1
|
Yang X, Xu L, Fang D, Zhang A, Xiao C. Progress in phenanthroline-derived extractants for trivalent actinides and lanthanides separation: where to next? Chem Commun (Camb) 2024; 60:11415-11433. [PMID: 39235311 DOI: 10.1039/d4cc03810j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Spent nuclear fuel (SNF) released from reactors possesses significant radioactivity, heat release properties, and high-value radioactive nuclides. Therefore, using chemical methods for reprocessing can enhance economic efficiency and reduce the potential environmental risks of nuclear energy. Due to the presence of relatively diffuse f-electrons, the chemical properties of trivalent lanthanides (Ln(III)) and actinides (An(III)) in SNF solutions are quite similar. Separation methods have several limitations, including poor separation efficiency and the need for multiple stripping agents. The use of novel multi-dental phenanthroline-derived extractants with nitrogen donor atoms to effectively separate An(III) over Ln(III) has been widely accepted. This review first introduces the development history of phenanthroline-derived extractants for extraction and complexation with An(III) over Ln(III). Then, based on structural differences, these extractants are classified into four categories: nitrogen-coordinated, N,O-hybrid coordinated, highly preorganized structure, and unsymmetric structure. Each category's design principles, extraction, and separation performance as well as their advantages and disadvantages are discussed. Finally, we have summarized and compared the unique characteristics of the existing extractants and provided an outlook. This work may offer a reliable reference for the precise identification and selective separation between An(III) and Ln(III), and point the way for future development and exploration.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dong Fang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Anyun Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
2
|
Gerasimov MA, Matveev PI, Evsiunina MV, Khult EK, Kalle P, Petrov VS, Lemport PS, Petrov VG, Kostikova GV, Ustynyuk YA, Nenajdenko VG. Influence of Diluent on Extraction Parameters of Systems for Separation Am(III) and Ln(III) Based on 1,10-Phenanthroline-2,9-Diamide. Molecules 2024; 29:3548. [PMID: 39124953 PMCID: PMC11313845 DOI: 10.3390/molecules29153548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
A systematic study of extraction systems for the separation of f-elements using the tetradentate N,O-donor diamide of 1,10-phenanthroline-2,9-dicarboxylic acid (L) in various molecular and ionic solvents was performed. It was demonstrated that the nature of a diluent has a significant impact on solvent extraction of Am(III) and Ln(III) and the stoichiometry of formed complexes with f-elements. The mechanism of complexation and forms of complexes in different diluents were investigated by radiometric methods, UV-vis titration, and XRD.
Collapse
Affiliation(s)
- Mikhail A. Gerasimov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (M.A.G.); (P.I.M.); (M.V.E.); (V.S.P.); (V.G.P.); (Y.A.U.)
| | - Petr I. Matveev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (M.A.G.); (P.I.M.); (M.V.E.); (V.S.P.); (V.G.P.); (Y.A.U.)
| | - Mariia V. Evsiunina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (M.A.G.); (P.I.M.); (M.V.E.); (V.S.P.); (V.G.P.); (Y.A.U.)
| | - Enni. K. Khult
- Department of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Paulina Kalle
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russia;
| | - Valentine S. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (M.A.G.); (P.I.M.); (M.V.E.); (V.S.P.); (V.G.P.); (Y.A.U.)
| | - Pavel S. Lemport
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (M.A.G.); (P.I.M.); (M.V.E.); (V.S.P.); (V.G.P.); (Y.A.U.)
| | - Vladimir G. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (M.A.G.); (P.I.M.); (M.V.E.); (V.S.P.); (V.G.P.); (Y.A.U.)
| | - Galina V. Kostikova
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Moscow 119071, Russia;
| | - Yuri A. Ustynyuk
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (M.A.G.); (P.I.M.); (M.V.E.); (V.S.P.); (V.G.P.); (Y.A.U.)
| | - Valentine G. Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; (M.A.G.); (P.I.M.); (M.V.E.); (V.S.P.); (V.G.P.); (Y.A.U.)
| |
Collapse
|
3
|
Xiu T, Liu L, Liu S, Shehzad H, Liang Y, Zhang M, Ye G, Jiao C, Yuan L, Shi W. Complexation and extraction of trivalent actinides over lanthanides using highly soluble phenanthroline diamide ligands with different side chains. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133508. [PMID: 38228009 DOI: 10.1016/j.jhazmat.2024.133508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Although phenanthroline diamide ligands have been widely reported, their limited solubility in organic solvents and poor performance in the separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) at high acidity are still clear demerits. In this study, we designed and synthesized three highly soluble phenanthroline diamide ligands with different side chains. By introducing alkyl chains and ester groups, the ligands solubility in 3-nitrotrifluorotoluene is increased to over 600 mmol/L, significantly higher than the previous reported phenanthroline diamide ligands. Based on anomalous aryl strengthening, benzene ring was incorporated to enhance ligand selectivity toward Am(III). Extraction experiments demonstrated favorable selectivity of all the three ligands towards Am(III). The optimal separation factor (SFAm/Eu) reaches 53 at 4 mol/L HNO3, representing one of the most effective separation of An(III) over Ln(III) under high acidity. Slope analysis, single crystal structure analysis, as well as titration of ultraviolet visible spectroscopy, mass spectrometry, and nuclear magnetic resonanc confirmed the formation of 1:1 and 1:2 complex species between the metal ions and the ligands depending on the molar ratio of metal ions in the reaction mixture. The findings of this study offer valuable insights for developing phenanthroline diamide ligands for An(III)/Ln(III) separation.
Collapse
Affiliation(s)
- Taoyuan Xiu
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China; Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; China Institute of Atomic Energy, Beijing 102413, China
| | - Likun Liu
- China Institute of Atomic Energy, Beijing 102413, China
| | - Siyan Liu
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Hamza Shehzad
- School of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Yuanyuan Liang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Guoan Ye
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China; China Institute of Atomic Energy, Beijing 102413, China.
| | - Caishan Jiao
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China.
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Wang S, Yang X, Liu Y, Xu L, Xu C, Xiao C. Enhancing the Selectivity of Trivalent Actinide over Lanthanide Using Asymmetrical Phenanthroline Diamide Ligands. Inorg Chem 2024; 63:3063-3074. [PMID: 38285631 DOI: 10.1021/acs.inorgchem.3c03997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Phenanthroline diamide ligands have been widely used in the separation of trivalent actinides and lanthanides, but little research has focused on extractants with asymmetrical substitutes. Two novel asymmetrical phenanthroline-based ligands N2,N2,N9-triethyl-N9-tolyl-1,10-phenanthroline-2,9-dicarboxamide (DE-ET-DAPhen) and N2-ethyl-N9,N9-dioctyl-N2-tolyl-1,10-phenanthroline-2,9-dicarboxamide (DO-ET-DAPhen) were first synthesized in this work, whose extraction ability and complexation mechanism to trivalent actinides [An(III)] and lanthanides [Ln(III)] were systematically investigated. The ligands dissolved in n-octanol exhibit good extraction ability and high selectivity toward Am(III) in acidic solutions. The complexation mechanism of the ligands with Ln(III) in solution and solid state was analyzed using slope analysis, 1H NMR spectrometric titration, ESI-MS, and calorimetric titration. It is revealed that the ligands complex with Am(III)/Eu(III) with 1:1 stoichiometry. The stability constant (log β) of the complexation reaction of Eu(III) with DE-ET-DAPhen determined by UV-vis spectrophotometric and calorimetric titration is higher than that of DO-ET-DAPhen, indicating the stronger complexation ability of DE-ET-DAPhen. Meanwhile, the calorimetric titration results show that the complexation process is exothermic with a decreased entropy. The structures of 1:1 complexes of Eu(III) and Nd(III) with DE-ET-DAPhen were analyzed through single-crystal X-ray diffraction. This work proves that ligands containing asymmetrical functional groups are promising for An(III)/Ln(III) separation, which shows great significance in efficient extractants designed for the spent nuclear fuel reprocessing process.
Collapse
Affiliation(s)
- Shihui Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaofan Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yaoyang Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Lei Xu
- Institute of Nuclear-Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou 310058, China
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Wang H, Gao P, Cui T, Wang D, Liu J, He H, Chen Z, Jin Q, Guo Z. New asymmetric tetradentate phenanthroline chelators with pyrazole and amide groups for complexation and solvent extraction of Ln(III)/Am(III). Dalton Trans 2024; 53:601-611. [PMID: 38063670 DOI: 10.1039/d3dt03194b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
To tune the complexation and solvent extraction performance of the ligands with a 1,10-phenanthroline core for trivalent actinides (An3+) and lanthanides (Ln3+), we synthesized two new asymmetric tetradentate ligands with pyrazole and amide groups, i.e., L1 (N,N-diethyl-9-(5-ethyl-1H-pyrazol-3-yl)-1,10-phenanthroline-2-carboxamide) and its analogue L2 with longer alkyl chains (N,N-dihexyl). The complexation of the ligands with Ln3+ was confirmed by 1H NMR titration and X-ray crystallography, and stability constants were measured in methanol by spectrophotometric titration. The asymmetric ligands exhibited an improved performance in terms of selective solvent extraction of Am3+ over Eu3+ in strongly acidic solutions compared to their symmetric analogues. The improved selectivity of the asymmetric ligands was interpreted theoretically by density functional theory simulations. This study implies that combining different functional groups to construct asymmetric ligands may be an efficient way to tune ligand performance with regard to An3+ separation from Ln3+.
Collapse
Affiliation(s)
- Haolong Wang
- Frontier Science Center for Rare Isotopes; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Pengyuan Gao
- Frontier Science Center for Rare Isotopes; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Tengfei Cui
- Frontier Science Center for Rare Isotopes; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinping Liu
- Radiochemistry Department, China Institute of Atomic Energy, Beijing 102413, China
| | - Hui He
- Radiochemistry Department, China Institute of Atomic Energy, Beijing 102413, China
| | - Zongyuan Chen
- Frontier Science Center for Rare Isotopes; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Qiang Jin
- Frontier Science Center for Rare Isotopes; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Zhijun Guo
- Frontier Science Center for Rare Isotopes; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Suzuki H, Ban Y. Efficient separation of americium by a mixed solvent of two extractants, a diamideamine and a nitrilotriacetamide. ANAL SCI 2023:10.1007/s44211-023-00344-2. [PMID: 37171546 DOI: 10.1007/s44211-023-00344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/08/2023] [Indexed: 05/13/2023]
Abstract
The Japan Atomic Energy Agency (JAEA) has proposed the Solvent Extraction from Liquid waste using Extractants of CHON-type for Transmutation (SELECT) process by solvent extraction as a new separation technology to recover minor actinides (MA) from high-level liquid waste (HLLW) produced by spent fuel reprocessing. The MA separation in the SELECT process comprises the recovery of MA and rare earths (RE) from HLLW, MA/RE separation, and Am/Cm separation. Three highly practical extractants are used in the MA separation. Furthermore, this flow configuration facilitates the preparation of nitric acid concentrations in the aqueous phase. However, the separation factor between Cm and Nd in the MA/RE separation is small (SFCm/Nd = 2.5), requiring many extraction stages for continuous extraction in a mixer settler. Therefore, this study investigated the separation of only Am from an aqueous nitric acid solution containing MA (Am and Cm) and RE using an organic phase mixed with two extractants alkyl diamideamine with 2-ethylhexyl alkyl chains (ADAAM(EH)) and hexa-n-octylnitrilotriacetamide (HONTA) used in the SELECT process. Under high-concentration nitric acid conditions, Am and La, Ce, Pr, Nd (light lanthanides) were extracted in the ADAAM(EH) + HONTA mixed solvent, whereas Cm, medium, and heavy lanthanides, and Y were partitioned in the aqueous phase. Subsequently, only light lanthanides could be back extracted from the ADAAM(EH) + HONTA mixture solvent containing Am and light lanthanides in low nitric acid concentrations. Furthermore, Am could be easily stripped with 0.2 M or 5 M nitric acid. This method does not require the mutual separation of Cm and Nd, which have low separation factors. Am can be efficiently separated by one extraction and two back extractions, reducing the number of steps in the SELECT process.
Collapse
Affiliation(s)
- Hideya Suzuki
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Tokai-Mura, Ibaraki, 319-1195, Japan.
| | - Yasutoshi Ban
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Tokai-Mura, Ibaraki, 319-1195, Japan
| |
Collapse
|
7
|
Gutorova SV, Matveev PI, Lemport PS, Novichkov DA, Gloriozov IP, Avagyan NA, Gudovannyy AO, Nelyubina YV, Roznyatovsky VA, Petrov VG, Lyssenko KA, Ustynyuk YA, Kalmykov SN, Nenajdenko VG. Solvation-Anionic Exchange Mechanism of Solvent Extraction: Enhanced U(VI) Uptake by Tetradentate Phenanthroline Ligands. Inorg Chem 2023; 62:487-496. [PMID: 36542782 DOI: 10.1021/acs.inorgchem.2c03571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phenanthroline diamides (L) demonstrated a unique ability to extract uranium from nitric acid solutions into a polar organic solvent forming complexes of 1:2 stoichiometry as tight ion pairs {[UO2LNO3]+[UO2(NO3)3]-} by a novel extraction mechanism, which is a combination of two already well-known mechanisms: solvation and ion-pair anion exchange. A UV-vis study was used to confirm the formation of such complexes directly in the organic phase. Moreover, chemical synthesis and single crystal growth were performed to confirm unambiguously the structure of the complexes in the solid state.
Collapse
Affiliation(s)
- Svetlana V Gutorova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Pavel S Lemport
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Daniil A Novichkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Igor P Gloriozov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Nane A Avagyan
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Alexey O Gudovannyy
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street, 28, Moscow 119991, Russia
| | - Vitaly A Roznyatovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia.,National Research University Higher School of Economics, Myasnitskaya Street, 20, Moscow 101000, Russia
| | - Yuri A Ustynyuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| | - Valentine G Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 Bld. 3, Moscow 119991, Russia
| |
Collapse
|
8
|
Ustynyuk YA, Zhokhova NI, Gloriozov IP, Matveev PI, Evsiunina MV, Lemport PS, Pozdeev AS, Petrov VG, Yatsenko AV, Tafeenko VA, Nenajdenko VG. Competing Routes in the Extraction of Lanthanide Nitrates by 1,10-Phenanthroline-2,9-diamides: An Impact of Structure of Complexes on the Extraction. Int J Mol Sci 2022; 23:ijms232415538. [PMID: 36555179 PMCID: PMC9779341 DOI: 10.3390/ijms232415538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The fact of the fracture of the extraction curve of lanthanides by 1,10-phenanthroline-2,9-diamides is explained in terms of the structure of complexes, solvent extraction data and quantum chemical calculations. The solvent extraction proceeds in two competing directions: in the form of neutral complexes LLn(NO3)3 and in the form of tight ion pairs {[LLn(NO3)2 H2O]+ (NO3-).
Collapse
|
9
|
Jia L, Li Z, Shi W, Shen X. A novel CPE procedure by oil-in-water microemulsion for preconcentrating and analyzing thorium and uranium. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A novel cloud point extraction (CPE) procedure was developed to preenrich Th4+ and UO2
2+ by oil-in-water (O/W) microemulsion. Coupling CPE to ICP-MS, the separation and analysis were achieved at a trace level, in which the low detection limits were 0.019 and 0.042 ng mL−1 for Th(IV) and U(VI), respectively. N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen), as an extremely hydrophobic extractant, was failed to dissolve in single or mixed micelles, but was successfully solubilized to CPE system owing to O/W microemulsion. The extraction efficiency and selectivity for Th4+ and UO2
2+ were excellent under acidic condition of 1.0 mol L−1 HNO3, and the recovery of ultra-trace Th4+ and UO2
2+ was almost 100% even at the presence of large amounts of lanthanides, exhibiting high tolerance limits for lanthanides. The solubilization, extraction and coordination behaviours were studied systematically via DLS, UV–vis, 1H NMR and FT-IR. Moreover, the solubilization of N,N′-dioctyl-N,N′-dioctyl-2,9-diamide-1,10-phenanthroline (Oct-Oct-DAPhen) and efficient extraction for UO2
2+ were also realized by O/W microemulsion, which further proved the feasibility of the method.
Collapse
Affiliation(s)
- Lipei Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871 , P. R. China
| | - Zejun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871 , P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Xinghai Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871 , P. R. China
| |
Collapse
|
10
|
Xiao Q, Song L, Wang X, Xu H, He L, Li Q, Ding S. Highly efficient extraction of palladium(II) in nitric acid solution by a phenanthroline-derived diamide ligand. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Gutorova SV, Matveev PI, Lemport PS, Trigub AL, Pozdeev AS, Yatsenko AV, Tarasevich BN, Konopkina EA, Khult EK, Roznyatovsky VA, Nelyubina YV, Isakovskaya KL, Khrustalev VN, Petrov VS, Aldoshin AS, Ustynyuk YA, Petrov VG, Kalmykov SN, Nenajdenko VG. Structural Insight into Complexation Ability and Coordination of Uranyl Nitrate by 1,10-Phenanthroline-2,9-diamides. Inorg Chem 2021; 61:384-398. [PMID: 34936342 DOI: 10.1021/acs.inorgchem.1c02982] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reprocessing of spent nuclear fuel (SNF) is an important task in a frame of ecology and rational use of natural resources. Uranium, as the main component of SNF (>95%), can be recovered for further use as fresh nuclear fuel. To minimize an amount of solid radioactive waste generated during SNF reprocessing, new extractants are under investigation. Diamides of 1,10-phenanthroline-2,9-dicarboxylic acid are perspective tetradentate N-donor ligands that form strong complexes with f-elements, which are soluble in polar organic solvents. As an example of three ligands of this class, we conducted a comparative study and showed how the substituent in the amide functional group affects the extraction ability toward uranyl nitrate from nitric acid media. We have performed a careful study (NMR, FT-IR, XRD, RMC-EXAFS) of the structures of synthesized complexes of new ligands with uranyl nitrate and used quantum mechanical calculations to explain the discovered regularities through.
Collapse
Affiliation(s)
- S V Gutorova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - P I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - P S Lemport
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - A L Trigub
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia.,National Research Center "Kurchatov Institute", 123098 Akademika Kurchatova sqr., 1, Moscow 123098, Russia
| | - A S Pozdeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - A V Yatsenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - B N Tarasevich
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - E A Konopkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - E K Khult
- Department of Materials Science, Lomonosov Moscow State University, Leninskie gory 1 bld. 73, Moscow 119991, Russia
| | - V A Roznyatovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - Yu V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia
| | - K L Isakovskaya
- D.I. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - V N Khrustalev
- Department of Inorganic Chemistry, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - V S Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - A S Aldoshin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - Yu A Ustynyuk
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - V G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - S N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| | - V G Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1 bld. 3, Moscow 119991, Russia
| |
Collapse
|
12
|
Affiliation(s)
- Akira Ohashi
- Graduate School of Science and Engineering, Ibaraki University
| |
Collapse
|
13
|
Simonnet M, Kobayashi T, Shimojo K, Yokoyama K, Yaita T. Study on Phenanthroline Carboxamide for Lanthanide Separation: Influence of Amide Substituents. Inorg Chem 2021; 60:13409-13418. [PMID: 34428030 DOI: 10.1021/acs.inorgchem.1c01729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenanthroline carboxamide compounds are promising for lanthanide intra-series separation. This paper presents a study on the effect of structure modification of phenanthroline carboxamides on the extraction of the whole lanthanide series. The study consists of theoretical calculations, extraction experiments of the 14 stable lanthanides, and extended X-ray absorption fine structure (EXAFS) analyses of Nd and Dy complexes. Tridentate monocarboxamides and tetradentate dicarboxamides show different trends in series extraction, although both preferentially extract the light lanthanides. The amide substituents, although not directly coordinating the metal ions, were also found to impact the distribution ratio, most probably due to a modification in the internal polarity of the molecules. This latter effect, if extrapolated to other nitrogen-based ligands such as pyridines or triazines, can be used to further fine-tune extractants for a process improvement.
Collapse
Affiliation(s)
- Marie Simonnet
- Materials Sciences Research Center, Japan Atomic Energy Agency, Shirakata 2-4, 319-1195 Tokai-Mura, Japan
| | - Tohru Kobayashi
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kojiro Shimojo
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Keiichi Yokoyama
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tsuyoshi Yaita
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
14
|
Okamura H, Hirayama N. Recent Progress in Ionic Liquid Extraction for the Separation of Rare Earth Elements. ANAL SCI 2021; 37:119-130. [PMID: 33100311 DOI: 10.2116/analsci.20sar11] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes recent progress in solvent extraction of rare earth elements (REEs) using an ionic liquid (IL) as the extraction solvent. These IL extraction systems are advantageous owing to the affinity of ILs for both charged and neutral hydrophobic species, in contrast to conventional organic solvent extraction systems. Herein, REE extraction studies using ILs are detailed and classified based on the type of extraction system, namely extraction using anionic ligands, extraction using neutral ligands, synergistic extraction, extraction without extractants, and a specific system using task-specific ionic liquids (TSILs). In IL extraction systems, the extracted complexes are often different from those in organic solvent systems, and the REE extraction and separation efficiencies are often significantly enhanced. Synergistic IL extraction is an effective approach to improving the extractability and separability of REEs. The development of novel TSILs suitable for IL extraction systems is also effective for REE separation.
Collapse
Affiliation(s)
- Hiroyuki Okamura
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan.
| | - Naoki Hirayama
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan
| |
Collapse
|