1
|
Schantz AV, Dörge DD, Peter N, Klimpel S. The hidden threat: Exploring the parasite burden and feeding habits of invasive raccoon dogs ( Nyctereutes procyonoides) in central Europe. Int J Parasitol Parasites Wildl 2023; 22:155-166. [PMID: 37869059 PMCID: PMC10585636 DOI: 10.1016/j.ijppaw.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Originally from Asia, the raccoon dog Nyctereutes procyonoides is an invasive alien species in Europe, listed since 2019 on the List of invasive alien species of Union concern. The raccoon dog is considered to have negative impact on native biodiversity, as well as a crucial role in hosting and transmitting diverse parasites and pathogens of human and veterinary importance. In the present study, stomach content analyses and parasitological examinations were performed on 73 raccoon dogs from Germany. In addition, fecal samples were analyzed. The results of the study confirm the assumption that the examined raccoon dogs were infested with a various ecto- and endoparasite fauna. A total of 9 ecto- and 11 endoparasites were detected, with 6 of the endoparasites having human pathogenic potential. Trichodectes canis (P = 53.42%), Toxocara canis (P = 50.68%) and Uncinaria stenocephala (P = 68.49%) were the most abundant parasite species. The stomach contents consisted of approximately one-third vegetable and two-thirds animal components, composed of various species of amphibians, fish, insects, mammals and birds. Among them were specially protected or endangered species such as the grass frog Rana temporaria. The study shows that the raccoon dog exerts predation pressure on native species due to its omnivorous diet and, as a carrier of various parasites, poses a potential risk of infection to wild, domestic and farm animals and humans.
Collapse
Affiliation(s)
- Anna V. Schantz
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Dorian D. Dörge
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Norbert Peter
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, Frankfurt/Main, D-60439, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt/Main, D-60325, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, D-60325, Frankfurt/Main, Germany
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| |
Collapse
|
2
|
Lan T, Li H, Yang S, Shi M, Han L, Sahu SK, Lu Y, Wang J, Zhou M, Liu H, Huang J, Wang Q, Zhu Y, Wang L, Xu Y, Lin C, Liu H, Hou Z. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. iScience 2022; 25:105117. [PMID: 36185367 PMCID: PMC9523411 DOI: 10.1016/j.isci.2022.105117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tianming Lan
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jiangang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hui Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Junxuan Huang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanchun Xu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| | - Chuyu Lin
- Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518120, China
- Corresponding author
| | - Huan Liu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Corresponding author
| | - Zhijun Hou
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| |
Collapse
|
3
|
Niiranen L, Mäkelä KA, Dona A, Krumsiek J, Karhu T, Mäkinen MJ, Thalmann O, Saarela S, Herzig KH. Seasonal Regulation of Metabolism: The Effect of Wintertime Fasting and Autumnal Fattening on Key Central Regulators of Metabolism and the Metabolic Profile of the Raccoon Dog ( Nyctereutes Procyonoides). Int J Mol Sci 2021; 22:ijms22094965. [PMID: 34067001 PMCID: PMC8125260 DOI: 10.3390/ijms22094965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Investigations into the mechanisms regulating obesity are frantic and novel translational approaches are needed. The raccoon dog (Nyctereutes procyonoides) is a canid species representing a promising model to study metabolic regulation in a species undergoing cycles of seasonal obesity and fasting. To understand the molecular mechanisms of metabolic regulation in seasonal adaptation, we analyzed key central nervous system and peripheral signals regulating food intake and metabolism from raccoon dogs after autumnal fattening and winter fasting. Expressions of neuropeptide Y (NPY), orexin-2 receptor (OX2R), pro-opiomelanocortin (POMC) and leptin receptor (ObRb) were analyzed as examples of orexigenic and anorexigenic signals using qRT-PCR from raccoon dog hypothalamus samples. Plasma metabolic profiles were measured with 1H NMR-spectroscopy and LC-MS. Circulating hormones and cytokines were determined with canine specific antibody assays. Surprisingly, NPY and POMC were not affected by the winter fasting nor autumn fattening and the metabolic profiles showed a remarkable equilibrium, indicating conserved homeostasis. However, OX2R and ObRb expression changes suggested seasonal regulation. Circulating cytokine levels were not increased, demonstrating that the autumn fattening did not induce subacute inflammation. Thus, the raccoon dog developed seasonal regulatory mechanisms to accommodate the autumnal fattening and prolonged fasting making the species unique in coping with the extreme environmental challenges.
Collapse
Affiliation(s)
- Laura Niiranen
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; (L.N.); (K.A.M.); (T.K.); (O.T.)
| | - Kari A. Mäkelä
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; (L.N.); (K.A.M.); (T.K.); (O.T.)
| | - Anthony Dona
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW 2065, Australia;
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Toni Karhu
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; (L.N.); (K.A.M.); (T.K.); (O.T.)
| | - Markus J. Mäkinen
- Cancer and Translational Medicine Research Unit, Department of Pathology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland;
- Medical Research Center Oulu, P.O Box 8000, FIN-90014 Oulu, Finland
- Department of Pathology, Oulu University Hospital, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Olaf Thalmann
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; (L.N.); (K.A.M.); (T.K.); (O.T.)
- Institute of Pediatrics, Poznań University of Medical Sciences, 60-572 Poznań, Poland
| | - Seppo Saarela
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland;
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; (L.N.); (K.A.M.); (T.K.); (O.T.)
- Institute of Pediatrics, Poznań University of Medical Sciences, 60-572 Poznań, Poland
- Correspondence: ; Tel.: +358-29-448-5280
| |
Collapse
|
4
|
Kochmann J, Cunze S, Klimpel S. Climatic niche comparison of raccoons
Procyon lotor
and raccoon dogs
Nyctereutes procyonoides
in their native and non‐native ranges. Mamm Rev 2021. [DOI: 10.1111/mam.12249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Judith Kochmann
- Senckenberg Biodiversity and Climate Research Center Senckenberganlage 25 60325 Frankfurt am Main Germany
| | - Sarah Cunze
- Institute of Ecology, Evolution and Diversity Goethe University Max‐von‐Laue‐Str. 13 60438 Frankfurt am Main Germany
| | - Sven Klimpel
- Senckenberg Biodiversity and Climate Research Center Senckenberganlage 25 60325 Frankfurt am Main Germany
- Institute of Ecology, Evolution and Diversity Goethe University Max‐von‐Laue‐Str. 13 60438 Frankfurt am Main Germany
| |
Collapse
|
5
|
A review of the physiology of a survival expert of big freeze, deep snow, and an empty stomach: the boreal raccoon dog (Nyctereutes procyonoides). J Comp Physiol B 2017; 188:15-25. [PMID: 28674771 DOI: 10.1007/s00360-017-1114-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
The raccoon dog (Nyctereutes procyonoides) is an invasive canid originating from eastern Asia. Here, we review its physiological adaptations to wintering, with an emphasis on northern Europe, where the raccoon dog spends the coldest part of the year in winter sleep. The timing of physiological changes related to wintering is connected to photoperiod by melatonin. In preparation to winter, raccoon dogs display autumnal hyperphagia and fattening probably regulated by the interaction of several peptide hormones. Sufficient fat deposition is essential for survival through the cold season and for reproduction in spring. The wintering strategy includes alternating periods of physical activity and passivity. Effective arousal and foraging during warmer bouts are enabled by normoglycaemia. During active periods, raccoon dogs are opportunistic participants in the food web, and they mainly utilize ungulate carcasses, plant material, and small mammals. Preferred wintertime habitats include watersides, forests, wetlands, and gardens. However, many food items become limited in mid-winter and snow restricts foraging leading to a negative energy balance. During passivity, energy is preserved by denning and by modest metabolic suppression, probably enabled by decreased thyroid hormone levels. Sleepiness and satiety could be maintained by high growth hormone and leptin concentrations. Several hormones participate in the extension of phase II of fasting with selective fatty acid mobilization and efficient protein conservation. The blood count, organ function tests, bone mass, and bone biomechanical properties exhibit high resistance against catabolism, and breeding can be successful after significant weight loss. The flexible physiological response to wintering is probably one reason enabling the successful colonization of this species into new areas.
Collapse
|
6
|
Mustonen AMJ, Finnilä MAJ, Puukka KS, Jämsä TJ, Saarakkala S, Tuukkanen JK, Nieminen TP. Raccoon dog model shows preservation of bone during prolonged catabolism and reduced physical activity. ACTA ACUST UNITED AC 2017; 220:2196-2202. [PMID: 28373598 DOI: 10.1242/jeb.135475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/27/2017] [Indexed: 11/20/2022]
Abstract
The raccoon dog (Nyctereutes procyonoides) is a promising animal model capable of preventing disuse-induced osteoporosis. Previous data suggest that this species resembles bears in the preservation of bone mass and biomechanical properties during prolonged passivity and catabolism. This longitudinal study examined the osteological properties of tibiae in farm-bred raccoon dogs that were either fed or fasted (n=6 per group) for a 10 week period. Peripheral quantitative computed tomography was utilized and plasma markers of bone turnover measured before fasting and at 9 weeks followed by mechanical testing (three-point bending), micro-computed tomography and Fourier transform infrared imaging at 10 weeks. Passive wintering with prolonged catabolism (body mass loss 32%) had no significant effects on bone mineralization, porosity or strength. The concentration of C-terminal telopeptide of type I collagen, indicative of bone resorption, increased in the plasma of the fasted raccoon dogs, while the bone formation markers were unchanged. The levels of 25-hydroxyvitamin D were reduced in the fasted animals. Based on these data, the preservation of bone in wintering raccoon dogs shares characteristics with that of bears with no apparent decrease in the formation of bone but increased resorption. To conclude, raccoon dogs were able to minimize bone loss during a 10 week period of catabolism and passivity.
Collapse
Affiliation(s)
- Anne-Mari J Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Institute of Biomedicine/Anatomy, PO Box 1627, Kuopio FI-70211, Finland .,University of Eastern Finland, Faculty of Science and Forestry, Department of Environmental and Biological Sciences, PO Box 111, Joensuu FI-80101, Finland
| | - Mikko A J Finnilä
- University of Oulu, Faculty of Medicine, Research Unit of Medical Imaging, Physics and Technology, PO Box 5000, Oulu FI-90014, Finland.,University of Eastern Finland, Faculty of Science and Forestry, Department of Applied Physics, PO Box 1627, Kuopio FI-70211, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 5000, Oulu FI-90014, Finland
| | - Katri S Puukka
- NordLab Oulu, Oulu University Hospital, PO Box 500, Oulu FI-90029, OYS, Finland.,University of Oulu, Faculty of Medicine, Department of Clinical Chemistry, PO Box 8000, Oulu FI-90014, Finland
| | - Timo J Jämsä
- University of Oulu, Faculty of Medicine, Research Unit of Medical Imaging, Physics and Technology, PO Box 5000, Oulu FI-90014, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 5000, Oulu FI-90014, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, PO Box 50, Oulu FI-90029, Finland
| | - Simo Saarakkala
- University of Oulu, Faculty of Medicine, Research Unit of Medical Imaging, Physics and Technology, PO Box 5000, Oulu FI-90014, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 5000, Oulu FI-90014, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, PO Box 50, Oulu FI-90029, Finland
| | - Juha K Tuukkanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 5000, Oulu FI-90014, Finland.,University of Oulu, Faculty of Medicine, Research Group of Cancer Research and Translational Medicine, PO Box 5000, Oulu FI-90014, Finland
| | - T Petteri Nieminen
- University of Eastern Finland, Faculty of Health Sciences, School of Medicine, Institute of Biomedicine/Anatomy, PO Box 1627, Kuopio FI-70211, Finland.,University of Eastern Finland, Faculty of Science and Forestry, Department of Environmental and Biological Sciences, PO Box 111, Joensuu FI-80101, Finland
| |
Collapse
|
7
|
Chojnowska K, Czerwinska J, Kaminski T, Kaminska B, Kurzynska A, Bogacka I. Leptin plasma concentrations, leptin gene expression, and protein localization in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes of the European beaver ( Castor fiber ). Theriogenology 2017; 87:266-275. [DOI: 10.1016/j.theriogenology.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
|
8
|
Zhang T, Zhong W, Sun WL, Wang Z, Sun H, Fan Y, Li G. Effects of dietary fat:carbohydrate ratio on nutrient digestibility, serum parameters, and production performance in male silver foxes (Vulpes vulpes) during the winter fur-growing period. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2015-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ting Zhang
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
| | - Wei Zhong
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
| | - Wei Li Sun
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
| | - Zhuo Wang
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
| | - Haoran Sun
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
| | - Yanyan Fan
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
| | - Guangyu Li
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, People’s Republic of China
| |
Collapse
|
9
|
Unzhakov AR, Tyutyunnik NN. The isozyme spectra of lactate dehydrogenase in the tissues of the raccoon dog Nyctereutes procyonoides in the autumn. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Kinnunen S, Mänttäri S, Herzig KH, Nieminen P, Mustonen AM, Saarela S. Effects of wintertime fasting and seasonal adaptation on AMPK and ACC in hypothalamus, adipose tissue and liver of the raccoon dog (Nyctereutes procyonoides). Comp Biochem Physiol A Mol Integr Physiol 2015; 192:44-51. [PMID: 26603554 DOI: 10.1016/j.cbpa.2015.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/25/2022]
Abstract
The raccoon dog (Nyctereutes procyonoides) is a canid with autumnal fattening and passive wintering strategy. We examined the effects of wintertime fasting and seasonality on AMP-activated protein kinase (AMPK), a regulator of metabolism, and its target, acetyl-CoA carboxylase (ACC) on the species. Twelve farmed raccoon dogs (eleven females/one male) were divided into two groups: half were fasted for ten weeks in December-March (winter fasted) and the others were fed ad libitum (winter fed). A third group (autumn fed, eight females) was fed ad libitum and sampled in December. Total AMPK, ACC and their phosphorylated forms (pAMPK, pACC) were measured from hypothalamus, liver, intra-abdominal (iWAT) and subcutaneous white adipose tissues (sWAT). The fasted animals lost 32% and the fed 20% of their body mass. Hypothalamic AMPK expression was lower and pACC levels higher in the winter groups compared to the autumn fed group. Liver pAMPK was lower in the winter fasted group, with consistently decreased ACC and pACC. AMPK and pAMPK were down-regulated in sWAT and iWAT of both winter groups, with a parallel decline in pACC in sWAT. The responses of AMPK and ACC to fasting were dissimilar to the effects observed previously in non-seasonal mammals and hibernators. Differences between the winter fed and autumn fed groups indicate that the functions of AMPK and ACC could be regulated in a season-dependent manner. Furthermore, the distinctive effects of prolonged fasting and seasonal adaptation on AMPK-ACC pathway could contribute to the wintering strategy of the raccoon dog.
Collapse
Affiliation(s)
- Sanni Kinnunen
- Department of Biology, University of Oulu, P.O. Box 3000, FI-90014, University of Oulu, Finland.
| | - Satu Mänttäri
- Finnish Institute of Occupational Health, Aapistie 1, FI-90220 Oulu, Finland
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Biocenter Oulu, P.O. Box 5000, FI-90014, University of Oulu, Finland; Medical Research Center Oulu and Oulu University Hospital, Kajaanintie 50, FI-90220 Oulu, Finland
| | - Petteri Nieminen
- Institute of Biomedicine/Anatomy, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Biology, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Anne-Mari Mustonen
- Institute of Biomedicine/Anatomy, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Biology, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Seppo Saarela
- Department of Biology, University of Oulu, P.O. Box 3000, FI-90014, University of Oulu, Finland
| |
Collapse
|
11
|
Kinnunen S, Mänttäri S, Herzig KH, Nieminen P, Mustonen AM, Saarela S. Maintenance of skeletal muscle energy homeostasis during prolonged wintertime fasting in the raccoon dog (Nyctereutes procyonoides). J Comp Physiol B 2015; 185:435-45. [PMID: 25652584 DOI: 10.1007/s00360-015-0893-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
Abstract
The raccoon dog (Nyctereutes procyonoides) is a canid species with autumnal fattening and prolonged wintertime fasting. Nonpathological body weight cycling and the ability to tolerate food deficiency make this species a unique subject for studying physiological mechanisms in energy metabolism. AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating energy homeostasis. During acute fasting, AMPK promotes fatty acid oxidation and enhances glucose uptake. We evaluated the effects of prolonged fasting on muscle energy metabolism in farm-bred raccoon dogs. Total and phosphorylated AMPK and acetyl-CoA carboxylase (ACC), glucose transporter 4 (GLUT 4), insulin receptor and protein kinase B (Akt) protein expressions of hind limb muscles were determined by Western blot after 10 weeks of fasting. Plasma insulin, leptin, ghrelin, glucose and free fatty acid levels were measured, and muscle myosin heavy chain (MHC) isoform composition analyzed. Fasting had no effects on AMPK phosphorylation, but total AMPK expression decreased in m. rectus femoris, m. tibialis anterior and m. extensor digitorum longus resulting in a higher phosphorylation ratio. Decreased total expression was also observed for ACC. Fasting did not influence GLUT 4, insulin receptor or Akt expression, but Akt phosphorylation was lower in m. flexor digitorum superficialis and m. extensor digitorum longus. Three MHC isoforms (I, IIa and IIx) were detected without differences in composition between the fasted and control animals. The studied muscles were resistant to prolonged fasting indicating that raccoon dogs have an effective molecular regulatory system for preserving skeletal muscle function during wintertime immobility and fasting.
Collapse
Affiliation(s)
- Sanni Kinnunen
- Department of Biology, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland,
| | | | | | | | | | | |
Collapse
|
12
|
Sutor A, Schwarz S. Seasonal Habitat Selection of Raccoon Dogs (Nyctereutes procyonoides) in Southern Brandenburg, Germany. FOLIA ZOOLOGICA 2013. [DOI: 10.25225/fozo.v62.i3.a10.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Astrid Sutor
- Department of Wildlife Ecology and Management, Institute of Forest Zoology, Albrecht University of Freiburg, Tennenbachstr. 4, 79085 Freiburg, Germany
| | - Sabine Schwarz
- Society for the Protection of the Great Bustard, Buckower Dorfstr. 34, 14715 Nennhausen, Germany
| |
Collapse
|
13
|
Sutor A, Schwarz S, Conraths FJ. The biological potential of the raccoon dog ( Nyctereutes procyonoides, Gray 1834) as an invasive species in Europe-new risks for disease spread? ACTA THERIOLOGICA 2013; 59:49-59. [PMID: 32226062 PMCID: PMC7097217 DOI: 10.1007/s13364-013-0138-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/21/2013] [Indexed: 12/28/2022]
Abstract
Invasive wildlife species have the potential to act as additional host and vector species for infectious diseases. The raccoon dog (Nyctereutes procyonides), a carnivore species that has its origin in Asia, was taken as an example to demonstrate biological and ecological prerequisites which enables an invasive species to occupy a new habitat permanently. Studies conducted during the last 20 years identified a total of 35 species of endoparasites, five ectoparasites, six bacterial or protozoan species, and five viruses found in the subspecies Nyctereutes procyonoides ussuriensis in its original and newly occupied habitat or in Nyctereutes procyonoides koreensis in its original habitat, respectively. With reference to raccoon dogs impact as vector species and the relevance for human and animal health, we selected Trichinella spp., Echinococcus multilocularis, Francisella tularensis, rabies virus, and canine distemper virus for detailed description. Results of studies from Finland and Germany furthermore showed that biological characteristics of the raccoon dog make this carnivore an ideal host and vector for a variety of pathogens. This may result in a growing importance of this invasive species concerning the epidemiology of some transmissible diseases in Europe, including the hazard that the existence of autochthonous wildlife, particularly small populations, is endangered. Potential adverse effects on human and animal health in the livestock sector must also be taken into account. Especially with regard to its potential as a reservoir for zoonotic diseases, the raccoon dog should receive more attention in disease prevention and eradication strategies.
Collapse
Affiliation(s)
- Astrid Sutor
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Seestr. 55, 16868 Wusterhausen, Germany
| | - Sabine Schwarz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Seestr. 55, 16868 Wusterhausen, Germany
| | - Franz Josef Conraths
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Seestr. 55, 16868 Wusterhausen, Germany
| |
Collapse
|
14
|
Newman C, Zhou YB, Buesching CD, Kaneko Y, Macdonald DW. Contrasting Sociality in Two Widespread, Generalist, Mustelid Genera,MelesandMartes. MAMMAL STUDY 2011. [DOI: 10.3106/041.036.0401] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Sutor A, Schwarz S. Home ranges of raccoon dogs (Nyctereutes procyonoides, Gray, 1834) in Southern Brandenburg, Germany. EUR J WILDLIFE RES 2011. [DOI: 10.1007/s10344-011-0546-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Nieminen P, Finnilä MAJ, Tuukkanen J, Jämsä T, Mustonen AM. Preservation of bone mass and biomechanical properties during winter sleep--the raccoon dog (Nyctereutes procyonoides) as a novel model species. Bone 2011; 48:878-84. [PMID: 21146643 DOI: 10.1016/j.bone.2010.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/15/2010] [Accepted: 12/02/2010] [Indexed: 01/22/2023]
Abstract
It has been established that almost 40% of postmenopausal women in the United States have osteopenia and models to study its prevention are thus urgently needed. Bears (Ursus spp.) displaying winter sleep were previously introduced as promising models to study the treatment of disuse-induced bone loss. The present study examined the potential of another analogous model species, the raccoon dog (Nyctereutes procyonoides), in bone research. Similar to bears, raccoon dogs display prolonged passivity and catabolism in winter, but they are of a moderate body mass, easy to handle and reared on farms. Wild specimens (n=51) were hunted in winter 2007-2008. The bone mineral density of femoral diaphysis and neck was examined with peripheral quantitative computed tomography, after which their mechanical properties were tested with the three-point bending and femoral neck loading tests. A subsample of the specimens was analyzed histologically. While the body mass of the raccoon dogs decreased from 7.0±0.3 to 4.5±0.2 kg (-36%) during winter, the bone mass and biomechanical properties remained unchanged despite of heavy wintertime catabolism similar to bears. Thus, the cortical mineral density remained at approximately 1400 mg/cm(3), the trabecular mineral density at 450 mg/cm(3) and the maximum load of the femoral neck at 700 N. However, in histological samples, the proportion of osteoid perimeter vs. mineralized bone perimeter decreased during wintering. A possible mechanism of bone mass preservation is the endocrine status of overwintering raccoon dogs, which could participate in preventing bone loss.
Collapse
Affiliation(s)
- Petteri Nieminen
- University of Eastern Finland, Department of Medicine, Institute of Biomedicine, P.O. Box 1674, FI-70211, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
17
|
Kowalczyk R, Zalewski A. Adaptation to cold and predation—shelter use by invasive raccoon dogs Nyctereutes procyonoides in Białowieża Primeval Forest (Poland). EUR J WILDLIFE RES 2010. [DOI: 10.1007/s10344-010-0406-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Sutor A, Kauhala K, Ansorge H. Diet of the raccoon dog Nyctereutes procyonoides — a canid with an opportunistic foraging strategy. ACTA ACUST UNITED AC 2010. [DOI: 10.4098/j.at.0001-7051.035.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Kitao N, Fukui D, Hashimoto M, Osborne PG. Overwintering strategy of wild free-ranging and enclosure-housed Japanese raccoon dogs (Nyctereutes procyonoides albus). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2009; 53:159-165. [PMID: 19101736 DOI: 10.1007/s00484-008-0199-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/09/2008] [Accepted: 11/11/2008] [Indexed: 05/27/2023]
Abstract
The raccoon dog, Nyctereutes procyonoides, is a canid with a passive overwintering strategy in northern Europe. However, the behaviour and physiology of the Japanese subspecies, N. p. albus, which has fewer chromosomes than the other subspecies, remain unknown. We measured body temperature, body composition and blood biochemistry of wild free-ranging and fasted enclosure-housed N. p. albus during boreal winter in Hokkaido, Japan. Body temperature of N. p. albus decreased from 38 degrees C in autumn to 35.9-36.7 degrees C while maintaining a circadian rhythm in late February (n = 3). A transient 18-36% decrease in resting heart rate occurred when body temperature was low (n = 2). Despite a 33-45% decrease in body weight due to winter fasting, circulating glucose, total protein and triglyceride levels were maintained (n = 4). Serum urea nitrogen dropped by 43-45% from autumn to spring, suggesting protein conservation during fasting. The overwintering survival strategy of N. p. albus in central Hokkaido is based upon large changes in seasonal activity patterns, winter denning and communal housing without the large decrease in body temperature that is characteristic of subarctic animals exhibiting hibernation or torpor.
Collapse
Affiliation(s)
- Naoya Kitao
- Department of Physiology, Asahikawa Medical College, Midorigaoka-higashi, Hokkaido, Japan.
| | | | | | | |
Collapse
|
20
|
Mustonen AM, Asikainen J, Kauhala K, Paakkonen T, Nieminen P. Seasonal rhythms of body temperature in the free-ranging raccoon dog (Nyctereutes procyonoides) with special emphasis on winter sleep. Chronobiol Int 2008; 24:1095-107. [PMID: 18075801 DOI: 10.1080/07420520701797999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The raccoon dog (Nyctereutes procyonoides) is the only canid with passive overwintering in areas with cold winters, but the depth and rhythmicity of wintertime hypothermia in the wild raccoon dog are unknown. To study the seasonal rhythms of body temperature (T(b)), seven free-ranging animals were captured and implanted with intra-abdominal T(b) loggers and radio-tracked during years 2004-2006. The average size of the home ranges was 306+/-26 ha, and the average 24 h T(b) was 38.0+/-<0.01 degrees C during the snow-free period (May-November). The highest and lowest T(b) were usually recorded around midnight (21:00-02:00 h) and between 05:00-11:00 h, respectively, and the range of the 24 h oscillations was 1.2+/-0.01 degrees C. The animals lost approximately 43+/-6% of body mass in winter (December-April), when the average size of the home ranges was 372+/-108 ha. During the 2-9-wk periods of passivity in January-March, the average 24 h T(b) decreased by 1.4-2.1 degrees C compared to the snow-free period. The raccoon dogs were hypothermic for 5 h in the morning (06:00-11:00 h), whereas the highest T(b) values were recorded between 16:00-23:00 h. The range of the 24 h oscillations increased by approximately 0.6 degrees C, and the rhythmicity was more pronounced than in the snow-free period. The ambient temperature and depth of snow cover were important determinants of the seasonal T(b) rhythms. The overwintering strategy of the raccoon dog resembled the patterns of winter sleep in bears and badgers, but the wintertime passivity of the species was more intermittent and the decrease in the T(b) less pronounced.
Collapse
|
21
|
Harrison JL, Miller DW, Findlay PA, Adam CL. Photoperiod influences the central effects of ghrelin on food intake, GH and LH secretion in sheep. Neuroendocrinology 2008; 87:182-92. [PMID: 18073457 DOI: 10.1159/000112480] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 08/06/2007] [Indexed: 12/11/2022]
Abstract
Ghrelin is a circulating peptide, primarily secreted by the gut, that has reported actions within the hypothalamo-pituitary axis to stimulate food intake, inhibit GnRH/LH secretion and stimulate GH secretion in monogastric species. Here, we examine responses to centrally administered ghrelin in a seasonal ruminant. Estradiol-implanted castrated male sheep with indwelling intracerebroventricular (i.c.v.) cannulae were kept with unrestricted food for 16 weeks in long day photoperiod (LD, 16 h light/day) then 16 weeks in short days (SD, 8 h light/day). In week 16 of each photoperiod they were given a control (saline) i.c.v. injection on day 1 and ghrelin i.c.v. injection on day 2. Mean circulating endogenous plasma ghrelin concentrations showed no diurnal pattern and were similar between the photoperiods. Central ghrelin injection increased voluntary food intake 2-fold in the first hour after administration in LD but not in SD, decreased LH pulse frequency and amplitude in SD but not in LD, and stimulated GH release in both photoperiods, although there was a 1.5-fold larger response in LD. Therefore, central injection of ghrelin to sheep acutely stimulated food intake in LD, suppressed reproductive neuroendocrine output in SD, and stimulated GH secretion irrespective of photoperiod, although more pronounced in LD. These data indicate that photoperiod can influence hypothalamic appetite and reproductive neuroendocrine responses to ghrelin in seasonal species.
Collapse
Affiliation(s)
- Joanne L Harrison
- Obesity and Metabolic Health Division, Rowett Research Institute, Bucksburn, Aberdeen, UK
| | | | | | | |
Collapse
|
22
|
Changes in body mass, serum leptin, and mRNA levels of leptin receptor isoforms during the premigratory period in Myotis lucifugus. J Comp Physiol B 2007; 178:217-23. [DOI: 10.1007/s00360-007-0215-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/03/2007] [Accepted: 10/06/2007] [Indexed: 10/22/2022]
|
23
|
Selective Seasonal Fatty Acid Accumulation and Mobilization in the Wild Raccoon Dog (Nyctereutes procyonoides). Lipids 2007; 42:1155-67. [DOI: 10.1007/s11745-007-3118-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
24
|
Nieminen P, Rouvinen-Watt K, Saarela S, Mustonen AM. Fasting in the American marten (Martes americana): a physiological model of the adaptations of a lean-bodied animal. J Comp Physiol B 2007; 177:787-95. [PMID: 17605015 DOI: 10.1007/s00360-007-0175-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/28/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
The American marten (Martes americana) is a boreal forest marten with low body adiposity throughout the year. The aim of this study was to investigate the adaptations of this lean-bodied species to fasting for an ecologically relevant duration (48 h) by exposing eight farm-bred animals to total food deprivation with seven control animals. Selected morphological and hematological parameters, plasma and serum biochemistry, endocrinological variables and liver and white adipose tissue (WAT) enzyme activities were determined. After 48 h without food, the marten were within phase II of fasting with depleted liver and muscle glycogen stores, but with active lipid mobilization indicated by the high lipase activities in several WAT depots. The plasma ghrelin concentrations were higher due to food deprivation, possibly increasing appetite and enhancing foraging behavior. The lower plasma insulin and higher cortisol concentrations could mediate augmented lipolysis and the lower triiodothyronine levels could suppress the metabolic rate. Fasting did not affect the plasma levels of stress-associated catecholamines or variables indicating tissue damage. In general, the adaptations to short-term fasting exhibited some differences compared to the related farm-bred American mink (Mustela vison), an example of which was the better ability of the marten to hydrolyze lipids despite its significantly lower initial fat mass.
Collapse
Affiliation(s)
- Petteri Nieminen
- Faculty of Biosciences, University of Joensuu, P.O. Box 111, 80101, Joensuu, Finland.
| | | | | | | |
Collapse
|
25
|
Król E, Duncan JS, Redman P, Morgan PJ, Mercer JG, Speakman JR. Photoperiod regulates leptin sensitivity in field voles, Microtus agrestis. J Comp Physiol B 2005; 176:153-63. [PMID: 16402185 DOI: 10.1007/s00360-005-0037-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 09/07/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
We have previously shown that cold-acclimated (8 degrees C) male field voles (Microtus agrestis) transferred from short (SD, 8:16 h L:D) to long photoperiod (LD, 16:8 h L:D) exhibit increases in body mass, adiposity and food intake. To assess whether these increases were associated with decreased leptin sensitivity, we infused LD and SD voles with physiological doses of murine leptin (or saline) delivered peripherally for 7 days via mini-osmotic pumps. Measurements were made of body mass (weight-reducing effect of leptin), food intake (anorectic effect of leptin) and gene expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) (thermogenic effect of leptin). The SD animals were sensitive to the weight-reducing effects of leptin (mean body mass decrease of 1.2 g over 7 days) and appetite-reducing effect of leptin (mean food intake decrease of 2.5 g over 7 days), whereas LD voles were resistant to the hormone treatment. The switch from a leptin-sensitive to leptin-resistant state appears to act as a desensitisation mechanism that allows voles transferred from SD to LD to ignore elevated leptin levels generated by increased body fat and accumulate adipose tissue without stimulating compensatory changes opposing the weight gain. Neither SD nor LD voles responded to infusion of leptin by changes in BAT UCP1 gene expression, suggesting dissociation of anorectic and thermogenic effects of leptin, possibly related to chronic cold exposure. Our results indicate that cold-acclimated voles show photoperiod-regulated changes in leptin sensitivity and may provide an attractive model for elucidating molecular mechanisms of leptin resistance.
Collapse
Affiliation(s)
- E Król
- Aberdeen Centre for Energy Regulation and Obesity, School of Biological Sciences, University of Aberdeen, Zoology Building, Aberdeen, AB24 2TZ, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Nieminen P, Saarela S, Pyykönen T, Asikainen J, Mononen J, Mustonen AM. Endocrine response to fasting in the overwintering captive raccoon dog (Nyctereutes procyonoides). ACTA ACUST UNITED AC 2005; 301:919-29. [PMID: 15562452 DOI: 10.1002/jez.a.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The raccoon dog (Nyctereutes procyonoides) is an omnivorous canid utilizing the passive wintering strategy in the boreal climate. Farmed raccoon dogs (n=12) were randomly assigned into two study groups on 26 November 2003. Between 3 December 2003 and 27 January 2004, half of the animals were fasted for 8 weeks and plasma weight-regulatory hormone concentrations determined on 26 November and 30 December 2003 and on 27 January 2004. The plasma peptide YY, ghrelin, and growth hormone (GH) concentrations increased due to food deprivation, while the T4 and Acrp30 concentrations decreased. Furthermore, the plasma GH concentrations were higher in the fasted raccoon dogs than in the fed animals, which had higher plasma insulin, glucagon, and T4 concentrations. However, fasting had no effect on the plasma leptin concentrations. The results confirm previous findings with unchanged leptin levels in fasting carnivores. Increased GH levels probably contribute to increased lipolysis and mobilization of fat stores. Ghrelin can also enhance lipolysis by increasing the GH levels. The decreased levels of T4 may reduce the metabolic rate. The plasma dopamine concentrations decreased due to fasting unlike observed previously in rats. Together with the unaffected adrenaline, noradrenaline, and cortisol concentrations, this suggests that food deprivation in winter does not cause stress to the raccoon dog but is an integral part of its natural life history.
Collapse
Affiliation(s)
- Petteri Nieminen
- Department of Biology, University of Joensuu, FIN-80101, Joensuu, Finland
| | | | | | | | | | | |
Collapse
|
27
|
Asikainen J, Mustonen AM, Pyykönen T, Hänninen S, Mononen J, Nieminen P. Adaptations of the raccoon dog (Nyctereutes procyonoides) to wintering—effects of restricted feeding or periodic fasting on lipids, sex steroids and reproduction. ACTA ACUST UNITED AC 2005; 303:861-71. [PMID: 16161013 DOI: 10.1002/jez.a.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The raccoon dog (Nyctereutes procyonoides) is an omnivorous canid with autumnal hyperphagia and fattening followed by mid-winter passivity and fasting in boreal latitudes with seasonal snow cover. The effects of two different feeding levels (400 or 200 kcal/animal/d) or fasting (5-week fasting+1-week feeding+3-week fasting) on plasma lipids, sex steroids and reproductive success of farm-bred raccoon dogs (n=60 females and 24 males) were studied in winter. The body masses, body mass indices (BMIs) and levels of plasma triacylglycerols (TG), total cholesterol and low- and high-density lipoprotein cholesterol did not differ between the fed and the restrictively fed animals. During fasting, the plasma TG concentrations increased and the BMIs decreased, indicating the release of fatty acids from adipose tissue. After the fasting periods, the levels of plasma cholesterol and high-density lipoprotein cholesterol increased, whereas the TG levels decreased indicating the rebuilding of energy reserves. The fact that the different wintertime feeding regimes had no impact on the plasma glucose, total protein, cortisol, estradiol, progesterone or testosterone levels, or on the reproductive success, indicates versatile adaptive capacity in the species.
Collapse
Affiliation(s)
- Juha Asikainen
- Department of Biology, University of Joensuu, Joensuu, Finland.
| | | | | | | | | | | |
Collapse
|