1
|
Fort C, Collingridge P, Brownlee C, Wheeler G. Ca 2+ elevations disrupt interactions between intraflagellar transport and the flagella membrane in Chlamydomonas. J Cell Sci 2021; 134:jcs.253492. [PMID: 33495279 DOI: 10.1242/jcs.253492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
The movement of ciliary membrane proteins is directed by transient interactions with intraflagellar transport (IFT) trains. The green alga Chlamydomonas has adapted this process for gliding motility, using retrograde IFT motors to move adhesive glycoproteins in the flagella membrane. Ca2+ signalling contributes directly to the gliding process, although uncertainty remains over the mechanism through which it acts. Here, we show that flagella Ca2+ elevations initiate the movement of paused retrograde IFT trains, which accumulate at the distal end of adherent flagella, but do not influence other IFT processes. On highly adherent surfaces, flagella exhibit high-frequency Ca2+ elevations that prevent the accumulation of paused retrograde IFT trains. Flagella Ca2+ elevations disrupt the IFT-dependent movement of microspheres along the flagella membrane, suggesting that Ca2+ acts by directly disrupting an interaction between retrograde IFT trains and flagella membrane glycoproteins. By regulating the extent to which glycoproteins on the flagella surface interact with IFT motor proteins on the axoneme, this signalling mechanism allows precise control of traction force and gliding motility in adherent flagella.
Collapse
Affiliation(s)
- Cecile Fort
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Peter Collingridge
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.,School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
| | - Glen Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
2
|
Xu N, Oltmanns A, Zhao L, Girot A, Karimi M, Hoepfner L, Kelterborn S, Scholz M, Beißel J, Hegemann P, Bäumchen O, Liu LN, Huang K, Hippler M. Altered N-glycan composition impacts flagella-mediated adhesion in Chlamydomonas reinhardtii. eLife 2020; 9:58805. [PMID: 33300874 PMCID: PMC7759384 DOI: 10.7554/elife.58805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/09/2020] [Indexed: 01/22/2023] Open
Abstract
For the unicellular alga Chlamydomonas reinhardtii, the presence of N-glycosylated proteins on the surface of two flagella is crucial for both cell-cell interaction during mating and flagellar surface adhesion. However, it is not known whether only the presence or also the composition of N-glycans attached to respective proteins is important for these processes. To this end, we tested several C. reinhardtii insertional mutants and a CRISPR/Cas9 knockout mutant of xylosyltransferase 1A, all possessing altered N-glycan compositions. Taking advantage of atomic force microscopy and micropipette force measurements, our data revealed that reduction in N-glycan complexity impedes the adhesion force required for binding the flagella to surfaces. This results in impaired polystyrene bead binding and transport but not gliding of cells on solid surfaces. Notably, assembly, intraflagellar transport, and protein import into flagella are not affected by altered N-glycosylation. Thus, we conclude that proper N-glycosylation of flagellar proteins is crucial for adhering C. reinhardtii cells onto surfaces, indicating that N-glycans mediate surface adhesion via direct surface contact.
Collapse
Affiliation(s)
- Nannan Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anne Oltmanns
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Longsheng Zhao
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Antoine Girot
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany
| | - Marzieh Karimi
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany
| | - Lara Hoepfner
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - Martin Scholz
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Julia Beißel
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany.,Experimental Physics V, University of Bayreuth, Bayreuth, Germany
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Michael Hippler
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany.,Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
3
|
Bloodgood RA. Prey capture in protists utilizing microtubule filled processes and surface motility. Cytoskeleton (Hoboken) 2020; 77:500-514. [PMID: 33190423 DOI: 10.1002/cm.21644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 11/05/2022]
Abstract
Surface motility, which can be visualized by the movement of live prey organisms, polystyrene microspheres or other inert particles, has been shown to occur in a wide variety of microtubule-filled extensions of the protistan cell surface, although the associated functions remain enigmatic. This article integrates an extensive but poorly known body of literature showing that surface motility, associated with microtubule-filled cell extensions such as flagella, axopodia, actinopodia, reticulopodia, and haptonema, plays a crucial role in protistan prey capture. Surface motility has been most extensively studied in Chlamydomonas where it is responsible for flagella-dependent whole cell gliding motility. The force transduction machinery for gliding motility in Chlamydomonas is intraflagellar transport. Other than in Chlamydomonas, this field has not moved far beyond the descriptive to the mechanistic because of technical challenges associated with many of the protistan organisms that utilize surface motility for prey capture. The purpose of this article is to rekindle interest in the protistan systems that utilize surface motility for prey capture at a time when newly emerging molecular tools for working with protists are poised to reinvigorate a field that has been quiescent too long.
Collapse
Affiliation(s)
- Robert A Bloodgood
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Oltmanns A, Hoepfner L, Scholz M, Zinzius K, Schulze S, Hippler M. Novel Insights Into N-Glycan Fucosylation and Core Xylosylation in C. reinhardtii. FRONTIERS IN PLANT SCIENCE 2020; 10:1686. [PMID: 32010168 PMCID: PMC6974686 DOI: 10.3389/fpls.2019.01686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/29/2019] [Indexed: 05/28/2023]
Abstract
Chlamydomonas reinhardtii (C. reinhardtii) N-glycans carry plant typical β1,2-core xylose, α1,3-fucose residues, as well as plant atypical terminal β1,4-xylose and methylated mannoses. In a recent study, XylT1A was shown to act as core xylosyltransferase, whereby its action was of importance for an inhibition of excessive Man1A dependent trimming. N-Glycans found in a XylT1A/Man1A double mutant carried core xylose residues, suggesting the existence of a second core xylosyltransferase in C. reinhardtii. To further elucidate enzymes important for N-glycosylation, novel single knockdown mutants of candidate genes involved in the N-glycosylation pathway were characterized. In addition, double, triple, and quadruple mutants affecting already known N-glycosylation pathway genes were generated. By characterizing N-glycan compositions of intact N-glycopeptides from these mutant strains by mass spectrometry, a candidate gene encoding for a second putative core xylosyltransferase (XylT1B) was identified. Additionally, the role of a putative fucosyltransferase was revealed. Mutant strains with knockdown of both xylosyltransferases and the fucosyltransferase resulted in the formation of N-glycans with strongly diminished core modifications. Thus, the mutant strains generated will pave the way for further investigations on how single N-glycan core epitopes modulate protein function in C. reinhardtii.
Collapse
Affiliation(s)
- Anne Oltmanns
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Lara Hoepfner
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Karen Zinzius
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Stefan Schulze
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Bloodgood RA, Tetreault J, Sloboda RD. The flagellar membrane glycoprotein FMG-1B Is necessary for expression of force at the flagellar surface. J Cell Sci 2019; 132:jcs.233429. [DOI: 10.1242/jcs.233429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
In addition to bend propagation for swimming, Chlamydomonas cells use their flagella to glide along a surface. When polystyrene microspheres are added to cells, they attach to and move along the flagellar surface, thus serving as a proxy for gliding that can be used to assay for the flagellar components required for gliding motility. Gliding and microsphere movement are dependent on intraflagellar transport (IFT). Circumstantial evidence suggests that mechanical coupling of the IFT force-transducing machinery to a substrate is mediated by the flagellar transmembrane glycoprotein FMG-1B. Cells carrying an insertion in the 5’-UTR of the FMG-1B gene lack FMG-1B protein, yet assemble normal length flagella despite the loss of the major protein component of the flagellar membrane. Transmission electron microscopy shows a complete loss of the glycocalyx normally observed on the flagellar surface, suggesting it is composed of the ectodomains of FMG-1B molecules. Microsphere movements and gliding motility are also greatly reduced in the 5’-UTR mutant. Together, these data provide the first rigorous demonstration that FMG-1B is necessary for the normal expression of force at the flagellar surface in Chlamydomonas.
Collapse
Affiliation(s)
- Robert A. Bloodgood
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joseph Tetreault
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03750, USA
| | - Roger D. Sloboda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03750, USA
- The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|