1
|
Kim K, Piekarz KM, Stolfi A. A gene regulatory network for specification and morphogenesis of a Mauthner Cell homolog in non-vertebrate chordates. Dev Biol 2025; 522:51-63. [PMID: 40096956 PMCID: PMC11994291 DOI: 10.1016/j.ydbio.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025]
Abstract
Transcriptional regulation of gene expression is an indispensable process in multicellular development, yet we still do not fully understand how the complex networks of transcription factors operating in neuronal precursors coordinately control the expression of effector genes that shape morphogenesis and terminal differentiation. Here we break down in greater detail a provisional regulatory circuit downstream of the transcription factor Pax3/7 operating in the descending decussating neurons (ddNs) of the tunicate Ciona robusta. The ddNs are a pair of hindbrain neurons proposed to be homologous to the Mauthner cells of anamniotes, and Pax3/7 is sufficient and necessary for their specification. We show that different transcription factors downstream of Pax3/7, namely Pou4, Lhx1/5, and Dmbx, regulate distinct "branches" of this ddN network that appear to be dedicated to different developmental tasks. Some of these network branches are shared with other neurons throughout the larva, reinforcing the idea that modularity is likely a key feature of such networks. We discuss these ideas and their evolutionary implications here, including the observation that homologs of all four transcription factors (Pax3/7, Lhx5, Pou4f3, and Dmbx1) are key for the specification of cranial neural crest in vertebrates.
Collapse
Affiliation(s)
- Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, USA
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, USA.
| |
Collapse
|
2
|
Johnson ANT, Huang J, Marishta A, Cruz ER, Mariossi A, Barshop WD, Canterbury JD, Melani R, Bergen D, Zabrouskov V, Levine MS, Wieschaus E, McAlister GC, Wühr M. Sensitive and Accurate Proteome Profiling of Embryogenesis Using Real-Time Search and TMTproC Quantification. Mol Cell Proteomics 2025; 24:100899. [PMID: 39725028 PMCID: PMC11815649 DOI: 10.1016/j.mcpro.2024.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Multiplexed proteomics has become a powerful tool for investigating biological systems. Using balancer-peptide conjugates (e.g., TMTproC complementary ions) in the MS2 spectra for quantification circumvents the ratio distortion problem inherent in multiplexed proteomics. However, TMTproC quantification scans require long Orbitrap transients and extended ion injection times to achieve sufficient ion statistics and spectral resolution. Real-time search (RTS) algorithms have demonstrated increased speed and sensitivity by selectively informing precursor peak quantification. Here, we combine complementary ion quantification with RTS (TMTproC-RTS) to enhance sensitivity while maintaining accuracy and precision in quantitative proteomics at the MS2 level. We demonstrate the utility of this method by quantifying protein dynamics during the embryonic development of Drosophila melanogaster (fly), Ciona robusta (sea squirt), and Xenopus laevis (frog). We quantify 7.8k, 8.6k, and 12.7k proteins in each organism, which is an improvement of 12%, 13%, and 14%, respectively, compared with naive TMTproC analysis. For all three organisms, the newly acquired data outperform previously published datasets and provide a diverse, deep, and accurate database of protein dynamics during embryogenesis, which will advance the study of evolutionary comparison in early embryogenesis.
Collapse
Affiliation(s)
- Alex N T Johnson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States
| | - Jingjing Huang
- Thermo Fisher Scientific, San Jose, California, United States
| | - Argit Marishta
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States; Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States
| | - Edward R Cruz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States; Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States; Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States
| | | | | | - Rafael Melani
- Thermo Fisher Scientific, San Jose, California, United States
| | - David Bergen
- Thermo Fisher Scientific, San Jose, California, United States
| | - Vlad Zabrouskov
- Thermo Fisher Scientific, San Jose, California, United States
| | - Michael S Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States; Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States
| | - Eric Wieschaus
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States; Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States
| | | | - Martin Wühr
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States; Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States.
| |
Collapse
|
3
|
Oda I, Satou Y. A master regulatory loop that activates genes in a temporally coordinated manner in muscle cells of ascidian embryos. Development 2025; 152:dev204382. [PMID: 39745198 DOI: 10.1242/dev.204382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Ascidian larval muscle cells present a classic example of autonomous development. A regulatory mechanism for these cells has been extensively investigated, and the regulatory gene circuit has been documented from maternal factors to a muscle-specific gene. In the present study, we comprehensively identified genes expressed specifically in ascidian muscle cells, and found that all of them are under control of a positive regulatory loop of Tbx6-r.b and Mrf, the core circuit identified previously. We also found that several transcription factors under control of the Tbx6-r.b/Mrf regulatory loop exhibited various temporal expression profiles, which are probably important for creating functional muscle cells. These results, together with results of previous studies, provide an exhaustive view of the regulatory system enabling autonomous development of ascidian larval muscle cells. It shows that the Tbx6-r.b/Mrf regulatory loop, but not a single gene, serves a 'master' regulatory function. This master regulatory loop not only controls spatial gene expression patterns, but also governs temporal expression patterns in ascidian muscle cells.
Collapse
Affiliation(s)
- Izumi Oda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Mathiesen BT, Ohta M, Magalhaes BPD, Castelletti C, Perria V, Schuster K, Christiaen L, Ohta N. A simple inland culture system provides insights into ascidian post-embryonic developmental physiology. Open Biol 2025; 15:240340. [PMID: 39809318 PMCID: PMC11732436 DOI: 10.1098/rsob.240340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Maintenance and breeding of experimental organisms are fundamental to life sciences, but both initial and running costs, and hands-on zootechnical demands can be challenging for many laboratories. Here, we first aimed to further develop a simple protocol for reliable inland culture of tunicate model species of the Ciona genus. We cultured both Ciona robusta and Ciona intestinalis in controlled experimental conditions, with a focus on dietary variables, and quantified growth and maturation parameters. From statistical analysis of these standardized datasets, we gained insights into the post-embryonic developmental physiology of Ciona and inferred an improved diet and culturing conditions for sexual maturation. We showed that body length is a critical determinant of both somatic and sexual maturation, which suggests the existence of systemic control mechanisms of resource allocation towards somatic growth or maturation and supports applying size selection as a predictor of reproductive fitness in our inland culture to keep the healthiest animals at low density in the system. In the end, we successfully established a new protocol, including size selection, to promote both sperm and egg production. Our protocol using small tanks will empower researchers to initiate inland Ciona cultures with low costs and reduced space constraints.
Collapse
Affiliation(s)
| | - Mayu Ohta
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | | | | | | | - Keaton Schuster
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Naoyuki Ohta
- Michael Sars Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Dehghannasiri R, Kokot M, Starr AL, Maziarz J, Gordon T, Tan SY, Wang PL, Voskoboynik A, Musser JM, Deorowicz S, Salzman J. sc-SPLASH provides ultra-efficient reference-free discovery in barcoded single-cell sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630263. [PMID: 39763839 PMCID: PMC11703226 DOI: 10.1101/2024.12.24.630263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Typical high-throughput single-cell RNA-sequencing (scRNA-seq) analyses are primarily conducted by (pseudo)alignment, through the lens of annotated gene models, and aimed at detecting differential gene expression. This misses diversity generated by other mechanisms that diversify the transcriptome such as splicing and V(D)J recombination, and is blind to sequences missing from imperfect reference genomes. Here, we present sc-SPLASH, a highly efficient pipeline that extends our SPLASH framework for statistics-first, reference-free discovery to barcoded scRNA-seq (10x Chromium) and spatial transcriptomics (10x Visium); we also provide its optimized module for preprocessing and k-mer counting in barcoded data, BKC, as a standalone tool. sc-SPLASH rediscovers known biology including V(D)J recombination and cell-type-specific alternative splicing in human and trans-splicing in tunicate (Ciona) and when applied to spatial datasets, detects sequence variation including tumor-specific somatic mutation. In sponge (Spongilla) and tunicate (Ciona), we uncover secreted repeat proteins expressed in immune-type cells and regulated during development; the sponge genes were absent from the reference assembly. sc-SPLASH provides a powerful alternative tool for exploring transcriptomes that is applicable to the breadth of life's diversity.
Collapse
Affiliation(s)
| | - Marek Kokot
- Department of Algorithmics and Software, v, Gliwice, Poland
| | | | - Jamie Maziarz
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, 06511, USA
| | - Tal Gordon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, 94305 USA
| | - Serena Y. Tan
- Department of Pathology, Stanford University Medical Center, Stanford, 94305, USA
| | - Peter L. Wang
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, 94305, USA
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, 94305 USA
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, 93950, USA
| | - Jacob M. Musser
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, 06511, USA
- Wu Tsai Institute, Yale University, New Haven, 06510, USA
| | | | - Julia Salzman
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, 94305, USA
- Department of Statistics (by courtesy), Stanford University, Stanford, 94305, USA
- Department of Biology (by Courtesy), Stanford University, Stanford, 94305, CA, USA
| |
Collapse
|
6
|
Todorov LG, Oonuma K, Kusakabe TG, Levine MS, Lemaire LA. Neural crest lineage in the protovertebrate model Ciona. Nature 2024; 635:912-916. [PMID: 39443803 DOI: 10.1038/s41586-024-08111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Neural crest cells are multipotent progenitors that produce defining features of vertebrates such as the 'new head'1. Here we use the tunicate, Ciona, to explore the evolutionary origins of neural crest since this invertebrate chordate is among the closest living relatives of vertebrates2-4. Previous studies identified two potential neural crest cell types in Ciona, sensory pigment cells and bipolar tail neurons5,6. Recent findings suggest that bipolar tail neurons are homologous to cranial sensory ganglia rather than derivatives of neural crest7,8. Here we show that the pigment cell lineage also produces neural progenitor cells that form regions of the juvenile nervous system following metamorphosis. Neural progenitors are also a major derivative of neural crest in vertebrates, suggesting that the last common ancestor of tunicates and vertebrates contained a multipotent progenitor population at the neural plate border. It would therefore appear that a key property of neural crest, multipotentiality, preceded the emergence of vertebrates.
Collapse
Affiliation(s)
- Lauren G Todorov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kouhei Oonuma
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan
- Frontier Research Institute, Chubu University, Kasugai, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan.
| | - Michael S Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Laurence A Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biology, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
7
|
Johnson CJ, Zhang Z, Zhang H, Shang R, Piekarz KM, Bi P, Stolfi A. A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates. Development 2024; 151:dev202968. [PMID: 39114943 PMCID: PMC11441980 DOI: 10.1242/dev.202968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is expressed only in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. Although in vertebrates myogenic regulatory factors (MRFs) such as MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF, MyoD and Early B-cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf-binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.
Collapse
Affiliation(s)
| | - Zheng Zhang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Renjie Shang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna M. Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pengpeng Bi
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Gigante ED, Piekarz KM, Gurgis A, Cohen L, Razy-Krajka F, Popsuj S, Johnson CJ, Ali HS, Mohana Sundaram S, Stolfi A. Specification and survival of post-metamorphic branchiomeric neurons in a non-vertebrate chordate. Development 2024; 151:dev202719. [PMID: 38895900 PMCID: PMC11273300 DOI: 10.1242/dev.202719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are replaced by adult-specific ones. The regulatory mechanisms underlying this replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the 'neck', a cellular compartment set aside in the larva to give rise to cranial motor neuron-like neurons post-metamorphosis. Using bulk and single-cell RNA-sequencing analyses, we characterize the transcriptome of the neck downstream of Pax2/5/8. We present evidence that neck-derived adult ciliomotor neurons begin to differentiate in the larva and persist through metamorphosis, contrary to the assumption that the adult nervous system is formed after settlement and the death of larval neurons during metamorphosis. Finally, we show that FGF signaling during the larval phase alters the patterning of the neck and its derivatives. Suppression of FGF converts neck cells into larval neurons that fail to survive metamorphosis, whereas prolonged FGF signaling promotes an adult neural stem cell-like fate.
Collapse
Affiliation(s)
- Eduardo D. Gigante
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katarzyna M. Piekarz
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexandra Gurgis
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leslie Cohen
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Florian Razy-Krajka
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sydney Popsuj
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christopher J. Johnson
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hussan S. Ali
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shruthi Mohana Sundaram
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alberto Stolfi
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Ishida T, Satou Y. Ascidian embryonic cells with properties of neural-crest cells and neuromesodermal progenitors of vertebrates. Nat Ecol Evol 2024; 8:1154-1164. [PMID: 38565680 DOI: 10.1038/s41559-024-02387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Neural-crest cells and neuromesodermal progenitors (NMPs) are multipotent cells that are important for development of vertebrate embryos. In embryos of ascidians, which are the closest invertebrate relatives of vertebrates, several cells located at the border between the neural plate and the epidermal region have neural-crest-like properties; hence, the last common ancestor of ascidians and vertebrates may have had ancestral cells similar to neural-crest cells. However, these ascidian neural-crest-like cells do not produce cells that are commonly of mesodermal origin. Here we showed that a cell population located in the lateral region of the neural plate has properties resembling those of vertebrate neural-crest cells and NMPs. Among them, cells with Tbx6-related expression contribute to muscle near the tip of the tail region and cells with Sox1/2/3 expression give rise to the nerve cord. These observations and cross-species transcriptome comparisons indicate that these cells have properties similar to those of NMPs. Meanwhile, transcription factor genes Dlx.b, Zic-r.b and Snai, which are reminiscent of a gene circuit in vertebrate neural-crest cells, are involved in activation of Tbx6-related.b. Thus, the last common ancestor of ascidians and vertebrates may have had cells with properties of neural-crest cells and NMPs and such ancestral cells may have produced cells commonly of ectodermal and mesodermal origins.
Collapse
Affiliation(s)
- Tasuku Ishida
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
Stein WD. Orthologs at the Base of the Olfactores Clade. Genes (Basel) 2024; 15:657. [PMID: 38927593 PMCID: PMC11203038 DOI: 10.3390/genes15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.
Collapse
Affiliation(s)
- Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
11
|
Frese AN, Mariossi A, Levine MS, Wühr M. Quantitative proteome dynamics across embryogenesis in a model chordate. iScience 2024; 27:109355. [PMID: 38510129 PMCID: PMC10951915 DOI: 10.1016/j.isci.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The evolution of gene expression programs underlying the development of vertebrates remains poorly characterized. Here, we present a comprehensive proteome atlas of the model chordate Ciona, covering eight developmental stages and ∼7,000 translated genes, accompanied by a multi-omics analysis of co-evolution with the vertebrate Xenopus. Quantitative proteome comparisons argue against the widely held hourglass model, based solely on transcriptomic profiles, whereby peak conservation is observed during mid-developmental stages. Our analysis reveals maximal divergence at these stages, particularly gastrulation and neurulation. Together, our work provides a valuable resource for evaluating conservation and divergence of multi-omics profiles underlying the diversification of vertebrates.
Collapse
Affiliation(s)
- Alexander N. Frese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
12
|
Johnson CJ, Zhang Z, Zhang H, Shang R, Piekarz KM, Bi P, Stolfi A. A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583753. [PMID: 38559144 PMCID: PMC10979880 DOI: 10.1101/2024.03.06.583753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is only expressed in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. While in vertebrates Myogenic Regulatory Factors (MRFs) like MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF/MyoD and Early B-Cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.
Collapse
Affiliation(s)
| | - Zheng Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Renjie Shang
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pengpeng Bi
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
13
|
Daric V, Lanoizelet M, Mayeur H, Leblond C, Darras S. Genomic Resources and Annotations for a Colonial Ascidian, the Light-Bulb Sea Squirt Clavelina lepadiformis. Genome Biol Evol 2024; 16:evae038. [PMID: 38441487 PMCID: PMC10950049 DOI: 10.1093/gbe/evae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Ascidian embryos have been studied since the birth of experimental embryology at the end of the 19th century. They represent textbook examples of mosaic development characterized by a fast development with very few cells and invariant cleavage patterns and lineages. Ascidians belong to tunicates, the vertebrate sister group, and their study is essential to shed light on the emergence of vertebrates. Importantly, deciphering developmental gene regulatory networks has been carried out mostly in two of the three ascidian orders, Phlebobranchia and Stolidobranchia. To infer ancestral developmental programs in ascidians, it is thus essential to carry out molecular embryology in the third ascidian order, the Aplousobranchia. Here, we present genomic resources for the colonial aplousobranch Clavelina lepadiformis: a transcriptome produced from various embryonic stages, and an annotated genome. The assembly consists of 184 contigs making a total of 233.6 Mb with a N50 of 8.5 Mb and a L50 of 11. The 32,318 predicted genes capture 96.3% of BUSCO orthologs. We further show that these resources are suitable to study developmental gene expression and regulation in a comparative framework within ascidians. Additionally, they will prove valuable for evolutionary and ecological studies.
Collapse
Affiliation(s)
- Vladimir Daric
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), F-66650 Banyuls/Mer, France
| | - Maxence Lanoizelet
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), F-66650 Banyuls/Mer, France
| | - Hélène Mayeur
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), F-66650 Banyuls/Mer, France
| | - Cécile Leblond
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), F-66650 Banyuls/Mer, France
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), F-66650 Banyuls/Mer, France
| |
Collapse
|
14
|
Johnson CJ, Razy-Krajka F, Zeng F, Piekarz KM, Biliya S, Rothbächer U, Stolfi A. Specification of distinct cell types in a sensory-adhesive organ important for metamorphosis in tunicate larvae. PLoS Biol 2024; 22:e3002555. [PMID: 38478577 PMCID: PMC10962819 DOI: 10.1371/journal.pbio.3002555] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/25/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
The papillae of tunicate larvae contribute sensory, adhesive, and metamorphosis-regulating functions that are crucial for the biphasic lifestyle of these marine, non-vertebrate chordates. We have identified additional molecular markers for at least 5 distinct cell types in the papillae of the model tunicate Ciona, allowing us to further study the development of these organs. Using tissue-specific CRISPR/Cas9-mediated mutagenesis and other molecular perturbations, we reveal the roles of key transcription factors and signaling pathways that are important for patterning the papilla territory into a highly organized array of different cell types and shapes. We further test the contributions of different transcription factors and cell types to the production of the adhesive glue that allows for larval attachment during settlement, and to the processes of tail retraction and body rotation during metamorphosis. With this study, we continue working towards connecting gene regulation to cellular functions that control the developmental transition between the motile larva and sessile adult of Ciona.
Collapse
Affiliation(s)
- Christopher J Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Fan Zeng
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Shweta Biliya
- Molecular Evolution Core, Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ute Rothbächer
- Department of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
15
|
Sato A, Mihirogi Y, Wood C, Suzuki Y, Truebano M, Bishop J. Heterogeneity in maternal mRNAs within clutches of eggs in response to thermal stress during the embryonic stage. BMC Ecol Evol 2024; 24:21. [PMID: 38347459 PMCID: PMC10860308 DOI: 10.1186/s12862-024-02203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The origin of variation is of central interest in evolutionary biology. Maternal mRNAs govern early embryogenesis in many animal species, and we investigated the possibility that heterogeneity in maternal mRNA provisioning of eggs can be modulated by environmental stimuli. RESULTS We employed two sibling species of the ascidian Ciona, called here types A and B, that are adapted to different temperature regimes and can be hybridized. Previous study showed that hybrids using type B eggs had higher susceptibility to thermal stress than hybrids using type A eggs. We conducted transcriptome analyses of multiple single eggs from crosses using eggs of the different species to compare the effects of maternal thermal stress on heterogeneity in egg provisioning, and followed the effects across generations. We found overall decreases of heterogeneity of egg maternal mRNAs associated with maternal thermal stress. When the eggs produced by the F1 AB generation were crossed with type B sperm and the progeny ('ABB' generation) reared unstressed until maturation, the overall heterogeneity of the eggs produced was greater in a clutch from an individual with a heat-stressed mother compared to one from a non-heat-stressed mother. By examining individual genes, we found no consistent overall effect of thermal stress on heterogeneity of expression in genes involved in developmental buffering. In contrast, heterogeneity of expression in signaling molecules was directly affected by thermal stress. CONCLUSIONS Due to the absence of batch replicates and variation in the number of reads obtained, our conclusions are very limited. However, contrary to the predictions of bet-hedging, the results suggest that maternal thermal stress at the embryo stage is associated with reduced heterogeneity of maternal mRNA provision in the eggs subsequently produced by the stressed individual, but there is then a large increase in heterogeneity in eggs of the next generation, although itself unstressed. Despite its limitations, our study presents a proof of concept, identifying a model system, experimental approach and analytical techniques capable of providing a significant advance in understanding the impact of maternal environment on developmental heterogeneity.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan.
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
- Human Life Innovation Center, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan.
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| | - Yukie Mihirogi
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan
| | - Christine Wood
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwano-Ha, Chiba, 277-8561, Japan
| | - Manuela Truebano
- Marine Biology and Ecology Research Center, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - John Bishop
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
16
|
Matsubara S, Iguchi R, Ogasawara M, Nakamura H, Kataoka TR, Shiraishi A, Osugi T, Kawada T, Satake H. A Novel Hemocyte-Derived Peptide and Its Possible Roles in Immune Response of Ciona intestinalis Type A. Int J Mol Sci 2024; 25:1979. [PMID: 38396656 PMCID: PMC10888236 DOI: 10.3390/ijms25041979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
A wide variety of bioactive peptides have been identified in the central nervous system and several peripheral tissues in the ascidian Ciona intestinalis type A (Ciona robusta). However, hemocyte endocrine peptides have yet to be explored. Here, we report a novel 14-amino-acid peptide, CiEMa, that is predominant in the granular hemocytes and unilocular refractile granulocytes of Ciona. RNA-seq and qRT-PCR revealed the high CiEma expression in the adult pharynx and stomach. Immunohistochemistry further revealed the highly concentrated CiEMa in the hemolymph of the pharynx and epithelial cells of the stomach, suggesting biological roles in the immune response. Notably, bacterial lipopolysaccharide stimulation of isolated hemocytes for 1-4 h resulted in 1.9- to 2.4-fold increased CiEMa secretion. Furthermore, CiEMa-stimulated pharynx exhibited mRNA upregulation of the growth factor (Fgf3/7/10/22), vanadium binding proteins (CiVanabin1 and CiVanabin3), and forkhead and homeobox transcription factors (Foxl2, Hox3, and Dbx) but not antimicrobial peptides (CrPap-a and CrMam-a) or immune-related genes (Tgfbtun3, Tnfa, and Il17-2). Collectively, these results suggest that CiEMa plays roles in signal transduction involving tissue development or repair in the immune response, rather than in the direct regulation of immune response genes. The present study identified a novel Ciona hemocyte peptide, CiEMa, which paves the way for research on the biological roles of hemocyte peptides in chordates.
Collapse
Affiliation(s)
- Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| | - Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku 263-8522, Chiba, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku 263-8522, Chiba, Japan
| | - Hiroya Nakamura
- Department of Pathology, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun 028-3695, Iwate, Japan (T.R.K.)
| | - Tatsuki R. Kataoka
- Department of Pathology, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun 028-3695, Iwate, Japan (T.R.K.)
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun 619-0284, Kyoto, Japan (H.S.)
| |
Collapse
|
17
|
Pickett CJ, Gruner HN, Davidson B. Lhx3/4 initiates a cardiopharyngeal-specific transcriptional program in response to widespread FGF signaling. PLoS Biol 2024; 22:e3002169. [PMID: 38271304 PMCID: PMC10810493 DOI: 10.1371/journal.pbio.3002169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Individual signaling pathways, such as fibroblast growth factors (FGFs), can regulate a plethora of inductive events. According to current paradigms, signal-dependent transcription factors (TFs), such as FGF/MapK-activated Ets family factors, partner with lineage-determining factors to achieve regulatory specificity. However, many aspects of this model have not been rigorously investigated. One key question relates to whether lineage-determining factors dictate lineage-specific responses to inductive signals or facilitate these responses in collaboration with other inputs. We utilize the chordate model Ciona robusta to investigate mechanisms generating lineage-specific induction. Previous studies in C. robusta have shown that cardiopharyngeal progenitor cells are specified through the combined activity of FGF-activated Ets1/2.b and an inferred ATTA-binding transcriptional cofactor. Here, we show that the homeobox TF Lhx3/4 serves as the lineage-determining TF that dictates cardiopharyngeal-specific transcription in response to pleiotropic FGF signaling. Targeted knockdown of Lhx3/4 leads to loss of cardiopharyngeal gene expression. Strikingly, ectopic expression of Lhx3/4 in a neuroectodermal lineage subject to FGF-dependent specification leads to ectopic cardiopharyngeal gene expression in this lineage. Furthermore, ectopic Lhx3/4 expression disrupts neural plate morphogenesis, generating aberrant cell behaviors associated with execution of incompatible morphogenetic programs. Based on these findings, we propose that combinatorial regulation by signal-dependent and lineage-determinant factors represents a generalizable, previously uncategorized regulatory subcircuit we term "cofactor-dependent induction." Integration of this subcircuit into theoretical models will facilitate accurate predictions regarding the impact of gene regulatory network rewiring on evolutionary diversification and disease ontogeny.
Collapse
Affiliation(s)
- C. J. Pickett
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Hannah N. Gruner
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| |
Collapse
|
18
|
Iguchi R, Usui K, Nakayama S, Sasakura Y, Sekiguchi T, Ogasawara M. Multi-regional expression of pancreas-related digestive enzyme genes in the intestinal chamber of the ascidian Ciona intestinalis type A. Cell Tissue Res 2023; 394:423-430. [PMID: 37878073 DOI: 10.1007/s00441-023-03839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Bilateria share sequential steps in their digestive systems, and digestion occurs in a pre-absorption step within a chamber-like structure. Previous studies on the ascidian Ciona intestinalis type A, an evolutionary research model of vertebrate organs, revealed that Ciona homologs of pancreas-related exocrine digestive enzymes (XDEs) are exclusively expressed in the chamber-like bulging stomach. In the development of the gastrointestinal tract, genes for the pancreas-related transcription factors, namely Ptf1a, Nr5a2, and Pdx, are expressed near the stomach. Recent organ/tissue RNA-seq studies on two Ciona species reported that transcripts of the XDE homologs exist in the intestinal regions, as well as in the stomach. In the present study, we investigated the spatial gene expression of XDE homologs in the gastrointestinal region of the C. intestinalis type A. Whole-mount in situ hybridization using adult and juvenile specimens revealed apparent expression signals of XDE homologs in a small number of gastrointestinal epithelial cells. Furthermore, two pancreas-related transcription factor genes, Nr5a2 and Pdx, exhibited multi-regional expression along the Ciona juvenile intestines. These results imply that ascidians may form multiple digestive regions corresponding to the vertebrate pancreas.
Collapse
Affiliation(s)
- Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kanae Usui
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Satoshi Nakayama
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Toshio Sekiguchi
- The Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Housu-gun, Ishikawa, 927-0553, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
19
|
Kijima T, Kurokawa D, Sasakura Y, Ogasawara M, Aratake S, Yoshida K, Yoshida M. CatSper mediates not only chemotactic behavior but also the motility of ascidian sperm. Front Cell Dev Biol 2023; 11:1136537. [PMID: 38020915 PMCID: PMC10652287 DOI: 10.3389/fcell.2023.1136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Sperm motility, including chemotactic behavior, is regulated by changes in the intracellular Ca2+ concentration, and the sperm-specific Ca2+ channel CatSper has been shown to play an important role in the regulation of intracellular Ca2+. In particular, in mammals, CatSper is the only functional Ca2+ channel in the sperm, and mice deficient in the genes comprising the pore region of the Ca2+ channel are infertile due to the inhibition of sperm hyperactivation. CatSper is also thought to be involved in sea urchin chemotaxis. In contrast, in ascidian Ciona intestinalis, SAAF, a sperm attractant, interacts with Ca2+/ATPase, a Ca2+ pump. Although the existence of CatSper genes has been reported, it is not clear whether CatSper is a functional Ca2+ channel in sperm. Results: We showed that CatSper is present in the sperm flagella of C. intestinalis as in mammalian species, although a small level of gene expression was found in other tissues. The spermatozoa of CatSper3 KO animals were significantly less motile, and some motile sperms did not show any chemotactic behavior. These results suggest that CatSper plays an important role in ascidians and mammals, and is involved in spermatogenesis and basic motility mechanisms.
Collapse
Affiliation(s)
- Taiga Kijima
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoe Aratake
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Kanagawa, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
20
|
Iguchi R, Nakayama S, Sasakura Y, Sekiguchi T, Ogasawara M. Repetitive and zonal expression profiles of absorption-related genes in the gastrointestinal tract of ascidian Ciona intestinalis type A. Cell Tissue Res 2023; 394:343-360. [PMID: 37670165 DOI: 10.1007/s00441-023-03828-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Intestinal absorption is essential for heterotrophic bilaterians with a tubular gut. Although the fundamental features of the digestive system were shared among chordates with evolution, the gut morphologies of vertebrates diverged and adapted to different food habitats. The ascidian Ciona intestinalis type A, a genome-wide research model of basal chordates, is used to examine the functional morphology of the intestines because of its transparent juvenile body. In the present study, the characteristic gene expression patterns (GEP) of Ciona absorptive proteins, e.g., brush border membrane enzymes for terminal digestion (lactase, maltase, APA, and APN) and transporters (SGLT1, GLUT5, PEPT1, and B0AT1), were investigated in juveniles and young adults, with a special reference to the absorption of other nutrients by pinocytosis- and phagocytosis-related proteins (megalin, cubilin, amnionless, Dab2, Rab7, LAMP, cathepsins, and MRC1). Whole-mount in situ hybridization revealed that these GEP showed multi-regional and repetitive features along the Ciona gastrointestinal tract, mainly in the stomach and several regions of the intestines. In young adults, many absorption-related genes, including pinocytosis-/phagocytosis-related genes, were also expressed between the stomach and mid-intestine. In the gastrointestinal epithelium, absorption-related genes showed zonal GEP along the epithelial structure. Comparisons of GEP, including other intestinal functions, such as nutrient digestion and intestinal protection, indicated the repetitive assignment of a well-coordinated set of intestinal GEP in the Ciona gastrointestinal tract.
Collapse
Affiliation(s)
- Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Satoshi Nakayama
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Toshio Sekiguchi
- The Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-Gun, Ishikawa, 927-0553, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan.
| |
Collapse
|
21
|
Raghavan R, Coppola U, Wu Y, Ihewulezi C, Negrón-Piñeiro LJ, Maguire JE, Hong J, Cunningham M, Kim HJ, Albert TJ, Ali AM, Saint-Jeannet JP, Ristoratore F, Dahia CL, Di Gregorio A. Gene expression in notochord and nuclei pulposi: a study of gene families across the chordate phylum. BMC Ecol Evol 2023; 23:63. [PMID: 37891482 PMCID: PMC10605842 DOI: 10.1186/s12862-023-02167-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 10/29/2023] Open
Abstract
The transition from notochord to vertebral column is a crucial milestone in chordate evolution and in prenatal development of all vertebrates. As ossification of the vertebral bodies proceeds, involutions of residual notochord cells into the intervertebral discs form the nuclei pulposi, shock-absorbing structures that confer flexibility to the spine. Numerous studies have outlined the developmental and evolutionary relationship between notochord and nuclei pulposi. However, the knowledge of the similarities and differences in the genetic repertoires of these two structures remains limited, also because comparative studies of notochord and nuclei pulposi across chordates are complicated by the gene/genome duplication events that led to extant vertebrates. Here we show the results of a pilot study aimed at bridging the information on these two structures. We have followed in different vertebrates the evolutionary trajectory of notochord genes identified in the invertebrate chordate Ciona, and we have evaluated the extent of conservation of their expression in notochord cells. Our results have uncovered evolutionarily conserved markers of both notochord development and aging/degeneration of the nuclei pulposi.
Collapse
Affiliation(s)
- Rahul Raghavan
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Ugo Coppola
- Stazione Zoologica 'A. Dohrn', Villa Comunale 1, 80121, Naples, Italy
- Present Address: Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Chibuike Ihewulezi
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Julie E Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Justin Hong
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Matthew Cunningham
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Han Jo Kim
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Todd J Albert
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Abdullah M Ali
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | | | - Chitra L Dahia
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY, 10065, USA.
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
22
|
Gigante ED, Piekarz KM, Gurgis A, Cohen L, Razy-Krajka F, Popsuj S, Ali HS, Sundaram SM, Stolfi A. Specification and survival of post-metamorphic branchiomeric neurons in the hindbrain of a non-vertebrate chordate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545305. [PMID: 37645866 PMCID: PMC10461979 DOI: 10.1101/2023.06.16.545305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are largely replaced by adult-specific ones. Yet the regulatory mechanisms underlying this neural replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the "Neck", a compartment of cells set aside in the larva to give rise to cranial motor neuron-like neurons in the adult. Using bulk and single-cell RNAseq analyses, we also characterize the transcriptome of the Neck downstream of Pax2/5/8. Surprisingly, we find that Neck-derived adult ciliomotor neurons begin to differentiate in the larva, contrary to the long-held assumption that the adult nervous system is formed only after settlement and the death of larval neurons during metamorphosis. Finally, we show that manipulating FGF signaling during the larval phase alters the patterning of the Neck and its derivatives. Suppression of FGF converts Neck cells into larval neurons that fail to survive metamorphosis, while prolonged FGF signaling promotes an adult neural stem cell-like fate instead.
Collapse
Affiliation(s)
- Eduardo D Gigante
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Alexandra Gurgis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106; USA
| | - Leslie Cohen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | - Hussan S Ali
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332; USA
| |
Collapse
|
23
|
Scully T, Klein A. A mannitol-based buffer improves single-cell RNA sequencing of high-salt marine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538465. [PMID: 37163054 PMCID: PMC10168337 DOI: 10.1101/2023.04.26.538465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) enables discovery of novel cell states by transcriptomic profiling with minimal prior knowledge, making it useful for studying non-model organisms. For most marine organisms, however, cells are viable at a higher salinity than is compatible with scRNA-seq, impacting data quality and cell representation. We show that a low-salinity phosphate buffer supplemented with D-mannitol (PBS-M) enables higher-quality scRNA-seq of blood cells from the tunicate Ciona robusta. Using PBS-M reduces cell death and ambient mRNA, revealing cell states not otherwise detected. This simple protocol modification could enable or improve scRNA-seq for the majority of marine organisms.
Collapse
Affiliation(s)
- Tal Scully
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Liu B, Ren X, Satou Y. BMP signaling is required to form the anterior neural plate border in ascidian embryos. Dev Genes Evol 2023:10.1007/s00427-023-00702-0. [PMID: 37079132 DOI: 10.1007/s00427-023-00702-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023]
Abstract
Cranial neurogenic placodes have been considered vertebrate innovations. However, anterior neural plate border (ANB) cells of ascidian embryos share many properties with vertebrate neurogenic placodes; therefore, it is now believed that the last common ancestor of vertebrates and ascidians had embryonic structures similar to neurogenic placodes of vertebrate embryos. Because BMP signaling is important for specifying the placode region in vertebrate embryos, we examined whether BMP signaling is also involved in gene expression in the ANB region of ascidian embryos. Our data indicated that Admp, a divergent BMP family member, is mainly responsible for BMP signaling in the ANB region, and that two BMP-antagonists, Noggin and Chordin, restrict the domain, in which BMP signaling is activated, to the ANB region, and prevent it from expanding to the neural plate. BMP signaling is required for expression of Foxg and Six1/2 at the late gastrula stage, and also for expression of Zf220, which encodes a zinc finger transcription factor in late neurula embryos. Because Zf220 negatively regulates Foxg, when we downregulated Zf220 by inhibiting BMP signaling, Foxg was upregulated, resulting in one large palp instead of three palps (adhesive organs derived from ANB cells). Functions of BMP signaling in specification of the ANB region give further support to the hypothesis that ascidian ANB cells share an evolutionary origin with vertebrate cranial placodes.
Collapse
Affiliation(s)
- Boqi Liu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ximan Ren
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
25
|
Kobayashi K, Tokuoka M, Sato H, Ariyoshi M, Kawahara S, Fujiwara S, Kishimoto T, Satou Y. Regulators specifying cell fate activate cell cycle regulator genes to determine cell numbers in ascidian larval tissues. Development 2022; 149:282402. [PMID: 36278804 DOI: 10.1242/dev.201218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
In animal development, most cell types stop dividing before terminal differentiation; thus, cell cycle control is tightly linked to cell differentiation programmes. In ascidian embryos, cell lineages do not vary among individuals, and rounds of the cell cycle are determined according to cell lineages. Notochord and muscle cells stop dividing after eight or nine rounds of cell division depending on their lineages. In the present study, we showed that a Cdk inhibitor, Cdkn1.b, is responsible for stopping cell cycle progression in these lineages. Cdkn1.b is also necessary for epidermal cells to stop dividing. In contrast, mesenchymal and endodermal cells continue to divide even after hatching, and Myc is responsible for maintaining cell cycle progression in these tissues. Expression of Cdkn1.b in notochord and muscle is controlled by transcription factors that specify the developmental fate of notochord and muscle. Likewise, expression of Myc in mesenchyme and endoderm is under control of transcription factors that specify the developmental fate of mesenchyme and endoderm. Thus, cell fate specification and cell cycle control are linked by these transcription factors.
Collapse
Affiliation(s)
- Kenji Kobayashi
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Miki Tokuoka
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan.,Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroaki Sato
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Manami Ariyoshi
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
| | - Shiori Kawahara
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
| | - Shigeki Fujiwara
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
| | - Takeo Kishimoto
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|