1
|
Devasia S, Joseph JT, P.S. S, Koizumi S, Clarke L, V.T. S, Kailas AP, Madhavan S. Management and Amelioration of Knee Joint Osteoarthritis in Adults Using a Novel High-Functional Bovine Collagen Peptide as a Nutritional Therapy: A Double-Blind, Prospective, Multicentric, Randomized, Active and Placebo Controlled, Five-Arm, Clinical Study to Evaluate the Efficacy, Safety, and Tolerability. Cartilage 2024; 15:363-374. [PMID: 38235711 PMCID: PMC11520019 DOI: 10.1177/19476035231221211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVE The various functionalities of collagen peptides have generated a large interest in utilizing the bioactive peptides as a nutritional therapy to ameliorate various physiological degenerative conditions. Collagen peptides are observed to reduce the pain and aligned difficulties with respect to osteoarthritis. Here we report the enhanced ameliorating property of novel high-functional "Wellnex" Type J collagen peptides following a double-blind randomized active and placebo-controlled 5-arm clinical trial (n = 100) by using it as a nutritional supplement in subjects with knee joint osteoarthritis in comparison with conventional bovine collagen peptides. The efficacy, safety, and tolerability were also studied. DESIGN Dosages of 2.5, 5.0, and 10.0 g of high-functional Type J bovine collagen peptides, 10.0 g of conventional collagen peptides, and 10.0 g of placebo were given to the 5 groups for a period of 90 days. The Western Ontario McMaster Universities Arthritis Index (WOMAC) score, Pain Scale, Quality of Life (QoL), Physician's Impression of change Score (PICS), serum C-terminal cross-linked telopeptide of type II collagen (CTX-II) levels and Magnetic Resonance Imaging Osteoarthritis Knee Score (MOAKS) parameters were monitored. RESULTS Type J 2.5 g showed significant improvement in WOMAC, QoL, CTX, and MOAKS and observed to be equivalent to conventional collagen peptide 10-g supplementation in terms of efficacy. CONCLUSION The two significant outcomes of the study were that Type J 10.0 g, Type J 5.0 g, Type J 2.5 g and conventional collagen peptides 10.0 g supplementation were observed to be beneficial nutraceutical therapies for knee joint osteoarthritis, and Type J 2.5 g supplementation was equivalent to conventional collagen peptides 10.0-g supplementation in terms of efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sriraam V.T.
- Aurous Health Care Research and Development India Private Limited, Chennai, India
| | | | | |
Collapse
|
2
|
Liu Z, Xie W, Li H, Liu X, Lu Y, Lu B, Deng Z, Li Y. Novel perspectives on leptin in osteoarthritis: Focus on aging. Genes Dis 2024; 11:101159. [PMID: 39229323 PMCID: PMC11369483 DOI: 10.1016/j.gendis.2023.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration, subchondral sclerosis, synovitis, and osteophyte formation. OA is associated with disability and impaired quality of life, particularly among the elderly. Leptin, a 16-kD non-glycosylated protein encoded by the obese gene, is produced on a systemic and local basis in adipose tissue and the infrapatellar fat pad located in the knee. The metabolic mechanisms employed by leptin in OA development have been widely studied, with attention being paid to aging as a corroborative risk factor for OA. Hence, in this review, we have attempted to establish a potential link between leptin and OA, by focusing on aging-associated mechanisms and proposing leptin as a potential diagnostic and therapeutic target in aging-related mechanisms of OA that may provide fruitful guidance and emphasis for future research.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
3
|
Rosochowicz MA, Lach MS, Richter M, Jagiełło I, Suchorska WM, Trzeciak T. The iPSC secretome is beneficial for in vitro propagation of primary osteoarthritic chondrocytes cell lines. Biochem Biophys Res Commun 2024; 730:150392. [PMID: 39003867 DOI: 10.1016/j.bbrc.2024.150392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND One of the obstacles to autologous chondrocyte implantation (ACI) is obtaining a large quantity of chondrocytes without depletion of their properties. The conditioned medium (CM) from different subpopulations of stem cells (mesenchymal stromal cells (MSC) or induced pluripotent stem cells (iPSC)) could be a gamechanger. MSCs' potential is related to the donor's health and age, which could be omitted when, as a source, iPSCs are used. There is a lack of data regarding their use in the chondrocyte culture expansion. Thus, we wanted to verify whether iPSC-CM could be beneficial for the cell culture of primary chondrocyte cells. METHODS We added the iPSC-CMs from GPCCi001-A and ND 41658*H cells to the culture of primary chondrocyte cell lines isolated from OA patients (n = 6) for other two passages. The composition of the CM was evaluated using Luminex technology. Then, we analysed the senescence, proliferation rate and using flow cytometry: viability, distribution of cell cycle phases, production of reactive oxygen species (ROS) and double-strand breaks. The cartilage-related markers were evaluated using Western blot and immunofluorescence. Additionally, a three-dimensional cell culture was used to determine the potential to form cartilage particles. RESULTS iPSC-CM increased proliferation and diminished cell ROS production and senescence. CM influenced the cartilage-related protein expression and promoted the growth of cartilage particles. The cell exposed to CM did not lose the ECM proteins, suggesting the chondroprotective effect for prolonged culture time. CONCLUSION Our preliminary results suggest a beneficial effect on maintaining chondrocyte biology during in vitro expansion.
Collapse
Affiliation(s)
- Monika A Rosochowicz
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland; Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland; Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland.
| | - Michał S Lach
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland; Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland
| | - Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland
| | - Inga Jagiełło
- Department of Tumour Pathology, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland
| | - Wiktoria M Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866, Poznan, Poland; Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15 Street, 61-866, Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, 28 Czerwca 1956r. 135/147 Street, 61-545, Poznan, Poland
| |
Collapse
|
4
|
Lin Y, Zhang L, Ji M, Shen S, Chen Y, Wu S, Wu X, Liu NQ, Lu J. MiR-653-5p drives osteoarthritis pathogenesis by modulating chondrocyte senescence. Arthritis Res Ther 2024; 26:111. [PMID: 38812033 PMCID: PMC11134905 DOI: 10.1186/s13075-024-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/28/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Due to the unclear pathogenesis of osteoarthritis (OA), effective treatment for this ailment is presently unavailable. Accumulating evidence points to chondrocyte senescence as a key driver in OA development. This study aims to identify OA-specific microRNAs (miRNAs) targeting chondrocyte senescence to alleviate OA progression. METHODS We screened and identified miRNAs differentially expressed in OA and normal cartilage, then confirmed the impact of miR-653-5p on chondrocyte functions and senescence phenotypes through in vitro experiments with overexpression/silencing. We identified interleukin 6 (IL-6) as the target gene of miR-653-5p and confirmed the regulatory influence of miR-653-5p on the IL-6/JAK/STAT3 signaling pathway through gain/loss-of-function studies. Finally, we assessed the therapeutic efficacy of miR-653-5p on OA using a mouse model with destabilization of the medial meniscus. RESULTS MiR-653-5p was significantly downregulated in cartilage tissues and chondrocytes from OA patients. Overexpression of miR-653-5p promoted chondrocyte matrix synthesis and proliferation while inhibiting chondrocyte senescence. Furthermore, bioinformatics target prediction and the luciferase reporter assays identified IL-6 as a target of miR-653-5p. Western blot assays demonstrated that miR-653-5p overexpression inhibited the protein expression of IL-6, the phosphorylation of JAK1 and STAT3, and the expression of chondrocyte senescence phenotypes by regulating the IL-6/JAK/STAT3 signaling pathway. More importantly, the cartilage destruction was significantly alleviated and chondrocyte senescence phenotypes were remarkably decreased in the OA mouse model treated by agomiR-653-5p compared to the control mice. CONCLUSIONS MiR-653-5p showed a significant decrease in cartilage tissues of individuals with OA, leading to an upregulation of chondrocyte senescence phenotypes in the articular cartilage. AgomiR-653-5p emerges as a potential treatment approach for OA. These findings provide further insight into the role of miR-653-5p in chondrocyte senescence and the pathogenesis of OA.
Collapse
Affiliation(s)
- Yucheng Lin
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Lu Zhang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Mingliang Ji
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Sinuo Shen
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yuzhi Chen
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Shichao Wu
- Department of Biochemistry and Molecular Biology, Wayne State University of Medicine, Detroit, MI, 48201, USA
| | - Xiaotao Wu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Nancy Q Liu
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA.
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Jung SH, Nam BJ, Choi CH, Kim S, Jung M, Chung K, Park J, Jung Y, Kim SH. Allogeneic umbilical cord blood-derived mesenchymal stem cell implantation versus microdrilling combined with high tibial osteotomy for cartilage regeneration. Sci Rep 2024; 14:3333. [PMID: 38336978 PMCID: PMC10858050 DOI: 10.1038/s41598-024-53598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
This study compared cartilage regeneration outcomes in knee osteoarthritis (OA) using allogeneic human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) implantation and microdrilling with high tibial osteotomy (HTO). Fifty-four patients (60 knees) were included: 24 (27 knees) in the hUCB-MSC group and 30 (33 knees) in the microdrilling group. Both groups showed significant improvements in pain and functional scores at 6, 12, and 24 months compared to baseline. At 24 months, the hUCB-MSC group had significantly improved scores. Arthroscopic assessment at 12 months revealed better cartilage healing in the hUCB-MSC group. In subgroup analysis according to the defect site, hUCB-MSC implantation showed superior cartilage healing for anterior lesions. In conclusion, both treatments demonstrated effectiveness for medial OA. However, hUCB-MSC implantation had better patient-reported outcomes and cartilage regeneration than microdrilling. The study suggests promising approaches for cartilage restoration in large knee defects due to OA.
Collapse
Affiliation(s)
- Se-Han Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Bum-Joon Nam
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Chong-Hyuk Choi
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungjun Kim
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangho Chung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Jisoo Park
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Youngsu Jung
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
6
|
Giordo R, Tulasigeri Totiger S, Caggiari G, Cossu A, Manunta AF, Posadino AM, Pintus G. Protective Effect of Knee Postoperative Fluid on Oxidative-Induced Damage in Human Knee Articular Chondrocytes. Antioxidants (Basel) 2024; 13:188. [PMID: 38397786 PMCID: PMC10886415 DOI: 10.3390/antiox13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The oxidative-stress-elicited deterioration of chondrocyte function is the initial stage of changes leading to the disruption of cartilage homeostasis. These changes entail a series of catabolic damages mediated by proinflammatory cytokines, MMPs, and aggrecanases, which increase ROS generation. Such uncontrolled ROS production, inadequately balanced by the cellular antioxidant capacity, eventually contributes to the development and progression of chondropathies. Several pieces of evidence show that different growth factors, single or combined, as well as anti-inflammatory cytokines and chemokines, can stimulate chondrogenesis and improve cartilage repair and regeneration. In this view, hypothesizing a potential growth-factor-associated action, we investigate the possible protective effect of post-operation knee fluid from patients undergoing prosthesis replacement surgery against ROS-induced damage on normal human knee articular chondrocytes (HKACs). To this end, HKACs were pre-treated with post-operation knee fluid and then exposed to H2O2 to mimic oxidative stress. Intracellular ROS levels were measured by using the molecular probe H2DCFDA; cytosolic and mitochondrial oxidative status were assessed by using HKACs infected with lentiviral particles harboring the redox-sensing green fluorescent protein (roGFP); and cell proliferation was determined by measuring the rate of DNA synthesis with BrdU incorporation. Moreover, superoxide dismutase (SOD), catalase, and glutathione levels from the cell lysates of treated cells were also measured. Postoperative peripheral blood sera from the same patients were used as controls. Our study shows that post-operation knee fluid can counteract H2O2-elicited oxidative stress by decreasing the intracellular ROS levels, preserving the cytosolic and mitochondrial redox status, maintaining the proliferation of oxidatively stressed HKACs, and upregulating chondrocyte antioxidant defense. Overall, our results support and propose an important effect of post-operation knee fluid substances in maintaining HKAC function by mediating cell antioxidative system upregulation and protecting cells from oxidative stress.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Smitha Tulasigeri Totiger
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Gianfilippo Caggiari
- Orthopaedic and Traumatology Department, University Hospital, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.C.); (A.F.M.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Andrea Fabio Manunta
- Orthopaedic and Traumatology Department, University Hospital, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.C.); (A.F.M.)
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Bi J, Zhang C, Lu C, Mo C, Zeng J, Yao M, Jia B, Liu Z, Yuan P, Xu S. Age-related bone diseases: Role of inflammaging. J Autoimmun 2024; 143:103169. [PMID: 38340675 DOI: 10.1016/j.jaut.2024.103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Bone aging is characterized by an imbalance in the physiological and pathological processes of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis, resulting in exacerbated bone loss and the development of age-related bone diseases, including osteoporosis, osteoarthritis, rheumatoid arthritis, and periodontitis. Inflammaging, a novel concept in the field of aging research, pertains to the persistent and gradual escalation of pro-inflammatory reactions during the aging process. This phenomenon is distinguished by its low intensity, systemic nature, absence of symptoms, and potential for management. The mechanisms by which inflammaging contribute to age-related chronic diseases, particularly in the context of age-related bone diseases, remain unclear. The precise manner in which systemic inflammation induces bone aging and consequently contributes to the development of age-related bone diseases has yet to be fully elucidated. This article primarily examines the mechanisms underlying inflammaging and its association with age-related bone diseases, to elucidate the potential mechanisms of inflammaging in age-related bone diseases and offer insights for developing preventive and therapeutic strategies for such conditions.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caimei Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caihong Lu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China; Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Makarczyk MJ. Cell Therapy Approaches for Articular Cartilage Regeneration. Organogenesis 2023; 19:2278235. [PMID: 37963189 PMCID: PMC10898818 DOI: 10.1080/15476278.2023.2278235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Articular cartilage is a common cartilage type found in a multitude of joints throughout the human body. However, cartilage is limited in its regenerative capacity. A range of methods have been employed to aid adults under the age of 45 with cartilage defects, but other cartilage pathologies such as osteoarthritis are limited to non-steroidal anti-inflammatory drugs and total joint arthroplasty. Cell therapies and synthetic biology can be utilized to assist not only cartilage defects but have the potential as a therapeutic approach for osteoarthritis as well. In this review, we will cover current cell therapy approaches for cartilage defect regeneration with a focus on autologous chondrocyte implantation and matrix autologous chondrocyte implantation. We will then discuss the potential of stem cells for cartilage repair in osteoarthritis and the use of synthetic biology to genetically engineer cells to promote cartilage regeneration and potentially reverse osteoarthritis.
Collapse
Affiliation(s)
- Meagan J Makarczyk
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Liu Y, Zhang Z, Li J, Chang B, Lin Q, Wang F, Wang W, Zhang H. Piezo1 transforms mechanical stress into pro senescence signals and promotes osteoarthritis severity. Mech Ageing Dev 2023; 216:111880. [PMID: 37839614 DOI: 10.1016/j.mad.2023.111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Osteoarthritis (OA) is a prevalent disease among elderly people and is often characterized by chronic joint pain and dysfunction. Recently, growing evidence of chondrocyte senescence in the pathogenesis of OA has been found, and targeting senescence has started to be recognized as a therapeutic approach for OA. Piezo1, a mechanosensitive Ca2+ channel, has been reported to be harmful in sensing abnormal mechanical overloading and leading to chondrocyte apoptosis. However, whether Piezo1 can transform mechanical signals into senescence signals has rarely been reported. In this study, we found that severe OA cartilage expressed more Piezo1 and the senescence markers p16 and p21. 24 h of periodic mechanical stress induced chondrocyte senescence in vitro. In addition, we demonstrated the pivotal role of Piezo1 in OA chondrocyte senescence induced by mechanical stress. Piezo1 sensed mechanical stress and promoted chondrocyte senescence via its Ca2+ channel ability. Moreover, Piezo1 promoted SASP factors production under mechanical stress, particularly in IL-6 and IL-1β. p38MAPK and NF-κB activation were two key pathways that responded to Piezo1 activation and promoted IL-6 and IL-1β production, respectively. Collectively, our study revealed a connection between abnormal mechanical stress and chondrocyte senescence, which was mediated by Piezo1.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Joint Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zian Zhang
- Department of Joint Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jun Li
- Department of Joint Surgery, Gaomi People's Hospital, Gaomi, Shandong Province, China
| | - Bingying Chang
- Department of Joint Surgery, Shouguang People's Hospital, Shouguang, Shandong Province, China
| | - Qingbo Lin
- Department of Joint Surgery, Rizhao Traditional Chinese Medicine Hospital, Rizhao, Shandong Province, China
| | - Fengyu Wang
- Department of Orthopedics, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong Province, China
| | - Wenzhe Wang
- Department of Joint Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Haining Zhang
- Department of Joint Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
10
|
Sha A, Liu Y, Qiu X, Xiong B. Polysaccharide from Paris polyphylla improves learning and memory ability in D-galactose-induced aging model mice based on antioxidation, p19/p53/p21, and Wnt/β-catenin signaling pathways. Int J Biol Macromol 2023; 251:126311. [PMID: 37579895 DOI: 10.1016/j.ijbiomac.2023.126311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The current study aimed to investigate the effects and mechanisms of Paris polyphylla polysaccharide component 1 (PPPm-1) to improve learning and memory in D-galactose-induced aging model mice. We determined the effects of PPPm-1 on the brain, organ index, and behavior in the aging model mice induced by D-galactose to study learning and memory improvement. UV-Vis spectrophotometry helped determine the PPPm-1 effect on antioxidant parameters associated with learning and memory in the brain and related organs of aging mice. Moreover, in the hippocampi of aging model mice, PPPm-1 effect on the mRNA and protein expressions of p19, p53, p21, P16, Rb, Wnt/1, β-catenin, CyclinD1, TCF-4, and GSK-3β were detected using the quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The results indicated that PPPm-1 could increase the brain and organ indexes, the avoidance latency, the total distance and average speed in the water maze, and the SOD and GSH-PX activities in the brain, liver tissues, and plasma. Moreover, the mRNA and protein expressions of Wnt/1, β-catenin, CyclinD1, and TCF-4 were also elevated in the hippocampi of aging model mice. However, the error times in step-through tests, the MDA content in the brain and liver tissues, the AChE activity in the brain tissue, the protein expressions of P16, Rb in the hippocampi, and the mRNA and protein expressions of p19, p53, p21, and GSK-3β in the hippocampi of aging model mice were significantly decreased. Thus, PPPm-1 significantly enhanced the learning and memory impairment induced by D-galactose in mice. The action mechanisms were associated with anti-oxidative stress, cholinergic nervous system function regulation, LTP enhancement in long-term memory, down-regulated expression of p19/p53/p21 signaling pathway factors, and Wnt/β-catenin signaling pathway activation.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing 404120, China; School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China.
| | - Yi Liu
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Xinyu Qiu
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Binbing Xiong
- School of biology and food engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| |
Collapse
|
11
|
Neckar P, Potockova H, Branis J, Havlas V, Novotny T, Lykova D, Gujski J, Drahoradova I, Ruzickova K, Kaclova J, Skala P, Bauer PO. Treatment of knee cartilage by cultured stem cells and three dimensional scaffold: a phase I/IIa clinical trial. INTERNATIONAL ORTHOPAEDICS 2023; 47:2375-2382. [PMID: 35854056 DOI: 10.1007/s00264-022-05505-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Damage of the knee cartilage is a common condition manifesting itself mainly by pain and/or swelling that may substantially reduce the quality of life while ultimately leading to osteoarthritis in affected patients. Here, we aimed to evaluate the safety and efficacy of cultured autologous bone marrow mesenchymal stem cells (BM-MSCs) attached to the 3D Chondrotissue® scaffold by autologous blood plasma coagulation (BiCure® ortho MSCp) in the treatment of knee cartilage defects. METHODS The primary endpoint of this phase I/IIa clinical trial was to evaluate the safety of the treatment. The secondary objective was to determine the short-to-medium-term therapeutic outcomes by standardized scoring questionnaires including Lysholm Knee Scoring Scale (Lysholm score), Knee Injury and Osteoarthritis Outcome Score (KOOS), and pain Visual Analogue Scale (VAS) systems and imaging (X-ray and magnetic resonance imaging, MRI). A total of six patients were included and followed for 12 months after the surgery. RESULTS BiCure® ortho MSCp was well tolerated with no adverse events associated with the investigational medicinal product. Significant improvements were observed in Lysholm scores and KOOS while X-ray showed no deterioration of the arthritis and MRI revealed a persistent filling of the chondral defects by the implant. CONCLUSION Overall, our data demonstrate the safety of the tested investigational medicinal product. The function of the treated knee improved within one year after surgery in all enrolled patients. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION EudraCT No.: 2018-004,067-31; October 18 2018.
Collapse
Affiliation(s)
- Pavel Neckar
- Department of Sports Medicine, Masaryk Hospital, Krajska zdravotni, Usti nad Labem, Czech Republic
| | | | | | - Vojtech Havlas
- Department of Orthopaedics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Tomas Novotny
- Department of Orthopaedics, University of J.E. Purkyne in Usti Nad Labem, Masaryk Hospital, Krajska zdravotni, Usti nad Labem, Czech Republic
| | | | | | | | | | | | - Petr Skala
- Department of Orthopaedics and Traumatology, University Hospital Pilsen, Pilsen, Czech Republic
| | | |
Collapse
|
12
|
Okuyan HM, Yurtal Z, Karaboğa İ, Kaçmaz F, Kalacı A. Ebselen, an Active Seleno-Organic Compound, Alleviates Articular Cartilage Degeneration in a Rat Model of Knee Osteoarthritis. Biol Trace Elem Res 2023; 201:3919-3927. [PMID: 36357655 DOI: 10.1007/s12011-022-03472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Osteoarthritis (OA) is a prevalent articular disease mainly characterized by extracellular matrix degradation, apoptosis, and inflammation, which lead to cartilage destruction and abnormal bone metabolism. With undesirable side effects, current limited symptomatic treatments are aimed at relieving pain and improving joint mobility in patients with OA. Intra-articular (IA) hyaluronic acid (HA) injection, as a nonsurgical therapy, is commonly used in the clinical management of knee OA, but the efficacy of this therapeutic option remains controversial. Ebselen has tremendous pharmacological importance for some diseases due to its antioxidant, antiapoptotic, and anti-inflammatory features. However, there is no research examining the therapeutic effect of Ebselen in OA using the rat OA model. Therefore, we aimed to investigate the therapeutic effect of Ebselen on cartilage degeneration and its role in bone morphogenetic protein 2 (BMP2) and nuclear factor kappa B (NF-κB) signaling in the molecular pathogenesis of OA. We induced a knee OA model in rats with an IA injection of monosodium-iodoacetate (MIA). After the treatment of Ebselen, we evaluated its chondroprotective effects by morphological, histopathological, and immunohistochemical methods and an enzyme-linked immunosorbent assay. We report for the first time that Ebselen treatment alleviated articular cartilage degeneration in the rat knee OA model and reduced MIA-induced BMP2 and NF-κB expressions. In addition, our results unveiled that Ebselen decreased IL-β and IL-6 levels but did not affect COMP levels in the rat serum. Ebselen could be a promising therapeutic drug for the prevention and treatment of OA by alleviating cartilage degeneration and regulating BMP2 and NF-κB expressions.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Department of Biomedical Engineering, Department of Physiotherapy and Rehabilitation-Faculty of Health Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey.
| | - Ziya Yurtal
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - İhsan Karaboğa
- Department of Emergency and Disaster Management, School of Health, Tekirdağ Namık Kemal University, Tekirdag, Turkey
| | - Filiz Kaçmaz
- Department of Molecular Biochemistry and Genetics, Graduate School of Health Sciences, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Aydıner Kalacı
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
13
|
Altschuler N, Zaslav KR, Di Matteo B, Sherman SL, Gomoll AH, Hacker SA, Verdonk P, Dulic O, Patrascu JM, Levy AS, Robinson D, Kon E. Aragonite-Based Scaffold Versus Microfracture and Debridement for the Treatment of Knee Chondral and Osteochondral Lesions: Results of a Multicenter Randomized Controlled Trial. Am J Sports Med 2023; 51:957-967. [PMID: 36779614 DOI: 10.1177/03635465231151252] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
BACKGROUND Lesions of the articular cartilage, with or without involvement of the subchondral bone, are a common cause of pain and dysfunction in the knee. Although several treatment options have been developed, the majority of previous clinical trials examined patients with isolated or focal midsized defects, which rarely represent the condition found in the general population. Rather, cartilage lesions are often associated with the presence of mild to moderate osteoarthritic changes. PURPOSE The present multicenter randomized controlled trial compared the clinical and radiographic outcomes of an aragonite-based osteochondral implant with a control group (arthroscopic debridement/microfractures) in patients affected by joint surface lesions of the knee, including those with concurrent mild to moderate osteoarthritis. STUDY DESIGN Randomized controlled trial; Level of evidence, 1. METHODS A total of 251 patients were enrolled in 26 medical centers according to the following criteria: age 21 to 75 years, up to 3 cartilage defects of International Cartilage Regeneration & Joint Preservation Society grade 3a or above located on the femoral condyles and/or trochlea, total treatable area from 1 to 7 cm2, bony defect depth ≤8 mm, and knee osteoarthritis grade 0 to 3 according to Kellgren-Lawrence score. Patients were randomized to the aragonite-based implant or debridement/microfracture control arm in a 2:1 ratio. Evaluation was performed at 6, 12, 18, and 24 months based on overall Knee injury and Osteoarthritis Outcome Score (KOOS) as the primary endpoint, and the KOOS subscales (Pain, Quality of Life, Activities of Daily Living), percentage of responders, and International Knee Documentation Committee (IKDC) subjective score as the secondary endpoints. Patients also underwent magnetic resonance imaging evaluation at 12 and 24 months to assess defect fill grade. Failures (ie, need for any secondary treatment) and adverse events were also recorded. RESULTS The implant group showed a statistically superior outcome in the primary endpoint and all secondary endpoints at each follow-up. The magnitude of improvement in the implant group was twice as large as that in the control group in terms of mean KOOS improvement at 2 years. Responder rate (defined as at least a 30-point improvement in overall KOOS) was 77.8% in the implant group as opposed to 33.6% in the control (P < .0001). Statistically superior results were seen in the IKDC score as well. At 24 months, 88.5% of the implanted group had at least 75% defect fill on magnetic resonance imaging as compared with 30.9% of controls (P < .0001). The failure rate was 7.2% for the implant group versus 21.4% for control. CONCLUSION This aragonite-based scaffold was safe and effective in the treatment of chondral and osteochondral lesions in the knee, including patients with mild to moderate osteoarthritis, and provided superior outcomes as compared with the control group. REGISTRATION NCT03299959 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
| | - Kenneth R Zaslav
- Lennox Hill Hospital-Northwell Health Orthopedic Institute, New York, New York, USA
| | - Berardo Di Matteo
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Seth L Sherman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Andreas H Gomoll
- Hospital for Special Surgery-Orthopedic Surgery and Sports Medicine, New York, New York, USA
| | - Scott A Hacker
- Grossmont Orthopedic Medical Group, San Diego, California, USA
| | | | - Oliver Dulic
- Medical Faculty, University of Novi Sad; Department for Orthopedic Surgery and Traumatology, University Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jenel M Patrascu
- Victor Babeş Timisoara University of Medicine and Pharmacy; Timisoara, Romania
| | - Andrew S Levy
- Center for Advanced Sports Medicine, Knee and Shoulder, Millburn, New Jersey, USA
| | | | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
14
|
Inhibition of Klf10 Attenuates Oxidative Stress-Induced Senescence of Chondrocytes via Modulating Mitophagy. Molecules 2023; 28:molecules28030924. [PMID: 36770589 PMCID: PMC9921806 DOI: 10.3390/molecules28030924] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease in the elderly. Accumulation of evidence has suggested that chondrocyte senescence plays a significant role in OA development. Here, we show that Krüppel-like factor 10 (Klf10), also named TGFβ inducible early gene-1 (TIEG1), is involved in the pathology of chondrocyte senescence. Knocking down the Klf10 in chondrocytes attenuated the tert-butyl hydroperoxide (TBHP)-induced senescence, inhibited generation of reactive oxygen species (ROS), and maintained mitochondrial homeostasis by activating mitophagy. These findings suggested that knocking down Klf10 inhibited senescence-related changes in chondrocytes and improved cartilage homeostasis, indicating that Klf10 may be a therapeutic target for protecting cartilage against OA.
Collapse
|
15
|
Saul D, Menger MM, Ehnert S, Nüssler AK, Histing T, Laschke MW. Bone Healing Gone Wrong: Pathological Fracture Healing and Non-Unions-Overview of Basic and Clinical Aspects and Systematic Review of Risk Factors. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010085. [PMID: 36671657 PMCID: PMC9855128 DOI: 10.3390/bioengineering10010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Bone healing is a multifarious process involving mesenchymal stem cells, osteoprogenitor cells, macrophages, osteoblasts and -clasts, and chondrocytes to restore the osseous tissue. Particularly in long bones including the tibia, clavicle, humerus and femur, this process fails in 2-10% of all fractures, with devastating effects for the patient and the healthcare system. Underlying reasons for this failure are manifold, from lack of biomechanical stability to impaired biological host conditions and wound-immanent intricacies. In this review, we describe the cellular components involved in impaired bone healing and how they interfere with the delicately orchestrated processes of bone repair and formation. We subsequently outline and weigh the risk factors for the development of non-unions that have been established in the literature. Therapeutic prospects are illustrated and put into clinical perspective, before the applicability of biomarkers is finally discussed.
Collapse
Affiliation(s)
- Dominik Saul
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
- Correspondence:
| | - Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Andreas K. Nüssler
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
16
|
Farkhondeh Fal M, Junker M, Mader K, Frosch KH, Kircher J. Morphology of the acromioclavicular-joint score (MAC). Arch Orthop Trauma Surg 2023; 143:1523-1529. [PMID: 35381874 PMCID: PMC9957884 DOI: 10.1007/s00402-022-04407-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION To date there is no generally accepted specific definition or classification of acromioclavicular (AC) joint osteoarthritis. The aim of this study is to analyze morphological parameters using magnetic resonance imaging (MRI) and to develop a scoring system as a basis for decision making to perform an AC-joint resection. MATERIALS AND METHODS In a retrospective-monocentric matched pair study, healthy and affected subjects were investigated using T2 MRI scans in the transverse plane. There were two groups, group 1 (n = 151) included healthy asymptomatic adults with no history of trauma. In group 2, we included n = 99 patients with symptomatic AC joints, who underwent arthroscopic AC-joint resection. The central and posterior joint space width and the AC angle were measured. Morphological changes such as cartilage degeneration, cysts and bone edema were noted. Malalignment of the joint was defined as: posterior joint space width < 2 mm in conjunction with an AC angle > 12°. A scoring system consisting of the measured morphologic factors was developed. RESULTS Symptomatic and asymptomatic patients showed significant differences in all measured items. We observed a significant difference in the MAC score for symptomatic and asymptomatic patients (mean 10.4 vs. 20.6, p = 0.0001). The ROC (receiver operator characteristic) analysis showed an excellent AUC of 0.899 (p = 0.001). The sensitivity of the MAC score was 0.81 and the specificity 0.86. The MAC score shows a significant moderate correlation with age (r = 0.358; p = 0.001). The correlation of age and the development of symptoms was only weak (r = 0.22, p = 0.001). Symptomatic patients showed significantly more frequent malalignment compared to asymptomatic patients (p = 0.001), but the positive predictive value that a patient with malalignment is also symptomatic is only 55%. CONCLUSION Patients with symptomatic AC joints showed a typical pattern of morphological changes on axial MRI scans with early posterior contact of the joint surfaces, reduction of joint space and malalignment as the basis for the development of a scoring system. The MAC score shows excellent test characteristics, and therefore, proved to be both an appropriate guidance for clinical practice as well as an excellent tool for comparative studies and is superior to the assessment of malalignment alone. LEVEL OF EVIDENCE Level IV, retrospective diagnostic study.
Collapse
Affiliation(s)
- Milad Farkhondeh Fal
- Department of Trauma and Orthopaedic Surgery, University Hospital Hamburg Eppendorf, Martinistraße 52, 20251, Hamburg, Germany.
| | - Marius Junker
- grid.459906.70000 0001 0061 4027Orthopaedic University Hospital Friedrichsheim, Marienburgerstr. 2, 60528 Frankfurt, Germany
| | - Konrad Mader
- grid.13648.380000 0001 2180 3484Department of Trauma and Orthopaedic Surgery, University Hospital Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Karl Heinz Frosch
- grid.13648.380000 0001 2180 3484Department of Trauma and Orthopaedic Surgery, University Hospital Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jörn Kircher
- Department of Shoulder and Elbow Surgery, ATOS Klinik Fleetinsel Hamburg, Admiralitätstrasse 3-4, 20459 Hamburg, Germany ,grid.411327.20000 0001 2176 9917Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40255 Düsseldorf, Germany
| |
Collapse
|
17
|
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14122639. [PMID: 36559133 PMCID: PMC9788411 DOI: 10.3390/pharmaceutics14122639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.
Collapse
|
18
|
He Y, Ding Q, Chen W, Lin C, Ge L, Ying C, Xu K, Wu Z, Xu L, Ran J, Chen W, Wu L. LONP1 downregulation with ageing contributes to osteoarthritis via mitochondrial dysfunction. Free Radic Biol Med 2022; 191:176-190. [PMID: 36064070 DOI: 10.1016/j.freeradbiomed.2022.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is an age-related disorder and an important cause of disability that is characterized by a senescence-associated secretory phenotype and matrix degradation leading to a gradual loss of articular cartilage integrity. Mitochondria, as widespread organelles, are involved in regulation of complex biological processes such as energy synthesis and cell metabolism, which also have bidirectional communication with the nucleus to help maintain cellular homeostasis and regulate adaptation to a broad range of stressors. In light of the evidence that OA is strongly associated with mitochondrial dysfunction. In addition, mitochondria are considered to be the culprits of cell senescence, and mitochondrial function changes during ageing are considered to have a controlling role in cell fate. Mitochondrial dysfunction is also observed in age-related OA, however, the internal mechanism by which mitochondrial function changes with ageing to lead to the development of OA has not been elucidated. In this study, we found that the expression of Lon protease 1 (LONP1), a mitochondrial protease, was decreased in human OA cartilage and in ageing rat chondrocytes. Furthermore, LONP1 knockdown accelerated the progression and severity of osteoarthritis, which was associated with aspects of mitochondrial dysfunction including oxidative stress, metabolic changes and mitophagy, leading to downstream MAPK pathway activation. Antioxidant therapy with resveratrol suppressed oxidative stress and MAPK pathway activation induced by LONP1 knockdown to mitigate OA progression. Therefore, our findings demonstrate that LONP1 is a central regulator of mitochondrial function in chondrocytes and reveal that downregulation of LONP1 with ageing contributes to osteoarthritis.
Collapse
Affiliation(s)
- Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Qianhai Ding
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Wenliang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Lujie Ge
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Chenting Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Zhipeng Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Langhai Xu
- Department of Pain, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Weiping Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| |
Collapse
|
19
|
Li L, Wang P, Jin J, Xie C, Xue B, Lai J, Zhu L, Jiang Q. The triply periodic minimal surface-based 3D printed engineering scaffold for meniscus function reconstruction. Biomater Res 2022; 26:45. [PMID: 36115984 PMCID: PMC9482755 DOI: 10.1186/s40824-022-00293-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The meniscus injury is a common disease in the area of sports medicine. The main treatment for this disease is the pain relief, rather than the meniscal function recovery. It may lead to a poor prognosis and accelerate the progression of osteoarthritis. In this study, we designed a meniscal scaffold to achieve the purposes of meniscal function recovery and cartilage protection.
Methods
The meniscal scaffold was designed using the triply periodic minimal surface (TPMS) method. The scaffold was simulated as a three-dimensional (3D) intact knee model using a finite element analysis software to obtain the results of different mechanical tests. The mechanical properties were gained through the universal machine. Finally, an in vivo model was established to evaluate the effects of the TPMS-based meniscal scaffold on the cartilage protection. The radiography and histological examinations were performed to assess the cartilage and bony structures. Different regions of the regenerated meniscus were tested using the universal machine to assess the biomechanical functions.
Results
The TPMS-based meniscal scaffold with a larger volume fraction and a longer functional periodicity demonstrated a better mechanical performance, and the load transmission and stress distribution were closer to the native biomechanical environment. The radiographic images and histological results of the TPMS group exhibited a better performance in terms of cartilage protection than the grid group. The regenerated meniscus in the TPMS group also had similar mechanical properties to the native meniscus.
Conclusion
The TPMS method can affect the mechanical properties by adjusting the volume fraction and functional periodicity. The TPMS-based meniscal scaffold showed appropriate features for meniscal regeneration and cartilage protection.
Collapse
|
20
|
Gems D, Kern CC. Is "cellular senescence" a misnomer? GeroScience 2022; 44:2461-2469. [PMID: 36068483 PMCID: PMC9768054 DOI: 10.1007/s11357-022-00652-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 01/06/2023] Open
Abstract
One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype).
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| | - Carina C. Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| |
Collapse
|
21
|
Haartmans MJ, Timur UT, Emanuel KS, Caron MM, Jeuken RM, Welting TJ, van Osch GJ, Heeren RM, Cillero-Pastor B, Emans PJ. Evaluation of the Anti-Inflammatory and Chondroprotective Effect of Celecoxib on Cartilage Ex Vivo and in a Rat Osteoarthritis Model. Cartilage 2022; 13:19476035221115541. [PMID: 35932105 PMCID: PMC9364198 DOI: 10.1177/19476035221115541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The potential chondroprotective effect of celecoxib, a nonsteroidal anti-inflammatory drug and selective cyclooxygenase-2 inhibitor used to reduce pain and inflammation in knee osteoarthritis patients, is disputed. This study aimed at investigating the chondroprotective effects of celecoxib on (1) human articular cartilage explants and (2) in an in vivo osteoarthritis rat model. DESIGN Articular cartilage explants from 16 osteoarthritis patients were cultured for 24 hours with celecoxib or vehicle. Secreted prostaglandins (prostaglandin E2, prostaglandin F2α, prostaglandin D2) and thromboxane B2 (TXB2) concentrations were determined in medium by ELISA, and protein regulation was measured with label-free proteomics. Cartilage samples from 7 of these patients were analyzed for gene expression using real-time quantitative polymerase chain reaction. To investigate the chondroprotective effect of celecoxib in vivo, 14 rats received an intra-articular injection of celecoxib or 0.9% NaCl after osteoarthritis induction by anterior cruciate ligament transection and partial medial meniscectomy (ACLT/pMMx model). Histopathological scoring was used to evaluate osteoarthritis severity 12 weeks after injection. RESULTS Secretion of prostaglandins, target of Nesh-SH3 (ABI3BP), and osteonectin proteins decreased, whereas tissue inhibitor of metalloproteinase 2 (TIMP-2) increased significantly after celecoxib treatment in the human (ex vivo) explant culture. Gene expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5 (ADAMTS4/5) and metalloproteinase 13 (MMP13) was significantly reduced after celecoxib treatment in human cartilage explants. Cartilage degeneration was reduced significantly in an in vivo osteoarthritis knee rat model. CONCLUSIONS Our data demonstrated that celecoxib acts chondroprotective on cartilage ex vivo and a single intra-articular bolus injection has a chondroprotective effect in vivo.
Collapse
Affiliation(s)
- Mirella J.J. Haartmans
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands,Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands
| | - Ufuk Tan Timur
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Kaj S. Emanuel
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands,Department of Orthopaedic Surgery,
Amsterdam Movement Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The
Netherlands
| | - Marjolein M.J. Caron
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Ralph M. Jeuken
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Tim J.M. Welting
- Laboratory for Experimental
Orthopedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht,
The Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports
Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The
Netherlands,Department of Otorhinolaryngology,
Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging
Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University,
Maastricht, The Netherlands,MERLN Institute for Technology-Inspired
Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering,
Maastricht University, Maastricht, The Netherlands,Dr. Berta Cillero-Pastor, Maastricht
MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass
Spectrometry, Maastricht University, Maastricht, The Netherlands; MERLN
Institute for Technology-Inspired Regenerative Medicine, Department of Cell
Biology-Inspired Tissue Engineering, Maastricht University, Universiteitssingel
40, 6229 ER, Maastricht, PO Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Pieter J. Emans
- Laboratory for Experimental
Orthopedics, Joint Preserving Clinic, Department of Orthopaedic Surgery, Maastricht
University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
22
|
Saini D, Jain V, Das B. Evaluation of natural chronic low dose radiation exposure on telomere length and transcriptional response of shelterin complex in individuals residing in Kerala coast, India. Mutat Res 2022; 825:111797. [PMID: 36116241 DOI: 10.1016/j.mrfmmm.2022.111797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The high level natural radiation areas (HLNRA) of Kerala coast provide unique opportunity to study the biological effect of chronic low dose ionizing radiation (LDIR) on human population below 100 mSv. The radiation level in this area varies from < 1.0-45 mGy /year due to patchy distribution of monazite in the sand, which contains 232Th (8-10%), 238U (0.3%), and their decay products. Telomere length attrition has been correlated to DNA damage due to genotoxic agents. The objective of the present study is to evaluate the effect of natural chronic LDIR exposure on telomere length and transcriptional response of telomere specific and DNA damage repair genes in peripheral blood mononuclear cells (PBMCs) of individuals from normal level natural radiation areas (NLNRA) and HLNRA of Kerala coast, southwest India. Blood samples were collected from 71 random male donors (24-80 years) from NLNRA (≤1.50 mGy/year; N = 19) and two HLNRA dose groups [1.51-10 mGy/year (N = 17); > 10 mGy/year, (N = 35)]. Genomic DNA was isolated from PBMCs and relative telomere length (RTL) was determined using real time q-PCR. Radio-adaptive response (RAR) study was carried out in PBMCs of 40 random males from NLNRA (N = 20) and HLNRA (>10 mGy/year; N = 20), where PBMCs were given a challenged dose of 2.0 Gy gamma radiation at 4 h. Transcriptional profile of telomere specific (TRF1, TRF2, POT1, TIN2, TPP1, RAP1), DNA damage response (RAD17, ATM, CHEK1) and base excision repair pathway (BER) (OGG1, XRCC1, NTH1, NEIL1, MUTYH, MBD4) genes were analysed at basal level and after a challenge dose of 2.0 Gy at 4 h. Our results did not show any significant effect of chronic LDR on RTL among the individuals from NLNRA and two HLNRA groups (p = 0.195). However, influence of age on RTL was clearly evident among NLNRA and HLNRA individuals. At basal level, TRF1, TRF2, TIN2, MBD4, NEIL1 and RAD17 showed significant up-regulation, whereas XRCC1 was significantly down regulated in HLNRA individuals. After a challenge dose of 2.0 Gy, significant transcriptional up-regulation was observed at telomere specific (TRF2, POT1) and BER (MBD4, NEIL1) genes in HLNRA individuals as compared to NLNRA suggesting their role in RAR. In conclusion, elevated level of natural chronic LDR exposure did not have any adverse effect on telomere length in Kerala coast. Significant transcriptional response at TRF2, MBD4 and NEIL1 at basal level and with a challenge dose of 2.0 Gy suggested their active involvement in efficient repair and telomere maintenance in individuals from HLNRA of Kerala coast.
Collapse
Affiliation(s)
- Divyalakshmi Saini
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Mumbai University, Fort Mumbai, India
| | - Vinay Jain
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai 400 094, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Mumbai University, Fort Mumbai, India; Homi Bhabha National Institute (HBNI), Anushakti Nagar, Trombay, Mumbai 400 094, India.
| |
Collapse
|
23
|
Terkawi MA, Ebata T, Yokota S, Takahashi D, Endo T, Matsumae G, Shimizu T, Kadoya K, Iwasaki N. Low-Grade Inflammation in the Pathogenesis of Osteoarthritis: Cellular and Molecular Mechanisms and Strategies for Future Therapeutic Intervention. Biomedicines 2022; 10:biomedicines10051109. [PMID: 35625846 PMCID: PMC9139060 DOI: 10.3390/biomedicines10051109] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a musculoskeletal disease characterized by cartilage degeneration and stiffness, with chronic pain in the affected joint. It has been proposed that OA progression is associated with the development of low-grade inflammation (LGI) in the joint. In support of this principle, LGI is now recognized as the major contributor to the pathogenesis of obesity, aging, and metabolic syndromes, which have been documented as among the most significant risk factors for developing OA. These discoveries have led to a new definition of the disease, and OA has recently been recognized as a low-grade inflammatory disease of the joint. Damage-associated molecular patterns (DAMPs)/alarmin molecules, the major cellular components that facilitate the interplay between cells in the cartilage and synovium, activate various molecular pathways involved in the initiation and maintenance of LGI in the joint, which, in turn, drives OA progression. A better understanding of the pathological mechanisms initiated by LGI in the joint represents a decisive step toward discovering therapeutic strategies for the treatment of OA. Recent findings and discoveries regarding the involvement of LGI mediated by DAMPs in OA pathogenesis are discussed. Modulating communication between cells in the joint to decrease inflammation represents an attractive approach for the treatment of OA.
Collapse
|
24
|
Jacob J, Aggarwal A, Aggarwal A, Bhattacharyya S, Kumar V, Sharma V, Sahni D. Senescent chondrogenic progenitor cells derived from articular cartilage of knee osteoarthritis patients contributes to senescence-associated secretory phenotype via release of IL-6 and IL-8. Acta Histochem 2022; 124:151867. [PMID: 35192993 DOI: 10.1016/j.acthis.2022.151867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Despite the presence of chondrogenic progenitor cells (CPCs) in knee osteoarthritis patients they are unable to repair the damaged cartilage. This study aimed to evaluate the oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the CPCs derived from osteoarthritic cartilage and compare with the CPCs of healthy articular cartilage. METHODS Isolated CPCs were characterized based on phenotypic expression of stem cell markers, clonogenicity, and tri-lineage differentiation assay. Production of ROS was measured using DCFDA assay. Cellular senescence in CPCs was assessed by senescence-associated beta-galactosidase assay and expression of senescence markers at the gene level using real-time PCR. Morphological features associated with senescent OA-CPCs were studied using scanning electron microscopy. To study SASP, the production of inflammatory cytokines was assessed in the culture supernatant using a flow-cytometer based cytometric bead array. RESULTS OA-CPCs exhibited elevated ROS levels along with a relatively high percentage of senescent cells compared to non-OA CPCs, and a positive correlation exists between ROS production and senescence. The morphological assessment of senescent CPCs revealed increased cell size and multiple nuclei in senescent OA-CPCs. These results were further validated by elevated expression of senescence genes p16, p21, and p53. Additionally, culture supernatant of senescent OA-CPCs expressed IL-6 and IL-8 cytokines indicative of SASP. CONCLUSIONS Despite exhibiting similar expression of stem cell markers and clonogenicity, CPCs undergo oxidative stress in diseased knee joint leading to increased production of intracellular ROS in chondrogenic progenitor cells that support cellular senescence. Further, senescence in OA-CPCs is mediated via the release of pro-inflammatory cytokines, IL-6 and IL-8.
Collapse
Affiliation(s)
- Justin Jacob
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Anjali Aggarwal
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Aditya Aggarwal
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vishal Kumar
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vinit Sharma
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Daisy Sahni
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
25
|
Engineering osteoarthritic cartilage model through differentiating senescent human mesenchymal stem cells for testing disease-modifying drugs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:309-327. [PMID: 34109475 PMCID: PMC10077511 DOI: 10.1007/s11427-021-1933-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Significant cellular senescence has been observed in cartilage harvested from patients with osteoarthritis (OA). In this study, we aim to develop a senescence-relevant OA-like cartilage model for developing disease-modifying OA drugs (DMOADs). Specifically, human bone marrow-derived mesenchymal stromal cells (MSCs) were expanded in vitro up to passage 10 (P10-MSCs). Following their senescent phenotype formation, P10-MSCs were subjected to pellet culture in chondrogenic medium. Results from qRT-PCR, histology, and immunostaining indicated that cartilage generated from P10-MSCs displayed both senescent and OA-like phenotypes without using other OA-inducing agents, when compared to that from normal passage 4 (P4)-MSCs. Interestingly, the same gene expression differences observed between P4-MSCs and P10-MSC-derived cartilage tissues were also observed between the preserved and damaged OA cartilage regions taken from human samples, as demonstrated by RNA Sequencing data and other analysis methods. Lastly, the utility of this senescence-initiated OA-like cartilage model in drug development was assessed by testing several potential DMOADs and senolytics. The results suggest that pre-existing cellular senescence can induce the generation of OA-like changes in cartilage. The P4- and P10-MSCs derived cartilage models also represent a novel platform for predicting the efficacy and toxicity of potential DMOADs on both preserved and damaged cartilage in humans.
Collapse
|
26
|
Zheng T, Huang J, Lai J, Zhou Q, Liu T, Xu Q, Ji G, Ye Y. Long non-coding RNA HOTAIRincreased mechanical stimulation-induced apoptosis by regulating microRNA-221/BBC3 axis in C28/I2 cells. Bioengineered 2021; 12:10734-10744. [PMID: 34874225 PMCID: PMC8810135 DOI: 10.1080/21655979.2021.2003129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abnormal mechanical stimulation contributes to articular cartilage degeneration and osteoarthritis (OA) development. Many long noncoding RNAs (lncRNAs) are involved in mechanical force-induced cartilage degeneration. LncRNA HOTAIR (HOTAIR) has been demonstrated to increase osteoarthritis progression. However, the roles of HOTAIR in mechanical stimulation-treated chondrocytes are still unclear. In this study, we found that mechanical stimulation significantly induced apoptosis in C28/I2 cells. In addition, the expression of HOTAIR was up regulated and the expression of miR-221 was down regulated. Knockdown of HOTAIR effectively ameliorated cell apoptosis induced by mechanical stimulation. HOTAIR could interact with miR-221, which targeted to degrade BBC3. Overexpression of BBC3 could reverse the decreased apoptotic rates induced by HOTAIR knockdown. Collectively, HOTAIR promoted mechanical stimulation-induced apoptosis by regulating the miR-221/BBC3 axis in C28/I2 cells.
Collapse
Affiliation(s)
- Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongjun Ye
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
27
|
Zhang K, Wang L, Liu Z, Geng B, Teng Y, Liu X, Yi Q, Yu D, Chen X, Zhao D, Xia Y. Mechanosensory and mechanotransductive processes mediated by ion channels in articular chondrocytes: Potential therapeutic targets for osteoarthritis. Channels (Austin) 2021; 15:339-359. [PMID: 33775217 PMCID: PMC8018402 DOI: 10.1080/19336950.2021.1903184] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Articular cartilage consists of an extracellular matrix including many proteins as well as embedded chondrocytes. Articular cartilage formation and function are influenced by mechanical forces. Hind limb unloading or simulated microgravity causes articular cartilage loss, suggesting the importance of the healthy mechanical environment in articular cartilage homeostasis and implying a significant role of appropriate mechanical stimulation in articular cartilage degeneration. Mechanosensitive ion channels participate in regulating the metabolism of articular chondrocytes, including matrix protein production and extracellular matrix synthesis. Mechanical stimuli, including fluid shear stress, stretch, compression and cell swelling and decreased mechanical conditions (such as simulated microgravity) can alter the membrane potential and regulate the metabolism of articular chondrocytes via transmembrane ion channel-induced ionic fluxes. This process includes Ca2+ influx and the resulting mobilization of Ca2+ that is due to massive released Ca2+ from stores, intracellular cation efflux and extracellular cation influx. This review brings together published information on mechanosensitive ion channels, such as stretch-activated channels (SACs), voltage-gated Ca2+ channels (VGCCs), large conductance Ca2+-activated K+ channels (BKCa channels), Ca2+-activated K+ channels (SKCa channels), voltage-activated H+ channels (VAHCs), acid sensing ion channels (ASICs), transient receptor potential (TRP) family channels, and piezo1/2 channels. Data based on epithelial sodium channels (ENaCs), purinergic receptors and N-methyl-d-aspartate (NMDA) receptors are also included. These channels mediate mechanoelectrical physiological processes essential for converting physical force signals into biological signals. The primary channel-mediated effects and signaling pathways regulated by these mechanosensitive ion channels can influence the progression of osteoarthritis during the mechanosensory and mechanoadaptive process of articular chondrocytes.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Lifu Wang
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Zhongcheng Liu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Bin Geng
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Yuanjun Teng
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Xuening Liu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Qiong Yi
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Dechen Yu
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Xiangyi Chen
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Dacheng Zhao
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| | - Yayi Xia
- Department of Orthopedics, Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou Gansu, China
| |
Collapse
|
28
|
Low E, Alimohammadiha G, Smith LA, Costello LF, Przyborski SA, von Zglinicki T, Miwa S. How good is the evidence that cellular senescence causes skin ageing? Ageing Res Rev 2021; 71:101456. [PMID: 34487917 PMCID: PMC8524668 DOI: 10.1016/j.arr.2021.101456] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Skin is the largest organ of the body with important protective functions, which become compromised with time due to both intrinsic and extrinsic ageing processes. Cellular senescence is the primary ageing process at cell level, associated with loss of proliferative capacity, mitochondrial dysfunction and significantly altered patterns of expression and secretion of bioactive molecules. Intervention experiments have proven cell senescence as a relevant cause of ageing in many organs. In case of skin, accumulation of senescence in all major compartments with ageing is well documented and might be responsible for most, if not all, the molecular changes observed during ageing. Incorporation of senescent cells into in-vitro skin models (specifically 3D full thickness models) recapitulates changes typically associated with skin ageing. However, crucial evidence is still missing. A beneficial effect of senescent cell ablation on skin ageing has so far only been shown following rather unspecific interventions or in transgenic mouse models. We conclude that evidence for cellular senescence as a relevant cause of intrinsic skin ageing is highly suggestive but not yet completely conclusive.
Collapse
Affiliation(s)
- Evon Low
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Ghazaleh Alimohammadiha
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Lucy A Smith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Lydia F Costello
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Stefan A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Satomi Miwa
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
29
|
Herrera-Pérez M, González-Martín D, Vallejo-Márquez M, Godoy-Santos AL, Valderrabano V, Tejero S. Ankle Osteoarthritis Aetiology. J Clin Med 2021; 10:jcm10194489. [PMID: 34640504 PMCID: PMC8509242 DOI: 10.3390/jcm10194489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Ankle osteoarthritis affects 1% of the population and, unlike gonarthrosis or coxarthrosis, is secondary to previous trauma in more than 75% of cases. Another peculiarity of this disease is that it affects a younger and active population, with socio-occupational implications. Mechanical factors, such as incongruity, instability, malalignment, and impacts, which increase stress on isolated areas of the ankle cartilage, have been clearly associated with the development of osteoarthritis. However, we cannot ignore the importance of pro-inflammatory mediators present from the moment of fracture as triggers of the cascade that eventually causes chondrocyte cell death, ultimately responsible for ankle osteoarthritis.
Collapse
Affiliation(s)
- Mario Herrera-Pérez
- Foot and Ankle Unit, Orthopedic Surgery and Traumatology Service, Hospital Universitario de Canarias, Carretera de la Cuesta s/n, 38320 Santa Cruz de Tenerife, Spain;
- School of Medicine (Health Sciences), Universidad de La Laguna, Campus de Ofra, s/n, 38071 San Cristóbal de La Laguna, Spain
- Correspondence:
| | - David González-Martín
- Foot and Ankle Unit, Orthopedic Surgery and Traumatology Service, Hospital Universitario de Canarias, Carretera de la Cuesta s/n, 38320 Santa Cruz de Tenerife, Spain;
- School of Medicine (Health Sciences), Universidad de La Laguna, Campus de Ofra, s/n, 38071 San Cristóbal de La Laguna, Spain
| | - Mercedes Vallejo-Márquez
- Musculoskeletal Radiology Unit, Hospital Universitario Virgen del Rocío, Av. Manuel Siurot, s/n, 41013 Sevilla, Spain;
| | | | - Victor Valderrabano
- Orthopaedic Department, Swiss Ortho Center, Schmerzklinik Basel, Hirschgässlein 15, 4051 Basel, Switzerland;
| | - Sergio Tejero
- Foot and Ankle Unit, Orthopedic Surgery and Traumatology Service, Hospital Universitario Virgen del Rocío, Av. Manuel Siurot, s/n, 41013 Sevilla, Spain;
- School of Medicine, Universidad de Sevilla, Av. Sánchez Pizjuán, s/n, 41009 Sevilla, Spain
| |
Collapse
|
30
|
Zhang XX, He SH, Liang X, Li W, Li TF, Li DF. Aging, Cell Senescence, the Pathogenesis and Targeted Therapies of Osteoarthritis. Front Pharmacol 2021; 12:728100. [PMID: 34497523 PMCID: PMC8419276 DOI: 10.3389/fphar.2021.728100] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, debilitating joint disease characterized by progressive destruction of articular cartilage. For a long time, OA has been considered as a degenerative disease, while recent observations indicate the mechanisms responsible for the pathogenesis of OA are multifaceted. Aging is a key factor in its development. Current treatments are palliative and no disease modifying anti-osteoarthritis drugs (DMOADs) are available. In addition to articular cartilage degradation, cellular senescence, synovial inflammation, and epigenetic alterations may all have a role in its formation. Accumulating data demonstrate a clear relationship between the senescence of articular chondrocytes and OA formation and progression. Inhibition of cell senescence may help identify new agents with the properties of DMOADs. Several anti-cellular senescence strategies have been proposed and these include sirtuin-activating compounds (STACs), senolytics, and senomorphics drugs. These agents may selectively remove senescent cells or ameliorate their harmful effects. The results from preclinical experiments and clinical trials are inspiring. However, more studies are warranted to confirm their efficacy, safety profiles and adverse effects of these agents.
Collapse
Affiliation(s)
- Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Liu W, Brodsky AS, Feng M, Liu Y, Ding J, Jayasuriya CT, Chen Q. Senescent Tissue-Resident Mesenchymal Stromal Cells Are an Internal Source of Inflammation in Human Osteoarthritic Cartilage. Front Cell Dev Biol 2021; 9:725071. [PMID: 34552931 PMCID: PMC8450518 DOI: 10.3389/fcell.2021.725071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Human osteoarthritic cartilage contains not only chondrocytes (OACs), but also mesenchymal stromal cells (OA-MSCs), whose abundance increases during osteoarthritis (OA). However, it is not clear how OA-MSC contributes to OA pathogenesis. Here, we show that aging OA-MSC plays an important role in cell senescence, fibrosis, and inflammation in cartilage. Protein array analysis indicates that OA-MSC expresses pro-inflammatory senescence associated secretory phenotype (SASP) including IL-1β, IL-6, IL-8, and CXCL1, 5, and 6, which play key roles in OA pathogenesis. OAC is a main recipient of the inflammatory signals by expressing receptors of cytokines. RNAseq analysis indicates that the transition from normal cartilage stromal cells (NCSCs) to OA-MSC during aging results in activation of SASP gene expression. This cell transition process can be recapitulated by a serial passage of primary OAC in cell culture comprising (1) OAC dedifferentiation into NCSC-like cells, and (2) its subsequent senescence into pro-inflammatory OA-MSC. While OAC dedifferentiation is mediated by transcriptional repression of chondrogenic gene expression, OA-MSC senescence is mediated by transcriptional activation of SASP gene expression. We postulate that, through replication-driven OAC dedifferentiation and mesenchymal stromal cell (MSC) senescence, OA-MSC becomes an internal source of sterile inflammation in human cartilage joint.
Collapse
Affiliation(s)
- Wenguang Liu
- Department of Orthopedics, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Alexander S. Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
- Center for Computational Molecular Biology, Brown University, Providence, RI, United States
| | - Meng Feng
- Department of Orthopedics, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Yajun Liu
- Department of Orthopedics, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Jing Ding
- Department of Orthopedics, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Chathuraka T. Jayasuriya
- Department of Orthopedics, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Qian Chen
- Department of Orthopedics, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
32
|
Rahman S, Szojka ARA, Liang Y, Kunze M, Goncalves V, Mulet-Sierra A, Jomha NM, Adesida AB. Inability of Low Oxygen Tension to Induce Chondrogenesis in Human Infrapatellar Fat Pad Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:703038. [PMID: 34381784 PMCID: PMC8350173 DOI: 10.3389/fcell.2021.703038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Articular cartilage of the knee joint is avascular, exists under a low oxygen tension microenvironment, and does not self-heal when injured. Human infrapatellar fat pad-sourced mesenchymal stem cells (IFP-MSC) are an arthroscopically accessible source of mesenchymal stem cells (MSC) for the repair of articular cartilage defects. Human IFP-MSC exists physiologically under a low oxygen tension (i.e., 1-5%) microenvironment. Human bone marrow mesenchymal stem cells (BM-MSC) exist physiologically within a similar range of oxygen tension. A low oxygen tension of 2% spontaneously induced chondrogenesis in micromass pellets of human BM-MSC. However, this is yet to be demonstrated in human IFP-MSC or other adipose tissue-sourced MSC. In this study, we explored the potential of low oxygen tension at 2% to drive the in vitro chondrogenesis of IFP-MSC. We hypothesized that 2% O2 will induce stable chondrogenesis in human IFP-MSC without the risk of undergoing endochondral ossification at ectopic sites of implantation. METHODS Micromass pellets of human IFP-MSC were cultured under 2% O2 or 21% O2 (normal atmosphere O2) in the presence or absence of chondrogenic medium with transforming growth factor-β3 (TGFβ3) for 3 weeks. Following in vitro chondrogenesis, the resulting pellets were implanted in immunodeficient athymic nude mice for 3 weeks. RESULTS A low oxygen tension of 2% was unable to induce chondrogenesis in human IFP-MSC. In contrast, chondrogenic medium with TGFβ3 induced in vitro chondrogenesis. All pellets were devoid of any evidence of undergoing endochondral ossification after subcutaneous implantation in athymic mice.
Collapse
Affiliation(s)
- Samia Rahman
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Alexander R. A. Szojka
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Yan Liang
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Melanie Kunze
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Victoria Goncalves
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nadr M. Jomha
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Adetola B. Adesida
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta Hospital, Edmonton, AB, Canada
| |
Collapse
|
33
|
Shen H, He Y, Wang N, Fritch MR, Li X, Lin H, Tuan RS. Enhancing the potential of aged human articular chondrocytes for high-quality cartilage regeneration. FASEB J 2021; 35:e21410. [PMID: 33617078 DOI: 10.1096/fj.202002386r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 11/11/2022]
Abstract
Autologous chondrocyte implantation (ACI) is a regenerative procedure used to treat focal articular cartilage defects in knee joints. However, age has been considered as a limiting factor and ACI is not recommended for patients older than 40-50 years of age. One reason for this may be due to the reduced capacity of aged chondrocytes in generating new cartilage. Currently, the underlying mechanism contributing to aging-associated functional decline in chondrocytes is not clear and no proven approach exists to reverse chondrocyte aging. Given that chondrocytes in healthy hyaline cartilage typically display a spherical shape, believed to be essential for chondrocyte phenotype stability, we hypothesize that maintaining aged chondrocytes in a suspension culture that forces the cells to adopt a round morphology may help to "rejuvenate" them to a younger state, thus, leading to enhanced cartilage regeneration. Chondrocytes isolated from aged donors displayed reduced proliferation potential and impaired capacity in generating hyaline cartilage, compared to cells isolated from young donors, indicated by increased hypertrophy and cellular senescence. To test our hypothesis, the "old" chondrocytes were seeded as a suspension onto an agarose-based substratum, where they maintained a round morphology. After the 3-day suspension culture, aged chondrocytes displayed enhanced replicative capacity, compared to those grown adherent to tissue culture plastic. Moreover, chondrocytes subjected to suspension culture formed new cartilage in vitro with higher quality and quantity, with enhanced cartilage matrix deposition, concomitant with lower levels of hypertrophy and cellular senescence markers. Mechanistic analysis suggested the involvement of the RhoA and ERK1/2 signaling pathways in the "rejuvenation" process. In summary, our study presents a robust and straightforward method to enhance the function of aged human chondrocytes, which can be conveniently used to generate a large number of high-quality chondrocytes for ACI application in the elderly.
Collapse
Affiliation(s)
- He Shen
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ning Wang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xinyu Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Abstract
The objective of this review is to summarize the surgical options for primary osteoarthritis of the elbow, reported clinical outcomes, and suggested indications in previous literatures. The surgical management of primary elbow arthritis has evolved because of an improved understanding of pathologic mechanisms and manifestations as well as the development of novel surgical techniques and devices. Osteocapsular arthroplasty (OCA), elbow debridement, distraction arthroplasty, and total elbow arthroplasty (TEA) have been employed for managing elbow osteoarthritis. Elbow debridement and OCA can be helpful in most cases of symptomatic elbow arthritis. TEA is usually recommended for end-stage arthritis in elderly patients after prosthetic implants have been in place for long periods or after complications. Distraction arthroplasty might find a place in the treatment of younger, active patients with end-stage arthritis.
Collapse
Affiliation(s)
- Jae-Man Kwak
- 65526Department of Orthopedic Surgery, Eulji Medical Center, College of Medicine, Eulji University, Uijeongbu, South Korea
| | - In-Ho Jeon
- 65526Department of Orthopedic Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul, South Korea
| |
Collapse
|
35
|
Thompson SD, Pichika R, Lieber RL, Lavasani M. Systemic transplantation of adult multipotent stem cells prevents articular cartilage degeneration in a mouse model of accelerated ageing. Immun Ageing 2021; 18:27. [PMID: 34098983 PMCID: PMC8183038 DOI: 10.1186/s12979-021-00239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/26/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most prevalent joint diseases of advanced age and is a leading cause of disability worldwide. Ageing is a major risk factor for the articular cartilage (AC) degeneration that leads to OA, and the age-related decline in regenerative capacity accelerates OA progression. Here we demonstrate that systemic transplantation of a unique population of adult multipotent muscle-derived stem/progenitor cells (MDSPCs), isolated from young wild-type mice, into Zmpste24-/- mice (a model of Hutchinson-Gilford progeria syndrome, a condition marked by accelerated ageing), prevents ageing-related homeostatic decline of AC. RESULTS MDSPC treatment inhibited expression of cartilage-degrading factors such as pro-inflammatory cytokines and extracellular matrix-proteinases, whereas pro-regenerative markers associated with cartilage mechanical support and tensile strength, cartilage resilience, chondrocyte proliferation and differentiation, and cartilage growth, were increased. Notably, MDSPC transplantation also increased the expression level of genes known for their key roles in immunomodulation, autophagy, stress resistance, pro-longevity, and telomere protection. Our findings also indicate that MDSPC transplantation increased proteoglycan content by regulating chondrocyte proliferation. CONCLUSIONS Together, these findings demonstrate the ability of systemically transplanted young MDSPCs to preserve a healthy homeostasis and promote tissue regeneration at the molecular and tissue level in progeroid AC. These results highlight the therapeutic potential of systemically delivered multipotent adult stem cells to prevent age-associated AC degeneration.
Collapse
Affiliation(s)
- Seth D Thompson
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, USA
| | - Rajeswari Pichika
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Richard L Lieber
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Mitra Lavasani
- Shirley Ryan Abilitylab (Formerly the Rehabilitation Institute of Chicago), 355 E. Erie St, IL, 60611, Chicago, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA.
- Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, USA.
| |
Collapse
|
36
|
Thompson SD, Pichika R, Lieber RL, Budinger GRS, Lavasani M. Systemic Transplantation of Adult Multipotent Stem Cells Functionally Rejuvenates Aged Articular Cartilage. Aging Dis 2021; 12:726-731. [PMID: 34094638 PMCID: PMC8139193 DOI: 10.14336/ad.2020.1118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis (OA) is the most common and debilitating joint disease of advanced age and has no universally effective therapy. Here, we demonstrate that systemic transplantation of adult multipotent muscle-derived stem/progenitor cells (MDSPCs)—isolated from young mice—rejuvenates the knee articular cartilage (AC) of naturally aged mice. This intervention reduced expression of pro-inflammatory cytokines (Tnf and Il1a) and catabolic matrix-degrading proteinases (Mmp3 and Mmp13) in aged cartilage. Treatment with young MDSPCs also increased expression of pro-regenerative (Col2a1 and Acan) and prolongevity genes (Pot1b), including those associated with chondrocyte proliferation and differentiation, cartilage growth, and telomere protection. Indeed, the AC of MDSPC-treated mice exhibited reduced age-related histological pathologies. Importantly, the reduced mobility and arthritis-related gait dysfunctions of aged mice were also ameliorated by this treatment. Together, our findings demonstrate the rejuvenating effects of systemic transplantation of young MDSPCs on aging AC—at the molecular, tissue, and functional levels. This suggests that MDSPCs, or their secreted factors, may represent a novel therapy that can increase mobility and function in aged or OA patients.
Collapse
Affiliation(s)
- Seth D Thompson
- 1Shirley Ryan AbilityLab, Chicago, Illinois, USA.,2Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA.,3Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, Illinois, USA
| | - Rajeswari Pichika
- 1Shirley Ryan AbilityLab, Chicago, Illinois, USA.,2Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - Richard L Lieber
- 1Shirley Ryan AbilityLab, Chicago, Illinois, USA.,2Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - G R Scott Budinger
- 4Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mitra Lavasani
- 1Shirley Ryan AbilityLab, Chicago, Illinois, USA.,2Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA.,3Northwestern University Interdepartmental Neuroscience (NUIN) Graduate Program, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
37
|
[Cartilage repair procedures for early osteoarthritis]. DER ORTHOPADE 2021; 50:356-365. [PMID: 33844031 DOI: 10.1007/s00132-021-04099-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Commonly used cartilage repair procedures have been established for focal cartilage lesions; however, degenerative lesions with accompanying changes of other intraarticular structures are much more common in clinical practice. This stage, in which classic radiological signs of osteoarthritis are absent, is called early osteoarthritis and is characterized by impaired joint homeostasis with biomechanical and biochemical changes that can have a negative effect on regenerative cartilage therapy procedures. INDICATION Cartilage repair procedures are indicated for symptomatic focal early osteoarthritis, defined as cartilage degeneration ICRS grades I or II around a focal cartilage defect ICRS grades III or IV. In more advanced osteoarthritis with significant narrowing of the joint space, cartilage repair procedures are generally contraindicated. THERAPY The most studied cartilage repair procedure for early osteoarthritis is autologous chondrocyte implantation, which has shown acceptable results in case series, although higher failure rates are to be expected compared to focal, traumatic cartilage lesions. The use of bone marrow-stimulating techniques seems to be limited in early osteoarthritis and should only be used in cases of lesion < 2 cm2 and very little surrounding cartilage degeneration. Concomitant surgical procedures, especially unloading osteotomies, are very important.
Collapse
|
38
|
Kim GB, Shon OJ, Seo MS, Choi Y, Park WT, Lee GW. Mesenchymal Stem Cell-Derived Exosomes and Their Therapeutic Potential for Osteoarthritis. BIOLOGY 2021; 10:285. [PMID: 33915850 PMCID: PMC8066608 DOI: 10.3390/biology10040285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Exosomes are nano-sized vesicles (50-150 nm in diameter) that contain nucleic acids (e.g., microRNA and messenger RNA), functional proteins, and bioactive lipids. They are secreted by various types of cells, including B cells, T cells, reticulocytes, dendritic cells, mast cells, epithelial cells, and mesenchymal stem cells (MSCs). They perform a wide variety of functions, including the repair of damaged tissues, regulation of immune responses, and reduction in inflammation. When considering the limitations of MSCs, including issues in standardization and immunogenicity, MSC-derived exosomes have advantages such as small dimensions, low immunogenicity, and lack of requirement for additional procedures for culture expansion or delivery. MSC-derived exosomes have shown outstanding therapeutic effects through chondro-protective and anti-inflammatory properties. MSC-derived exosomes may enable a new therapeutic paradigm for the treatment of osteoarthritis. However, further research is needed to prove their clinical effectiveness and feasibility.
Collapse
Affiliation(s)
- Gi Beom Kim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Oog-Jin Shon
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Young Choi
- Department of Orthopedic Surgery, Kosin University College of Medicine, Kosin University Gospel Hospital, 262 Gamcheon-ro, Seogu, Busan 49267, Korea;
| | - Wook Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| |
Collapse
|
39
|
Kon E, Di Matteo B, Verdonk P, Drobnic M, Dulic O, Gavrilovic G, Patrascu JM, Zaslav K, Kwiatkowski G, Altschuler N, Robinson D. Aragonite-Based Scaffold for the Treatment of Joint Surface Lesions in Mild to Moderate Osteoarthritic Knees: Results of a 2-Year Multicenter Prospective Study. Am J Sports Med 2021; 49:588-598. [PMID: 33481631 DOI: 10.1177/0363546520981750] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is considered a contraindication to most cartilage repair techniques. Several regenerative approaches have been attempted with the aim of delaying or preventing joint replacement, with controversial results. Currently, there is a paucity of data on the use of single-step techniques, such as cell-free biomimetic scaffolds, for the treatment of joint surface lesions (JSLs) in OA knees. PURPOSE To present the 2-year follow-up clinical and radiological outcomes after implantation of a novel, cell-free aragonite-based scaffold for the treatment of JSLs in patients with mild to moderate knee OA in a multicenter prospective study. STUDY DESIGN Case series; Level of evidence, 4. METHODS A total of 86 patients, 60 male and 26 female, with a mean age of 37.4 ± 10.0 years, mild to moderate knee OA, and a mean defect size of 3.0 ± 1.7 cm2, were recruited at 8 medical centers according to the following criteria: radiographic mild to moderate knee OA (Kellgren-Lawrence grade 2 or 3); up to 3 treatable chondral/osteochondral defects (International Cartilage Repair Society grades 3 and 4) on the femoral condyles or trochlea; a total defect size ≤7 cm2; and no concurrent knee instability, severe axial malalignment, or systemic arthropathy. All patients were evaluated at baseline and at 6, 12, 18, and 24 months after implantation using the Knee injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) subjective score. Additionally, magnetic resonance imaging (MRI) was performed to assess the amount of cartilage defect filling at the repaired site. RESULTS Significant improvement on all KOOS subscales was recorded from baseline (Pain: 49.6 ± 13.1; Activities of Daily Living [ADL]: 56.1 ± 18.4; Sport: 22.8 ± 18.8; Quality of Life [QoL]: 23.5 ± 16.5; Symptoms: 55.4 ± 19.9) to the 24 months' follow-up (Pain: 79.5 ± 21.1 [P < .001]; ADL: 84.1 ± 21.4 [P < .001]; Sport: 60.8 ± 31.9 [P < .001]; QoL: 54.9 ± 30.4 [P < .001]; Symptoms: 77.7 ± 21.2 [P < .001]). The IKDC subjective score showed a similar trend and improved from 37.8 ± 14.7 at baseline to 65.8 ± 23.5 at 24 months (P < .001). MRI showed a significant increase in defect filling over time: up to 78.7% ± 25.3% of surface coverage after 24 months. Treatment failure requiring revision surgery occurred in 8 patients (9.3%). CONCLUSION The use of an aragonite-based osteochondral scaffold in patients with JSLs and mild to moderate knee OA provided significant clinical improvement at the 24-month follow-up, as reported by the patients. These findings were associated with good cartilage defect filling, as observed on MRI.
Collapse
Affiliation(s)
- Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | - Berardo Di Matteo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Italy.,First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Peter Verdonk
- ORTHOCA, AZ Monica, Antwerp, Belgium.,Department of Orthopaedic Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Matej Drobnic
- Department of Orthopedic Surgery, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Oliver Dulic
- Department of Orthopedic Surgery and Traumatology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | | | - Jenel M Patrascu
- Spitalul Clinic Judeţean de Urgenţa±"Pius Brînzeu" Timişoara, Timişoara, Romania
| | - Ken Zaslav
- OrthoVirginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Grzegorz Kwiatkowski
- Department of Knee Surgery, Arthroscopy and Sports Trauma, District Hospital of Orthopedics and Trauma Surgery, Piekary Slaskie, Poland
| | | | - Dror Robinson
- Orthopedic Research Unit and Foot and Ankle Service, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
40
|
Serum cartilage oligomeric matrix protein as a biomarker for predicting development and progression of knee osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2021; 45:551-557. [PMID: 33438071 DOI: 10.1007/s00264-021-04943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Current modes of diagnosing and monitoring knee osteoarthritis (OA) are based on weight bearing radiographs usually made by the time joint destruction is already established. Cartilage oligomeric matrix protein (COMP) is a breakdown product of cartilage and its serum levels may be a potential indicator of early destruction in OA. This study aimed to ascertain the usefulness of serum COMP (sCOMP) in diagnosis and monitoring of knee joint OA within the study environment. METHODS Ninety consenting adults were recruited. In the control group, 45 subjects having a diagnosis of knee OA had clinical and radiological grading done and blood samples taken for assay of sCOMP using the sandwich ELISA method. Forty-five volunteers with no features of osteoarthritis also had serum collected for sCOMP assay. Values obtained were then cross referenced with demographic indices, clinical and radiological severity grade to assess for relationships. RESULTS Serum COMP was found to be significantly elevated (p = 0.0001) in the study group. The mean values and standard deviation of sCOMP were 3400 ± 1042.9 ng/ml and 2222 ± 605.6 ng/ml for the study and control groups, respectively. Higher values of sCOMP were found to be associated with higher clinical and radiological grades of OA. CONCLUSION The study demonstrates that sCOMP is significantly higher in patients with knee OA than in those without the disease. Values of sCOMP were also found to increase with severity of knee OA, indicating the possibility of its use as a marker of diagnosis and severity.
Collapse
|
41
|
Tsuyuguchi Y, Nakasa T, Ishikawa M, Miyaki S, Matsushita R, Kanemitsu M, Adachi N. The Benefit of Minced Cartilage Over Isolated Chondrocytes in Atelocollagen Gel on Chondrocyte Proliferation and Migration. Cartilage 2021; 12:93-101. [PMID: 30311776 PMCID: PMC7755964 DOI: 10.1177/1947603518805205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Autologous chondrocyte implantation is a necessary procedure for the repair of articular cartilage defects; however, isolated chondrocyte implantation requires a 2-step procedure (for harvesting and implantation) and is limited by cytotoxicity due to enzymatic digestion. Therefore, in this in vitro study, we evaluated the possible benefit of using minced cartilage embedded in a 3-dimensional culture scaffold and fixed with fibrin glue, in comparison with isolated chondrocytes in atelocollagen, to induce cell migration, proliferation, and matrix production, using cartilage from patients with knee joint osteoarthritis. DESIGN Cartilage fragments were obtained from 7 female patients with knee osteoarthritis (OA) and embedded in atelocollagen gels. As a control, chondrocytes were isolated and embedded in gels in the same manner. These composites were cultured for 3 weeks, and cell proliferation and matrix production were evaluated using histology and immunochemistry. RESULTS Histologically, minced cartilage showed cell migration from the cartilage fragments into the gel, with the Bern score and cell count in the minced cartilage group being significantly higher than those in the control group. Immunohistochemistry revealed that the number of Ki67-positive cells, the expression of LECT-1 and TGF-β, and the glycosaminoglycan content were significantly higher in the minced cartilage than in the control group. Minced cartilage exhibited superior cell migration, proliferation, and glycosaminoglycan content than isolated chondrocytes. CONCLUSION Our findings support that minced cartilage has a favorable potential for cell proliferation and matrix production compared with the isolated chondrocytes after enzymatic treatment.
Collapse
Affiliation(s)
- Yusuke Tsuyuguchi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Yusuke Tsuyuguchi, Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Ryosuke Matsushita
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Munekazu Kanemitsu
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
42
|
Abou Khadrah RS, Reda AM. Quantitative T2 mapping of glenohumeral joint osteoarthritis: a case-control study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-020-00208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
T2 relaxometry is a highly sensitive technique used to assess morphological changes in the cartilage prior to anatomical changes; it provides the quantification of the disparate components of cartilage such as water, proteoglycans, and collagen. This study aims to assess T2 values of glenohumeral joint cartilage using 1.5 T magnetic resonance imaging (MRI) and comparing T2 relaxation time values between two groups—the control group and the group of patients with osteoarthritis (OA). The study was conducted among 35 OA patients (27 females and eight males; median age, 60 years; age range, 43–69 years). This group was divided into primary OA (n = 15) and secondary OA (n = 20). The control group had 30 patients (25 females and five males; median age, 46 years; age range, 30–56 years). All patients were assessed using plain radiography to determine the grade of osteoarthritis followed by a multi-echo spin pulse sequence (T2 mapping) of the coronal plane. Three areas were considered to evaluate the cartilage-humeral zone, glenoid zone, and central zones by manually drawing the region of interest (ROI). The values were compared statistically by using Mann-Whitney U tests.
Results
Median T2 values differed significantly between the control group (43.4 ms [interquartile ranges, 41.54-45.33 ms]) and the OA patients for grades I (59.2 ms [interquartile ranges, 57.54-63.33 ms]), II (64.7 ms [interquartile ranges, 62.54-67.39 ms]), and III (61.9 ms, [interquartile ranges, 57.54-64.53 ms]). Mean T2 values were significantly higher in the different zones when comparing the OA patients whatever the cause primary or secondary (p value < 0.05) with the control group; no significant difference was noticed between the primary and secondary OA (p value > 0.05).
Conclusion
T2 relaxometry is a reliable, quantitative method for the assessment of the glenohumeral cartilage for significant differences in T2 values between the control group and the OA patients.
Collapse
|
43
|
He Y, Wu Z, Xu L, Xu K, Chen Z, Ran J, Wu L. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell Mol Life Sci 2020; 77:3729-3743. [PMID: 32468094 PMCID: PMC11105031 DOI: 10.1007/s00018-020-03497-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is the most common degenerative joint disease and causes major pain and disability in adults. It has been reported that mitochondrial dysfunction in chondrocytes is associated with osteoarthritis. Sirtuins are a family of nicotinamide adenine dinucleotide-dependent histone deacetylases that have the ability to deacetylate protein targets and play an important role in the regulation of cell physiological and pathological processes. Among sirtuin family members, sirtuin 3, which is mainly located in mitochondria, can exert its deacetylation activity to regulate mitochondrial function, regeneration, and dynamics; these processes are presently recognized to maintain redox homeostasis to prevent oxidative stress in cell metabolism. In this review, we provide present opinions on the effect of mitochondrial dysfunction in osteoarthritis. Furthermore, the potential protective mechanism of SIRT3-mediated mitochondrial homeostasis in the progression of osteoarthritis is discussed.
Collapse
Affiliation(s)
- Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Langhai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhonggai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
44
|
Kim GB, Kim JD, Choi Y, Choi CH, Lee GW. Intra-Articular Bone Marrow Aspirate Concentrate Injection in Patients with Knee Osteoarthritis. APPLIED SCIENCES 2020; 10:5945. [DOI: 10.3390/app10175945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We aimed to evaluate the 5-year follow-up outcomes of an intra-articular bone marrow aspirate concentrate (BMAC) injection in patients with knee osteoarthritis. This is the first study to report the outcomes following BMAC injections over a 5-year follow-up period. Seventy knees of 37 patients, including 33 bilateral knees, were investigated. The primary outcome was the visual analogue scale (VAS) score for pain in the knee joint, and the secondary outcomes were the International Knee Documentation Committee score, the 36-Item Short Form Health Survey score, the Knee injury Osteoarthritis Outcome Score, Lysholm Knee Questionnaire/Tegner activity scale, BMAC injection-induced complications, and 5-year treatment success rate. The 5-year post-injection VAS scores (4.7 ± 0.5) were significantly lower than the preoperative scores (8.3 ± 1.2) (p = 0.01). Improvement in VAS scores was significantly greater in patients with Kellgren–Lawrence (K-L) Grade I or II than those in those with K-L Grade III or IV. Improvement in other clinical parameters and success rates were significantly low and the rates of secondary operation and failure were significantly higher in patients with K-L Grades III or IV. Intra-articular BMAC injections could be useful for managing patients with K-L Grades I or II osteoarthritis.
Collapse
Affiliation(s)
- Gi Beom Kim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Namgu, Daegu 42415, Korea
| | - Jae-Do Kim
- Department of Orthopedic Surgery, Kosin University College of Medicine, Kosin University Gospel Hospital, 34 Amnam-dong, Seogu, Busan 602-702, Korea
| | - Young Choi
- Department of Orthopedic Surgery, Kosin University College of Medicine, Kosin University Gospel Hospital, 34 Amnam-dong, Seogu, Busan 602-702, Korea
| | - Chang Hyun Choi
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Namgu, Daegu 42415, Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Namgu, Daegu 42415, Korea
| |
Collapse
|
45
|
Ibounig T, Simons T, Launonen A, Paavola M. Glenohumeral Osteoarthritis: An Overview of Etiology and Diagnostics. Scand J Surg 2020; 110:441-451. [PMID: 32662351 DOI: 10.1177/1457496920935018] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Osteoarthritis (OA) is the world's most common joint disease and there is currently no cure. Glenohumeral osteoarthritis (GHOA) accounts for an estimated 5% -17% of patients with shoulder complaints. The etiology of GHOA is multifactorial, and we review the various non-specific and specific risk factors and further sub-classify them into local and systemic factors. MATERIALS AND METHODS Data for this review article were identified by searches of MEDLINE, PubMed, and references from relevant articles using search terms such as "glenohumeral," "osteoarthritis," "epidemiology," "etiology," "imaging," and "pathophysiology." Only articles published in English, German, and Finnish between 1957 and 2017 were included. RESULTS The prevalence of radiological shoulder OA has been estimated to be as high as 16% -20% in the middle-aged and elderly population, but the concordance between structural findings and symptoms seems to be weak, as many of these individuals are asymptomatic. The vast majority of GHOA is related to non-specific factors, namely advancing age, while specific risk factors are commonly found in young patients. Diagnosis of GHOA is made when typical clinical features and defined radiological findings overlap in an individual. CONCLUSION Ultimately the determinants of shoulder pain in GHOA remain incompletely understood. Improved understanding of the etiology and diagnosis of GHOA will enable clinicians to better determine which patients will benefit from different treatment modalities, as well as provide new avenues to potential treatments.
Collapse
Affiliation(s)
- T Ibounig
- Department of Orthopaedics and Traumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Finnish Center of Evidence based Orthopaedics (FICEBO), University of Helsinki, Helsinki, Finland
| | - T Simons
- Department of Orthopaedics and Traumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - A Launonen
- Department of Orthopaedics and Traumatology, Tampere University Hospital, Tampere, Finland
| | - M Paavola
- Department of Orthopaedics and Traumatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Kumar A, Bano D, Ehninger D. Cellular senescence in vivo: From cells to tissues to pathologies. Mech Ageing Dev 2020; 190:111308. [PMID: 32622996 DOI: 10.1016/j.mad.2020.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
Abstract
Senescent cells accumulate during aging in a variety of tissues. Although scarce, they could influence tissue function non-cell-autonomously via secretion of a range of factors in their neighborhood. Recent studies support a role of senescent cells in age-related morbidity, including neurodegenerative diseases, cardiovascular pathologies, cancers, aging-associated nephrological alterations, chronic pulmonary disease and osteoarthritis, indicating that senescent cells could represent an interesting target for therapeutic exploitation across a range of pathophysiological contexts. In this article, we review data available to indicate which cell types can undergo senescence within various mammalian tissue environments and how these processes may contribute to tissue-specific pathologies associated with old age. We also consider markers used to identify senescent cells in vitro and in vivo. The data discussed may serve as an important starting point for an extended definition of molecular and functional characteristics of senescent cells in different organs and may hence promote the development and refinement of targeting strategies aimed at removing senescent cells from aging tissues.
Collapse
Affiliation(s)
- Avadh Kumar
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
47
|
Yang H, Chen C, Chen H, Duan X, Li J, Zhou Y, Zeng W, Yang L. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging (Albany NY) 2020; 12:12750-12770. [PMID: 32611834 PMCID: PMC7377880 DOI: 10.18632/aging.103177] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
Cell senescence is a chronic process associated with age-related degenerative diseases such as osteoarthritis (OA). Senescent cells (SnCs) accumulate in the articular cartilage and synovium, leading to OA pathologies. The accumulation of SnCs in the cartilage results in a senescence-associated secretory phenotype (SASP) and age-related inflammation and dysfunction. Selective removal of SnCs by senolytic agent as a therapeutic strategy has been developed recently. In this study, we examined the ability of the senolytic drug ABT263 (navitoclax) to clear SnCs and further evaluated the therapeutic effect of ABT263 on post-traumatic OA. Monolayer and 3D pellet cultured osteoarthritic chondrocytes were used to evaluate the effect of ABT263 in vitro and a DMM rat model was established for in vivo experiments. We found that ABT263 reduced the expression of inflammatory cytokines and promoted cartilage matrix aggregation in OA chondrocyte pellet culture by inducing SnC apoptosis. Moreover, OA pathological changes in the cartilage and subchondral bone in post-traumatic OA rat were alleviated by ABT263 intra-articular injection. These results demonstrated that ABT263 not only improves inflammatory microenvironment but also promotes cartilage phenotype maintenance in vitro. Furthermore, ABT263 might play a protective role against post-traumatic OA development. Therefore, strategies targeting SnC elimination might be promising for the clinical therapy of OA.
Collapse
Affiliation(s)
- Hao Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Hao Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Xiaojun Duan
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Juan Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Yi Zhou
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Weinan Zeng
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China.,Department of Orthopedics, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
48
|
Song JS, Hong KT, Kong CG, Kim NM, Jung JY, Park HS, Kim YJ, Chang KB, Kim SJ. High tibial osteotomy with human umbilical cord blood-derived mesenchymal stem cells implantation for knee cartilage regeneration. World J Stem Cells 2020; 12:514-526. [PMID: 32742568 PMCID: PMC7360989 DOI: 10.4252/wjsc.v12.i6.514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High tibial osteotomy (HTO) is a well-established method for the treatment of medial compartment osteoarthritis of the knee with varus deformity. However, HTO alone cannot adequately repair the arthritic joint, necessitating cartilage regeneration therapy. Cartilage regeneration procedures with concomitant HTO are used to improve the clinical outcome in patients with varus deformity.
AIM To evaluate cartilage regeneration after implantation of allogenic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with concomitant HTO.
METHODS Data for patients who underwent implantation of hUCB-MSCs with concomitant HTO were evaluated. The patients included in this study were over 40 years old, had a varus deformity of more than 5°, and a full-thickness International Cartilage Repair Society (ICRS) grade IV articular cartilage lesion of more than 4 cm2 in the medial compartment of the knee. All patients underwent second-look arthroscopy during hardware removal. Cartilage regeneration was evaluated macroscopically using the ICRS grading system in second-look arthroscopy. We also assessed the effects of patient characteristics, such as trochlear lesions, age, and lesion size, using patient medical records.
RESULTS A total of 125 patients were included in the study, with an average age of 58.3 ± 6.8 years (range: 43-74 years old); 95 (76%) were female and 30 (24%) were male. The average hip-knee-ankle (HKA) angle for measuring varus deformity was 7.6° ± 2.4° (range: 5.0-14.2°). In second-look arthroscopy, the status of medial femoral condyle (MFC) cartilage was as follows: 73 (58.4%) patients with ICRS grade I, 37 (29.6%) with ICRS grade II, and 15 (12%) with ICRS grade III. No patients were staged with ICRS grade IV. Additionally, the scores [except International Knee Documentation Committee (IKDC) at 1 year] of the ICRS grade I group improved more significantly than those of the ICRS grade II and III groups.
CONCLUSION Implantation of hUCB-MSCs with concomitant HTO is an effective treatment for patients with medial compartment osteoarthritis and varus deformity. Regeneration of cartilage improves the clinical outcomes for the patients.
Collapse
Affiliation(s)
- Jun-Seob Song
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Ki-Taek Hong
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Chae-Gwan Kong
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| | - Na-Min Kim
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Jae-Yub Jung
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Han-Soo Park
- Department of Orthopedic Surgery, Gangnam JS Hospital, Seoul 06053, South Korea
| | - Young Ju Kim
- Department of Nursing Education & Administration, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| | - Ki Bong Chang
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Uijeongbu-si 11765, South Korea
| |
Collapse
|
49
|
Kulkarni P, Martson A, Vidya R, Chitnavis S, Harsulkar A. Pathophysiological landscape of osteoarthritis. Adv Clin Chem 2020; 100:37-90. [PMID: 33453867 DOI: 10.1016/bs.acc.2020.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A sharp rise in osteoarthritis (OA) incidence is expected as over 25% of world population ages in the coming decade. Although OA is considered a degenerative disease, mounting evidence suggests a strong connection with chronic metabolic conditions and low-grade inflammation. OA pathology is increasingly understood as a complex interplay of multiple pathological events including oxidative stress, synovitis and immune responses revealing its intricate nature. Cellular, biochemical and molecular aspects of these pathological events along with major outcomes of the relevant research studies in this area are discussed in the present review. With reference to their published and unpublished work, the authors strongly propose synovitis as a central OA pathology and the key OA pathological events are described in connection with it. Recent research outcomes also have succeeded to establish a linkage between metabolic syndrome and OA, which has been precisely included in the present review. Impact of aging process cannot be neglected in OA. Cell senescence is an important mechanism of aging through which it facilitates development of OA like other degenerative disorders, also discussed within a frame of OA. Conclusively, the reviewers urge low-grade inflammation linked to aging and derailed immune function as a pathological platform for OA development and progression. Thus, interventions targeted to prevent inflammaging hold a promising potential in effective OA management and efforts should be invested in this direction.
Collapse
Affiliation(s)
- Priya Kulkarni
- Department of Pathophysiology, Biomedicine and Translational medicine, University of Tartu, Tartu, Estonia; Department of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| | - Aare Martson
- Department of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| | - Ragini Vidya
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Pune, India
| | - Shreya Chitnavis
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Pune, India
| | - Abhay Harsulkar
- Department of Pathophysiology, Biomedicine and Translational medicine, University of Tartu, Tartu, Estonia; Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Pune, India.
| |
Collapse
|
50
|
Kim GB, Seo MS, Park WT, Lee GW. Bone Marrow Aspirate Concentrate: Its Uses in Osteoarthritis. Int J Mol Sci 2020; 21:E3224. [PMID: 32370163 PMCID: PMC7247342 DOI: 10.3390/ijms21093224] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022] Open
Abstract
Human bone marrow (BM) is a kind of source of mesenchymal stem cells (MSCs) as well as growth factors and cytokines that may aid anti-inflammation and regeneration for various tissues, including cartilage and bone. However, since MSCs in BM usually occupy only a small fraction (0.001%) of nucleated cells, bone marrow aspirate concentrate (BMAC) for cartilage pathologies, such as cartilage degeneration, defect, and osteoarthritis, have gained considerable recognition in the last few years due to its potential benefits including disease modifying and regenerative capacity. Although further research with well-designed, randomized, controlled clinical trials is needed to elucidate the exact mechanism of BMAC, this may have the most noteworthy effect in patients with osteoarthritis. The purpose of this article is to review the general characteristics of BMAC, including its constituent, action mechanisms, and related issues. Moreover, this article aims to summarize the clinical outcomes of BMAC reported to date.
Collapse
Affiliation(s)
- Gi Beom Kim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (W.T.P.)
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Wook Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (W.T.P.)
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (W.T.P.)
| |
Collapse
|