1
|
Wong GP, Hartmann S, Simmons DG, Ellis S, Nonn O, Cannon P, Nguyen TV, Nguyen A, Bartho LA, Tong S, Hannan NJ, Kaitu'u-Lino TJ. Trophoblast Side-Population Markers are Dysregulated in Preeclampsia and Fetal Growth Restriction. Stem Cell Rev Rep 2024; 20:1954-1970. [PMID: 39028417 PMCID: PMC11445292 DOI: 10.1007/s12015-024-10764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Dysregulated progenitor cell populations may contribute to poor placental development and placental insufficiency pathogenesis. Side-population cells possess progenitor properties. Recent human trophoblast side-population isolation identified enrichment of 8 specific genes (CXCL8, ELL2, GATA6, HK2, HLA-DPB1, INTS6, SERPINE3 and UPP1) (Gamage et al. 2020, Stem Cell Rev Rep). We characterised these trophoblast side-population markers in human placenta and in placental insufficiency disorders: preeclampsia and fetal growth restriction (FGR). Trophoblast side-population markers localised to mononuclear trophoblasts lining the placental villous basement membrane in preterm control, preeclamptic and FGR placental sections (n = 3, panel of 3 markers/serial section). Analysis of single-cell transcriptomics of an organoid human trophoblast stem cell (hTSC) to extravillous trophoblast (EVT) differentiation model (Shannon et al. 2022, Development) identified that all side-population genes were enriched in mononuclear trophoblast and trophoblasts committed to differentiation under hTSC culture conditions. In vitro validation via 96 h time course hTSC differentiation to EVTs or syncytiotrophoblasts (n = 5) demonstrated ELL2 and HK2 increased with differentiation (p < 0.0024, p < 0.0039 respectively). CXCL8 and HLA-DPB1 were downregulated (p < 0.030, p < 0.011 respectively). GATA6 and INTS6 increased with EVT differentiation only, and UPP1 reduced with syncytialisation. SERPINE3 was undetectable. Trophoblast side-population marker mRNA was measured in human placentas (< 34-weeks' gestation; n = 78 preeclampsia, n = 30 FGR, and n = 18 gestation-matched controls). ELL2, HK2 and CXCL8 were elevated in preeclamptic (p = 0.0006, p < 0.0001, p = 0.0335 respectively) and FGR placentas (p = 0.0065, p < 0.0001, p = 0.0001 respectively) versus controls. Placental GATA6 was reduced in pregnancies with preeclampsia and FGR (p = 0.0014, p = 0.0146 respectively). Placental INTS6 was reduced with FGR only (p < 0.0001). This study identified the localisation of a unique trophoblast subset enriched for side-population markers. Aberrant expression of some side-population markers may indicate disruptions to unique trophoblast subtypes in placental insufficiency.
Collapse
Affiliation(s)
- Georgia P Wong
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| | - Sunhild Hartmann
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - David G Simmons
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Sarah Ellis
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Olivia Nonn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ping Cannon
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Anna Nguyen
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Lucy A Bartho
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natalie J Hannan
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
2
|
Bai Z, Feng M, Du Y, Cong L, Cheng Y. Carboxypeptidase E down-regulation regulates transcriptional and epigenetic profiles in pancreatic cancer cell line: A network analysis. Cancer Biomark 2021; 29:79-88. [PMID: 32675394 DOI: 10.3233/cbm-191163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pancreatic cancer is a malignant tumor and its incidence has increased in recent years. Carboxypeptidase E (CPE) is a prohormone/proneuropeptide processing enzyme that has been shown to be associated with tumor growth and invasion in various cancers including pancreatic cancer. OBJECTIVE To understand the molecular mechanism underlying the proliferative effects of CPE in cancer cells. METHODS We down-regulated CPE gene expression in PANC-1 cell, a pancreatic cell line, and investigated mRNA, miRNA, circRNA and lncRNA expression profiling in PANC-1 cells from control group and CPE knock-down group by microarray analysis. We further validated the top 14 differentially expressed circRNAs by qRT-PCR. RESULTS Our results showed that CPE down-regulation caused decreased cell proliferation. The microarray data showed 107, 15, 299 and 360 differentially expressed mRNAs, miRNAs, circRNAs, and lncRNAs, respectively between control group and CPE knock-down group. Of Which, 41 mRNAs, 12 miRNAs, 133 circRNAs, and 262 lncRNAs were down-regulated; 66 mRNAs, 3 miRNAs, 166 circRNAs, and 98 lncRNAs were up-regulated. Bioinformatics analysis showed that the top significantly enriched pathways for the differentially expressed RNAs were related to cancer onset and/or progression, these included p53 signaling pathway, ECM-receptor interaction, focal adhesion and Wnt signaling pathway. We further performed network analysis to assess the mRNA, miRNA, circRNA and lncRNA correlations, and showed that HUWE1, hsa-miR-6780b-5p, has_circ_0058208 and lnc-G3BP1-3:8 were in the core position of the network. CONCLUSIONS Taken together, these results identified potential CPE regulated core genes and pathways for cell proliferation in pancreatic cancer cell, and therefore provide potential targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhile Bai
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
3
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
4
|
Kuo WT, Shen L, Zuo L, Shashikanth N, Ong MLDM, Wu L, Zha J, Edelblum KL, Wang Y, Wang Y, Nilsen SP, Turner JR. Inflammation-induced Occludin Downregulation Limits Epithelial Apoptosis by Suppressing Caspase-3 Expression. Gastroenterology 2019; 157:1323-1337. [PMID: 31401143 PMCID: PMC6815722 DOI: 10.1053/j.gastro.2019.07.058] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Epithelial tight junctions are compromised in gastrointestinal disease. Processes that contribute to the resulting barrier loss include endocytic occludin removal from the tight junction and reduced occludin expression. Nevertheless, the relatively-normal basal phenotype of occludin knockout (KO) mice has been taken as evidence that occludin does not contribute to gastrointestinal barrier function. We asked whether stress could unmask occludin functions within intestinal epithelia. METHODS Wildtype (WT), universal and intestinal epithelial-specific occludin KO, and villin-EGFP-occludin transgenic mice as well as WT and occludin knockdown (KD) Caco-2BBe cell monolayers were challenged with DSS, TNBS, staurosporine, 5-FU, or TNF. Occludin and caspase-3 expression were assessed in patient biopsies. RESULTS Intestinal epithelial occludin loss limited severity of DSS- and TNBS-induced colitis due to epithelial resistance to apoptosis; activation of both intrinsic and extrinsic apoptotic pathways was blocked in occludin KO epithelia. Promoter analysis revealed that occludin enhances CASP3 transcription and, conversely, that occludin downregulation reduces caspase-3 expression. Analysis of biopsies from Crohn's disease and ulcerative colitis patients and normal controls demonstrated that disease-associated occludin downregulation was accompanied by and correlated with reduced caspase-3 expression. In vitro, cytokine-induced occludin downregulation resulted in reduced caspase-3 expression and resistance to intrinsic and extrinsic pathway apoptosis, demonstrating an overall protective effect of inflammation-induced occludin loss. CONCLUSIONS The tight junction protein occludin regulates apoptosis by enhancing caspase-3 transcription. These data suggest that reduced epithelial caspase-3 expression downstream of occludin downregulation is a previously-unappreciated anti-apoptotic process that contributes to mucosal homeostasis in inflammatory conditions.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115
| | - Le Shen
- Department of Pathology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| | - Li Zuo
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115,Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Nitesh Shashikanth
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115
| | - Ma. Lora Drizella M. Ong
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115
| | - Licheng Wu
- Department of Pathology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| | - Juanmin Zha
- Department of Pathology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637,Soochow University and Department of Oncology, The First Affiliated Hospital of Soochow University, 296 Shizi Street, Suzhou, 215123, China
| | - Karen L. Edelblum
- Department of Pathology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637,Department of Pathology & Laboratory Medicine, Center for Inflammation and Immunity, Rutgers New Jersey Medical School, Cancer Center, 205 South Orange Avenue, G1228, Newark, New Jersey 07103
| | - Yitang Wang
- Department of Pathology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| | - Yingmin Wang
- Department of Pathology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637
| | - Steven P. Nilsen
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115
| | - Jerrold R. Turner
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115,Department of Pathology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637,Correspondence to: Jerrold R. Turner, MD, Ph.D., Brigham and Women’s Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, HNRB 730B, , 617-525-8165
| |
Collapse
|
5
|
Sweta K, Dabas P, Jain K, Sharma N. The amino-terminal domain of ELL transcription elongation factor is essential for ELL function in Schizosaccharomyces pombe. MICROBIOLOGY-SGM 2017; 163:1641-1653. [PMID: 29043956 DOI: 10.1099/mic.0.000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptional elongation is a critical step for regulating expression of protein-coding genes. Multiple transcription elongation factors have been identified in vitro, but the physiological roles of many of them are still not clearly understood. The ELL (Eleven nineteen Lysine rich Leukemia) family of transcription elongation factors are conserved from fission yeast to humans. Schizosaccharomyces pombe contains a single ELL homolog (SpELL) that is not essential for its survival. Therefore to gain insights into the in vivo cellular functions of SpELL, we identified phenotypes associated with deletion of ell1 in S. pombe. Our results demonstrate that SpELL is required for normal growth of S. pombe cells. Furthermore, cells lacking ell1+ exhibit a decrease in survival when exposed to DNA-damaging conditions, but their growth is not affected under environmental stress conditions. ELL orthologs in different organisms contain three conserved domains, an amino-terminal domain, a middle domain and a carboxyl-terminal domain. We also carried out an in vivo functional mapping of these conserved domains within S. pombe ELL and uncovered a critical role for its amino-terminus in regulating all its cellular functions, including growth under different conditions, transcriptional elongation potential and interaction with S. pombe EAF. Taken together our results suggest that the domain organization of ELL proteins is conserved across species, but the in vivo functions as well as the relationship between the various domains and roles of ELL show species-specific differences.
Collapse
Affiliation(s)
- Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Kamal Jain
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| |
Collapse
|
6
|
Tang LY, Deng N, Wang LS, Dai J, Wang ZL, Jiang XS, Li SJ, Li L, Sheng QH, Wu DQ, Li L, Zeng R. Quantitative phosphoproteome profiling of Wnt3a-mediated signaling network: indicating the involvement of ribonucleoside-diphosphate reductase M2 subunit phosphorylation at residue serine 20 in canonical Wnt signal transduction. Mol Cell Proteomics 2007; 6:1952-67. [PMID: 17693683 DOI: 10.1074/mcp.m700120-mcp200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complexity of canonical Wnt signaling comes not only from the numerous components but also from multiple post-translational modifications. Protein phosphorylation is one of the most common modifications that propagates signals from extracellular stimuli to downstream effectors. To investigate the global phosphorylation regulation and uncover novel phosphoproteins at the early stages of canonical Wnt signaling, HEK293 cells were metabolically labeled with two stable isotopic forms of lysine and were stimulated for 0, 1, or 30 min with purified Wnt3a. After phosphoprotein enrichment and LC-MS/MS analysis, 1057 proteins were identified in all three time points. In total 287 proteins showed a 1.5-fold or greater change in at least one time point. In addition to many known Wnt signaling transducers, other phosphoproteins were identified and quantitated, implicating their involvement in canonical Wnt signaling. k-Means clustering analysis showed dynamic patterns for the differential phosphoproteins. Profile pattern and interaction network analysis of the differential phosphoproteins implicated the possible roles for those unreported components in Wnt signaling. Moreover 100 unique phosphorylation sites were identified, and 54 of them were quantitated in the three time points. Site-specific phosphopeptide quantitation revealed that Ser-20 phosphorylation on RRM2 increased upon 30-min Wnt3a stimulation. Further studies with mutagenesis, the Wnt reporter gene assay, and RNA interference indicated that RRM2 functioned downstream of beta-catenin as an inhibitor of Wnt signaling and that Ser-20 phosphorylation of RRM2 counteracted its inhibition effect. Our systematic profiling of dynamic phosphorylation changes responding to Wnt3a stimulation not only presented a comprehensive phosphorylation network regulated by canonical Wnt signaling but also found novel molecules and phosphorylation involved in Wnt signaling.
Collapse
Affiliation(s)
- Liu-Ya Tang
- State Key Laboratory of Molecular Biology, Shangai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kobayashi H, Michiue T, Yukita A, Danno H, Sakurai K, Fukui A, Kikuchi A, Asashima M. Novel Daple-like protein positively regulates both the Wnt/beta-catenin pathway and the Wnt/JNK pathway in Xenopus. Mech Dev 2006; 122:1138-53. [PMID: 16026968 DOI: 10.1016/j.mod.2005.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/14/2005] [Accepted: 05/11/2005] [Indexed: 11/21/2022]
Abstract
Wnt signaling pathways are essential in various developmental processes including differentiation, proliferation, cell migration, and cell polarity. Wnt proteins execute their multiple functions by activating distinct intracellular signaling cascades, although the mechanisms underlying this activation are not fully understood. We identified a novel Daple-like protein in Xenopus and named it xDal (Xenopus Daple-like). As with Daple, xDal contains several leucine zipper-like regions (LZLs) and a putative PDZ domain-binding motif, and can interact directly with the dishevelled protein. In contrast to mDaple, injection of xDal mRNA into the dorso-vegetal blastomere does not induce ventralization and acted synergistically with xdsh in secondary axis induction. XDal also induced expression of siamois and xnr-3, suggesting that XDal functions as a positive regulator of the Wnt/beta-catenin pathway. Injection of xDal mRNA into the dorso-animal blastomere, however, induced gastrulation-defective phenotypes in a dose-dependent manner. In addition, xDal inhibited activin-induced elongation of animal caps and enhanced c-jun phosphorylation. Based on these findings, xDal is also thought to function in the Wnt/JNK pathway. Moreover, functional domain analysis with several deletion mutants indicated that xDal requires both a putative PDZ domain-binding motif and at least one LZL for its activity. These findings with xDal will provide new information on the Wnt signaling pathways.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, 7-8-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li Y, Fanning AS, Anderson JM, Lavie A. Structure of the conserved cytoplasmic C-terminal domain of occludin: identification of the ZO-1 binding surface. J Mol Biol 2005; 352:151-64. [PMID: 16081103 DOI: 10.1016/j.jmb.2005.07.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/05/2005] [Accepted: 07/07/2005] [Indexed: 11/26/2022]
Abstract
Occludin is a transmembrane protein localized at tight junctions whose functions are complex yet poorly understood. Current evidence supports a role for occludin in both the formation of the paracellular barrier and in cell signaling. While the N-terminal extracellular domains of occludin mediate homotypic adhesion, the distal C-terminal cytoplasmic domain of occludin controls protein targeting and endocytosis. The C terminus can also bind to the scaffolding proteins ZO-1, ZO-2, ZO-3, cingulin, the membrane trafficking protein VAP33, and the cytoskeletal protein F-actin, suggesting an important role for this domain. This domain is highly homologous to an important functional domain in the C terminus of the ELL family of RNA polymerase II transcription factors. To explore the function of occludin, we determined the high-resolution crystal structure of its C-terminal distal cytoplasmic domain. The structure comprises three helices that form two separate anti-parallel coiled-coils and a loop that packs tightly against one of the coiled-coils. Using in vitro binding studies and site-directed mutagenesis, we have identified a large positively charged surface that contains the binding site for ZO-1, and this surface is required for proper localization of occludin to cell-cell junctions. On the basis of sequence conservation, we predict that occludin domains from different species and the C-terminal domain of the ELL transcription factors share a very similar structure. Our results provide a model to further test the function of occludin and its binding to other proteins.
Collapse
Affiliation(s)
- Yuanhe Li
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
9
|
Pascual-Le Tallec L, Simone F, Viengchareun S, Meduri G, Thirman MJ, Lombès M. The Elongation Factor ELL (Eleven-Nineteen Lysine-Rich Leukemia) Is a Selective Coregulator for Steroid Receptor Functions. Mol Endocrinol 2005; 19:1158-69. [PMID: 15650021 DOI: 10.1210/me.2004-0331] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dynamic and coordinated recruitment of coregulators by steroid receptors is critical for specific gene transcriptional activation. To identify new cofactors of the human (h) mineralocorticoid receptor (MR), its highly specific N-terminal domain was used as bait in a yeast two-hybrid approach. We isolated ELL (eleven-nineteen lysine-rich leukemia), a RNA polymerase II elongation factor which, when fused to MLL (mixed lineage leukemia) contributes to the pathogenesis of acute leukemia. Specific interaction between hMR and ELL was confirmed by glutathione-S-transferase pull-down and coimmunoprecipitation experiments. Transient transfections demonstrated that ELL increased receptor transcriptional potency and hormonal efficacy, indicating that ELL behaves as a bona fide MR coactivator. Of major interest, ELL differentially modulates steroid receptor responses, with striking opposite effects on hMR and glucocorticoid receptor-mediated transactivation, without affecting that of androgen and progesterone receptors. Furthermore, the MLL-ELL fusion protein, as well as several ELL truncated mutants and the ELL L214V mutant, lost their ability to potentiate MR transcriptional activities, suggesting that both the elongation domain and the ELL-associated factor 1 interaction domains are required for ELL to fulfill its selector activity on steroid receptors. This study is the first direct demonstration of a functional interaction between a nuclear receptor and an elongation factor. These results provide further evidence that the selectivity of the mineralo vs. glucocorticoid signaling pathways also occurs at the transcriptional complex level and may have major pathophysiological implications, most notably in leukemogenesis and corticosteroid-induced apoptosis. These findings allow us to propose the concept of "transcriptional selector" for ELL on steroid receptor transcriptional functions.
Collapse
Affiliation(s)
- Laurent Pascual-Le Tallec
- Institut National de la Santé et de la Recherche Médicale, Unité 693, Faculté de Médecine Paris-Sud, 63 rue Gabriel Peri, 94276 Le Kremlin Bicetre cedex, France
| | | | | | | | | | | |
Collapse
|