tools to guide future drug development and therapeutic decision making particularly as it pertains to combination therapy.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Respiratory Medicine, Hamanomachi Hospital, Fukuoka, Japan
| | - Ciaran Scallan
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Rj Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Giacomelli C, Piccarducci R, Marchetti L, Romei C, Martini C. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochem Pharmacol 2021; 193:114812. [PMID: 34687672 PMCID: PMC8546906 DOI: 10.1016/j.bcp.2021.114812] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis (PF) is characterised by several grades of chronic inflammation and collagen deposition in the interalveolar space and is a hallmark of interstitial lung diseases (ILDs). Recently, infectious agents have emerged as driving causes for PF development; however, the role of viral/bacterial infections in the initiation and propagation of PF is still debated. In this context, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the current coronavirus disease 2019 (COVID-19) pandemic, has been associated with acute respiratory distress syndrome (ARDS) and PF development. Although the infection by SARS-CoV-2 can be eradicated in most cases, the development of fibrotic lesions cannot be precluded; furthermore, whether these lesions are stable or progressive fibrotic events is still unknown. Herein, an overview of the main molecular mechanisms driving the fibrotic process together with the currently approved and newly proposed therapeutic solutions was given. Then, the most recent data that emerged from post-COVID-19 patients was discussed, in order to compare PF and COVID-19-dependent PF, highlighting shared and specific mechanisms. A better understanding of PF aetiology is certainly needed, also to develop effective therapeutic strategies and COVID-19 pathology is offering one more chance to do it. Overall, the work reported here could help to define new approaches for therapeutic intervention in the diversity of the ILD spectrum.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Chiara Romei
- Multidisciplinary Team of Interstitial Lung Disease, Radiology Department, Pisa University Hospital, Via Paradisa 2, Pisa 56124, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy,Corresponding author
| |
Collapse
|
15
|
Takao S, Nakashima T, Masuda T, Namba M, Sakamoto S, Yamaguchi K, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Takahashi S, Nakashima A, Hattori N. Human bone marrow-derived mesenchymal stromal cells cultured in serum-free media demonstrate enhanced antifibrotic abilities via prolonged survival and robust regulatory T cell induction in murine bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther 2021; 12:506. [PMID: 34530920 PMCID: PMC8444523 DOI: 10.1186/s13287-021-02574-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are a potential therapeutic tool for pulmonary fibrosis. However, ex vivo MSC expansion using serum poses risks of harmful immune responses or unknown pathogen infections in the recipients. Therefore, MSCs cultured in serum-free media (SF-MSCs) are ideal for clinical settings; however, their efficacy in pulmonary fibrosis is unknown. Here, we investigated the effects of SF-MSCs on bleomycin-induced pulmonary inflammation and fibrosis compared to those of MSCs cultured in serum-containing media (S-MSCs). Methods SF-MSCs and S-MSCs were characterized in vitro using RNA sequence analysis. The in vivo kinetics and efficacy of SF-MSC therapy were investigated using a murine model of bleomycin-induced pulmonary fibrosis. For normally distributed data, Student’s t test and one-way repeated measures analysis of variance followed by post hoc Tukey’s test were used for comparison between two groups and multiple groups, respectively. For non-normally distributed data, Kruskal–Wallis and Mann–Whitney U tests were used for comparison between groups, using e Bonferroni’s correction for multiple comparisons. All tests were two-sided, and P < 0.05 was considered statistically significant. Results Serum-free media promoted human bone marrow-derived MSC expansion and improved lung engraftment of intravenously administered MSCs in recipient mice. SF-MSCs inhibited the reduction in serum transforming growth factor-β1 and the increase of interleukin-6 in both the serum and the bronchoalveolar lavage fluid during bleomycin-induced pulmonary fibrosis. SF-MSC administration increased the numbers of regulatory T cells (Tregs) in the blood and lungs more strongly than in S-MSC administration. Furthermore, SF-MSCs demonstrated enhanced antifibrotic effects on bleomycin-induced pulmonary fibrosis, which were diminished by antibody-mediated Treg depletion. Conclusions SF-MSCs significantly suppressed BLM-induced pulmonary inflammation and fibrosis through enhanced induction of Tregs into the lungs and corrected the dysregulated cytokine balance. Therefore, SF-MSCs could be a useful tool for preventing pulmonary fibrosis progression without the demerits of serum use. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02574-5.
Collapse
Affiliation(s)
- Shun Takao
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masashi Namba
- Department of Clinical Oncology, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinya Takahashi
- Department of Cardiovascular Surgery, Graduate School of Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
16
|
Zhao Y, Yan Z, Liu Y, Zhang Y, Shi J, Li J, Ji F. Effectivity of mesenchymal stem cells for bleomycin-induced pulmonary fibrosis: a systematic review and implication for clinical application. Stem Cell Res Ther 2021; 12:470. [PMID: 34420515 PMCID: PMC8380478 DOI: 10.1186/s13287-021-02551-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, fibrotic interstitial disease of the lung with poor prognosis and without effective treatment currently. Data from previous coronavirus infections, such as the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome, as well as current clinical evidence from the Coronavirus disease 2019 (COVID-19), support that SARS-CoV-2 infection may lead to PF, seriously impacting patient prognosis and quality of life. Therefore, effective prevention and treatment of PF will improve patient prognosis and reduce the overall social and economic burdens. Stem cells, especially mesenchymal stem cells (MSCs) have many great advantages, including migration to damaged lung tissue and secretion of various paracrine factors, thereby regulating the permeability of endothelial and epithelial cells, reducing inflammatory response, promoting tissue repair and inhibiting bacterial growth. Clinical trials of MSCs for the treatment of acute lung injury, PF and severe and critically ill COVID-19 are ongoing. The purpose of this study is to systematically review preclinical studies, explored the effectiveness of MSCs in the treatment of bleomycin (BLM)-induced pulmonary fibrosis and analyze the potential mechanism, combined with clinical trials of current MSCs for idiopathic pulmonary fibrosis (IPF) and COVID-19, so as to provide support for clinical research and transformation of MSCs. Searching PubMed and Embase (- 2021.4) identified a total of 36 preclinical studies of MSCs as treatment of BLM-induced acute lung injury and PF in rodent models. Most of the studies showed the MSCs treatment to reduce BLM-induced lung tissue inflammatory response, inflammatory cell infiltration, inflammatory cytokine expression, extracellular matrix production and collagen deposition, and to improve Ashcroft score. The results of present studies indicate that MSCs may serve as a potential therapeutic modality for the treatment of PF, including viral-induced PF and IPF.
Collapse
Affiliation(s)
- Yunyu Zhao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China
| | - Zhipeng Yan
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ying Liu
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yue Zhang
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Shi
- Department of Respiratory, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jingtao Li
- Department of Liver Diseases, The Hospital Affiliated to Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Fanpu Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi, China. .,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China. .,Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
17
|
Li S, Xu A, Li Y, Tan C, La Regina G, Silvestri R, Wang H, Qi W. RS4651 suppresses lung fibroblast activation via the TGF-β1/SMAD signalling pathway. Eur J Pharmacol 2021; 903:174135. [PMID: 33940030 DOI: 10.1016/j.ejphar.2021.174135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease resulting in respiratory failure with no efficient treatment options. We investigated the protective effect of RS4651 on pulmonary fibrosis in mice and the mechanism. METHODS Intratracheal injection of bleomycin (BLM) was used to induce pulmonary fibrosis in mice. RS4561 was administered intraperitoneally at different doses. Histopathological changes were observed. The level of alpha-smooth muscle actin (α-SMA) were also tested. In vitro, the proliferation and migratory effects of RS4651 treatment on MRC-5 cells pre-treated with transforming growth factor (TGF-β1) were examined. RNA-sequencing was used to detect differentially expressed target genes. Then, the expression of α-SMA, pSMAD2 and SMAD7 were analysed during RS4651 treatment of MRC-5 cells with or without silencing by SMAD7 siRNA. RESULTS Histopathological staining results showed decreased collagen deposition in RS4651 administered mice. Additionally, a lower level of α-SMA was also observed compared to the BLM group. The results of in vitro studies confirmed that RS4651 can inhibit the proliferation and migration, as well as α-SMA and pSMAD2 expression in MRC-5 cells treated with TGF-β1. RNA-sequencing data identified the target gene SMAD7. We found that RS4651 could upregulate SMAD7 expression and inhibit the proliferation and migration of MRC-5 cells via SMAD7, and RS4651 inhibition of α-SMA and pSMAD2 expression was blocked in SMAD7-siRNA MRC-5 cells. In vivo studies further confirmed that RS4651 could upregulate SMAD7 expression in BLM-induced lung fibrosis in mice. CONCLUSIONS Our data suggest that RS4651 alleviates BLM-induced pulmonary fibrosis in mice by inhibiting the TGF-β1/SMAD signalling pathway.
Collapse
Affiliation(s)
- Shirong Li
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Anjian Xu
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing 100050, PR China
| | - Yanmeng Li
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing 100050, PR China
| | - Chunting Tan
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Wenjie Qi
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
18
|
Yang S, Liu P, Jiang Y, Wang Z, Dai H, Wang C. Therapeutic Applications of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2021; 9:639657. [PMID: 33768094 PMCID: PMC7985078 DOI: 10.3389/fcell.2021.639657] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial disease of unknown etiology characterized by progressive pulmonary fibrosis. Pirfenidone and nintedanib are the only drugs that can prolong the time to disease progression, slow down the decline in lung function, and prolong survival. However, they do not offer a cure and are associated with tolerability issues. The pluripotency of mesenchymal stem cells (MSCs) and their ability to regulate immunity, inhibit inflammation, and promote epithelial tissue repair highlight the promise of MSC therapy for treating interstitial lung disease. However, optimal protocols are lacking for multi-parameter selection in MSC therapy. This review summarizes preclinical studies on MSC transplantation for the treatment of interstitial lung disease and clinical studies with known results. An analysis of relevant factors for the optimization of treatment plans is presented, including MSCs with different sources, administration routes and timing, dosages, frequencies, and pretreatments with MSCs. This review proposes an optimized plan for guiding the design of future clinical research to identify therapeutic options for this complex disease.
Collapse
Affiliation(s)
- Shengnan Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Harbin Medical University, Harbin, China
| | - Peipei Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yale Jiang
- School of Medicine, Tsinghua University, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Pulmonary toxicants and fibrosis: innate and adaptive immune mechanisms. Toxicol Appl Pharmacol 2020; 409:115272. [PMID: 33031836 PMCID: PMC9960630 DOI: 10.1016/j.taap.2020.115272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/04/2023]
Abstract
Pulmonary fibrosis is characterized by destruction and remodeling of the lung due to an accumulation of collagen and other extracellular matrix components in the tissue. This results in progressive irreversible decreases in lung capacity, impaired gas exchange and eventually, hypoxemia. A number of inhaled and systemic toxicants including bleomycin, silica, asbestos, nanoparticles, mustard vesicants, nitrofurantoin, amiodarone, and ionizing radiation have been identified. In this article, we review the role of innate and adaptive immune cells and mediators they release in the pathogenesis of fibrotic pathologies induced by pulmonary toxicants. A better understanding of the pathogenic mechanisms underlying fibrogenesis may lead to the development of new therapeutic approaches for patients with these debilitating and largely irreversible chronic diseases.
Collapse
|
20
|
Alton EWFW, Boyd AC, Davies JC, Gill DR, Griesenbach U, Harman TE, Hyde S, McLachlan G. Gene Therapy for Respiratory Diseases: Progress and a Changing Context. Hum Gene Ther 2020; 31:911-916. [PMID: 32746737 DOI: 10.1089/hum.2020.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Eric W F W Alton
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - A Christopher Boyd
- UK CF Gene Therapy Consortium, London, United Kingdom.,Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane C Davies
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Deborah R Gill
- UK CF Gene Therapy Consortium, London, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Uta Griesenbach
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Tracy E Harman
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,UK CF Gene Therapy Consortium, London, United Kingdom
| | - Stephen Hyde
- UK CF Gene Therapy Consortium, London, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gerry McLachlan
- UK CF Gene Therapy Consortium, London, United Kingdom.,The Roslin Institute & R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Wu A, Song H. Regulation of alveolar type 2 stem/progenitor cells in lung injury and regeneration. Acta Biochim Biophys Sin (Shanghai) 2020; 52:716-722. [PMID: 32445469 DOI: 10.1093/abbs/gmaa052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 01/02/2023] Open
Abstract
The renewal of lung epithelial cells is normally slow unless the lung is injured. The resident epithelial stem cells rapidly proliferate and differentiate to maintain lung structure and function when the lung is damaged. The alveolar epithelium is characterized by alveolar type 1 (AT1) and alveolar type 2 (AT2) cells. AT2 cells are the stem cells for alveoli, as they can both self-renew and generate AT1 cells. Abnormal proliferation and regulation of AT2 cells will lead to serious lung diseases including cancers. In this review, we focused on the alveolar stem/progenitor cells, the key physiological function of AT2 cells in lung homeostasis and the complicated regulation of AT2 cells in the repairing processes after lung injury.
Collapse
Affiliation(s)
- Ailing Wu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Hai Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
22
|
Dhall S, Lerch A, Johnson N, Jacob V, Jones B, Park MS, Sathyamoorthy M. A Flowable Placental Formulation Prevents Bleomycin-Induced Dermal Fibrosis in Aged Mice. Int J Mol Sci 2020; 21:E4242. [PMID: 32545915 PMCID: PMC7352837 DOI: 10.3390/ijms21124242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Fibrosis, the thickening and scarring of injured connective tissue, leads to a loss of organ function. Multiple cell types, including T-cells, macrophages, fibrocytes, and fibroblasts/myofibroblasts contribute to scar formation via secretion of inflammatory factors. This event results in an increase in oxidative stress and deposition of excessive extracellular matrix (ECM), characteristic of fibrosis. Further, aging is known to predispose connective tissue to fibrosis due to reduced tissue regeneration. In this study, we investigated the anti-fibrotic activity of a flowable placental formulation (FPF) using a bleomycin-induced dermal fibrosis model in aged mice. FPF consisted of placental amnion/chorion- and umbilical tissue-derived ECM and cells. The mice were injected with either FPF or PBS, followed by multiple doses of bleomycin. Histological assessment of FPF-treated skin samples revealed reduced dermal fibrosis, inflammation, and TGF-β signaling compared to the control group. Quantitative RT-PCR and Next Generation Sequencing analysis of miRNAs further confirmed anti-fibrotic changes in the FPF-treated group at both the gene and transcriptional levels. The observed modulation in miRNAs was associated with inflammation, TGF-β signaling, fibroblast proliferation, epithelial-mesenchymal transition and ECM deposition. These results demonstrate the potential of FPF in preventing fibrosis and may be of therapeutic benefit for those at higher risk of fibrosis due to wounds, aging, exposure to radiation and genetic predisposition.
Collapse
Affiliation(s)
- Sandeep Dhall
- Smith & Nephew Plc., Columbia, MD 21046, USA; (A.L.); (N.J.); (V.J.); (B.J.); (M.S.P.)
| | | | | | | | | | | | - Malathi Sathyamoorthy
- Smith & Nephew Plc., Columbia, MD 21046, USA; (A.L.); (N.J.); (V.J.); (B.J.); (M.S.P.)
| |
Collapse
|
23
|
Alvarez-Palomo B, Sanchez-Lopez LI, Moodley Y, Edel MJ, Serrano-Mollar A. Induced pluripotent stem cell-derived lung alveolar epithelial type II cells reduce damage in bleomycin-induced lung fibrosis. Stem Cell Res Ther 2020; 11:213. [PMID: 32493487 PMCID: PMC7268474 DOI: 10.1186/s13287-020-01726-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 01/23/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis is a chronic, progressive, and severe disease with a limited response to currently available therapies. Epithelial cell injury and failure of appropriate healing or regeneration are central to the pathogenesis of idiopathic pulmonary fibrosis. The purpose of this study is to investigate whether intratracheal transplantation of alveolar type II-like cells differentiated from induced pluripotent stem cells can stop and reverse the fibrotic process in an experimental model of bleomycin-induced lung fibrosis in rats. Methods Human induced pluripotent stem cells were differentiated to alveolar type II-like cells and characterized. Lung fibrosis was induced in rats by a single intratracheal instillation of bleomycin. Animals were transplanted with human induced pluripotent stem cells differentiated to alveolar type II-like cells at a dose of 3 × 106 cells/animal 15 days after endotracheal bleomycin instillation when the animal lungs were already fibrotic. Animals were sacrificed 21 days after the induction of lung fibrosis. Lung fibrosis was assessed by hydroxiprolin content, histologic studies, and the expression of transforming growth factor-β and α-smooth muscle actin. Results Cell transplantation of alveolar type II-like cells differentiated from induced pluripotent stem cells can significantly reduce pulmonary fibrosis and improve lung alveolar structure, once fibrosis has already formed. This is associated with the inhibition of transforming growth factor-β and α-smooth muscle actin in the damaged rat lung tissue. Conclusion To our knowledge, this is the first data to demonstrate that at the fibrotic stage of the disease, intratracheal transplantation of human induced pluripotent differentiated to alveolar type II-like cells halts and reverses fibrosis.
Collapse
Affiliation(s)
- Belén Alvarez-Palomo
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat 116, 08005, Barcelona, Spain
| | - Luis Ignacio Sanchez-Lopez
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Yuben Moodley
- Harry Perkins Research Institute, Centre for Cell Therapy and Regenerative Medicine (CCTRM), University of Western Australia, Perth, WA, Australia
| | - Michael J Edel
- Harry Perkins Research Institute, Centre for Cell Therapy and Regenerative Medicine (CCTRM), University of Western Australia, Perth, WA, Australia. .,Centro de Oftalmología Barraquer, Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| | - Anna Serrano-Mollar
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
24
|
Jafarzadeh Bejargafshe M, Hedayati M, Zahabiasli S, Tahmasbpour E, Rahmanzadeh S, Nejad-Moghaddam A. Safety and efficacy of stem cell therapy for treatment of neural damage in patients with multiple sclerosis. Stem Cell Investig 2019; 6:44. [PMID: 32039266 DOI: 10.21037/sci.2019.10.06] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a multifocal inflammatory disease that involves the central nervous system and associated with limbs paralysis and serious problems in sensation, limbs, visual and sphincter. This disease is a result of autoimmune mechanism in which autoantibodies target the self-myelin antigens and cause demyelination. Because of the myelin dysfunction, MS is clinically identified with neurological disabilities. Furthermore, it can be entered into the progressive phase because of irreversible neurodegeneration and axons damage. Unfortunately, there is no effective therapeutic method for this disease and current medications have been focused on amelioration of symptoms and chronic inflammation. Although current immunotherapies ameliorate the reactivity of autoimmune anti-myelin and MS relapse rate, there is no approved method for improvement of the disease progression and repairing of the damaged myelin. Therefore, finding an appropriate clinical treatment for improvement of neurological damages in MS patients is essential. Mesenchymal stem cells (MSCs) are multipotent cells with high proliferative and self-renewal capacities, as well as immunomodulatory and neuroregenerative effects. Bone marrow and adipose tissues derived MSCs have been considered for the treatment of different diseases because not only they can be easily isolated from these tissues, but also a patient can be served as a donor for himself without the risk of rejection. More importantly, autologous MSCs carry a safer pattern without the risk of malignant transformation. Here, we will discuss the effectiveness of MSCs therapy for MS patients by reviewing of clinical trials.
Collapse
Affiliation(s)
| | - Mohammad Hedayati
- Department of Cell and Molecular Biology, Rasht Branch, University of Guilan, Rasht, Iran
| | - Sahar Zahabiasli
- Department of Plantprotection, Rasht Branch, University of Guilan, Rasht, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine & Biomedical Innovations, Genetics & Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Rahmanzadeh
- Enzyme Technology Lab, Genetics & Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Nejad-Moghaddam
- Marine Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|