1
|
Immune response associated with ischemia and reperfusion injury during organ transplantation. Inflamm Res 2022; 71:1463-1476. [PMID: 36282292 PMCID: PMC9653341 DOI: 10.1007/s00011-022-01651-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ischemia and reperfusion injury (IRI) is an ineluctable immune-related pathophysiological process during organ transplantation, which not only causes a shortage of donor organs, but also has long-term and short-term negative consequences on patients. Severe IRI-induced cell death leads to the release of endogenous substances, which bind specifically to receptors on immune cells to initiate an immune response. Although innate and adaptive immunity have been discovered to play essential roles in IRI in the context of organ transplantation, the pathway and precise involvement of the immune response at various stages has not yet to be elucidated. Methods We combined “IRI” and “organ transplantation” with keywords, respectively such as immune cells, danger signal molecules, macrophages, neutrophils, natural killer cells, complement cascade, T cells or B cells in PubMed and the Web of Science to search for relevant literatures. Conclusion Comprehension of the immune mechanisms involved in organ transplantation is promising for the treatment of IRI, this review summarizes the similarities and differences in both innate and adaptive immunity and advancements in the immune response associated with IRI during diverse organ transplantation.
Collapse
|
2
|
Ju YN, Gong J, Wang XT, Zhu JL, Gao W. Endothelial Colony-forming Cells Attenuate Ventilator-induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. Arch Med Res 2018; 49:172-181. [PMID: 30119979 DOI: 10.1016/j.arcmed.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mechanical ventilation (MV) can cause ventilator-induced lung injury (VILI). AIM OF THE STUDY This study investigated whether endothelial colony-forming cells (ECFC) could inhibit VILI in a rat model of acute respiratory distress syndrome (ARDS). METHODS Male Wistar rats received the femoral artery and venous cannulation (sham group) or were injected intravenously with 500 μg/kg lipopolysaccharide to induce ARDS. The ARDS rats were subjected to MV. Immediately after the MV, the rats were randomized and injected intravenously with vehicle (ARDS group) or ECFC (ECFC group, n = 8 per group). The oxygen index, lung wet-to-dry weight (W/D) ratios, cytokine protein levels in serum or bronchoalveolar lavage fluid (BALF), neutrophil counts, neutrophil elastase and total protein levels in BALF, histology and cell apoptosis in the lung were detected. The protein levels of endothelin-1, inducible nitric oxide synthase (iNOS), endothelial NOS, matrix metalloproteinase (MMP)-9, Bax, Bcl-2, gelsolin, cleaved caspase-3, phosphorylated NF-κBp65 and myosin light chain (MLC) in the lung were analyzed. RESULTS Compared with the ARDS group, treatment with ECFC significantly increased the oxygen index, and decreased the lung W/D ratios and injury, and the numbers of apoptotic cells in the lungs, neutrophils counts, total protein and elastase concentrations in BALF of rats. ECFC treatment significantly minimized the protein levels of pro-inflammatory cytokines in BALF and serum, but increased interleukin 10 in rats. Furthermore, ECFC treatment significantly reduced the protein levels of endothelin-1, iNOS, Bax, Gelsolin, MMP-9, cleaved caspase-3, phosphorylated NF-κBp65 and MLC, but enhanced eNOS and Bcl-2 in the lungs of rats. CONCLUSIONS Therefore, ECFC attenuated inflammation, cell apoptosis and VILI in ARDS rats.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Gong
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Ting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing-Li Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Effects of Hypercapnia on Acute Cellular Rejection after Lung Transplantation in Rats. Anesthesiology 2017; 128:130-139. [PMID: 29023354 DOI: 10.1097/aln.0000000000001908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hypercapnia alleviates pulmonary ischemia-reperfusion injury, regulates T lymphocytes, and inhibits immune reaction. This study aimed to evaluate the effect of hypercapnia on acute cellular rejection in a rat lung transplantation model. METHODS Recipient rats in sham-operated (Wistar), isograft (Wistar to Wistar), and allograft (Sprague-Dawley to Wistar) groups were ventilated with 50% oxygen, whereas rats in the hypercapnia (Sprague-Dawley to Wistar) group were administered 50% oxygen and 8% carbon dioxide for 90 min during reperfusion (n = 8). Recipients were euthanized 7 days after transplantation. RESULTS The hypercapnia group showed a higher oxygenation index (413 ± 78 vs. 223 ± 24), lower wet weight-to-dry weight ratio (4.23 ± 0.54 vs. 7.04 ± 0.80), lower rejection scores (2 ± 1 vs. 4 ± 1), and lower apoptosis index (31 ± 6 vs. 57 ± 4) as compared with the allograft group. The hypercapnia group showed lower CD8 (17 ± 4 vs. 31 ± 3) and CD68 (24 ± 3 vs. 43 ± 2), lower CD8 T cells (12 ± 2 vs. 35 ± 6), and higher CD4/CD8 ratio (2.2 ± 0.6 vs. 1.1 ± 0.4) compared to the allograft group. Tumor necrosis factor-α (208 ± 40 vs. 292 ± 49), interleukin-2 (30.6 ± 6.7 vs. 52.7 ± 8.3), and interferon-γ (28.1 ± 4.9 vs. 62.7 ± 10.1) levels in the hypercapnia group were lower than those in allograft group. CD4, CD4 T cells, and interleukin-10 levels were similar between groups. CONCLUSIONS Hypercapnia ameliorated acute cellular rejection in a rat lung transplantation model.
Collapse
|
4
|
Van de Walle AB, Uzarski JS, McFetridge PS. The consequence of biologic graft processing on blood interface biocompatibility and mechanics. Cardiovasc Eng Technol 2016; 6:303-13. [PMID: 26322140 DOI: 10.1007/s13239-015-0221-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Processing ex vivo derived tissues to reduce immunogenicity is an effective approach to create biologically complex materials for vascular reconstruction. Due to the sensitivity of small diameter vascular grafts to occlusive events, the effect of graft processing on critical parameters for graft patency, such as peripheral cell adhesion and wall mechanics, requires detailed analysis. Isolated human umbilical vein sections were used as model allogenic vascular scaffolds that were processed with either: 1. sodium dodecyl sulfate (SDS), 2. ethanol/acetone (EtAc), or 3. glutaraldehyde (Glu). Changes in material mechanics were assessed via uniaxial tensile testing. Peripheral cell adhesion to the opaque grafting material was evaluated using an innovative flow chamber that allows direct observation of the blood-graft interface under physiological shear conditions. All treatments modified the grafts tensile strain and stiffness properties, with physiological modulus values decreasing from Glu 240±12 kPa to SDS 210±6 kPa and EtAc 140±3 kPa, P<.001. Relative to glutaraldehyde treatments, neutrophil adhesion to the decellularized grafts increased, with no statistical difference observed between SDS or EtAc treatments. Early platelet adhesion (% surface coverage) showed no statistical difference between the three treatments; however, quantification of platelet aggregates was significantly higher on SDS scaffolds compared to EtAc or Glu. Tissue processing strategies applied to the umbilical vein scaffold were shown to modify structural mechanics and cell adhesion properties, with the EtAc treatment reducing thrombotic events relative to SDS treated samples. This approach allows time and cost effective prescreening of clinically relevant grafting materials to assess initial cell reactivity.
Collapse
Affiliation(s)
- Aurore B Van de Walle
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131, 1275 Center Drive, Gainesville, FL 32611
| | - Joseph S Uzarski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131, 1275 Center Drive, Gainesville, FL 32611
| | - Peter S McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131, 1275 Center Drive, Gainesville, FL 32611
| |
Collapse
|
5
|
Abstract
Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (β3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.
Collapse
|
6
|
Matsuda Y, Wang X, Oishi H, Guan Z, Saito M, Liu M, Keshavjee S, Chow CW. Spleen Tyrosine Kinase Modulates Fibrous Airway Obliteration and Associated Lymphoid Neogenesis After Transplantation. Am J Transplant 2016; 16:342-52. [PMID: 26308240 DOI: 10.1111/ajt.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction, the major cause of death following lung transplantation, usually manifests as irreversible airflow obstruction associated with obliterative bronchiolitis (OB), a lesion characterized by chronic inflammation, lymphoid neogenesis, fibroproliferation and small airway obliteration. Spleen tyrosine kinase (Syk), a tyrosine kinase that regulates B cell function and innate immunity, has been implicated in the pathogenesis of chronic inflammation and tissue repair. This study evaluated the role of Syk in development of OB, using an intrapulmonary tracheal transplant model of OB with the conditional Syk-knockout Syk(flox/flox) //rosa26-CreER(T2) mice and a Syk-selective inhibitor, GSK2230413. BALB/c trachea allografts were transplanted into Syk-knockout (Syk(del/del) ) mice or wild-type C57BL/6 recipients treated with GSK2230413. At day 28, histological analysis revealed that in the Syk(del/del) and GSK2230413-treated C57BL/6 recipients, the graft lumen remained open compared with allografts transplanted into Syk-expressing (Syk(flox/flox) ) and placebo control-treated C57BL/6 recipients. Immunofluorescence showed lymphoid neogenesis with distinct B and T cell zones in control mice. In contrast, lymphoid neogenesis was absent and few B or T cells were found in Syk(del/del) and GSK2230413-treated mice. These observations suggest that inhibition of Syk may be a potential therapeutic strategy for the management of OB following lung transplantation.
Collapse
Affiliation(s)
- Y Matsuda
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - X Wang
- Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| | - H Oishi
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Z Guan
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M Saito
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M Liu
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - S Keshavjee
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - C-W Chow
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Béland S, Désy O, Vallin P, Basoni C, De Serres SA. Innate immunity in solid organ transplantation: an update and therapeutic opportunities. Expert Rev Clin Immunol 2015; 11:377-89. [PMID: 25644774 DOI: 10.1586/1744666x.2015.1008453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innate immunity is increasingly recognized as a major player in transplantation. In addition to its role in inflammation in the early post-transplant period, innate immunity shapes the differentiation of cells of adaptive immunity, with a capacity to promote either rejection or tolerance. Emerging data indicate that innate allorecognition, a characteristic previously limited to lymphocytes, is involved in allograft rejection. This review briefly summarizes the physiology of each component of the innate immune system in the context of transplantation and presents the current or promising therapeutic applications, such as cellular, anticomplement and anticytokine therapies.
Collapse
Affiliation(s)
- Stéphanie Béland
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec Research Center, Faculty of Medicine, Laval University, 11 Côte du Palais, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
8
|
McElvaney OJ, O'Reilly N, White M, Lacey N, Pohl K, Gerlza T, Bergin DA, Kerr H, McCarthy C, O'Brien ME, Adage T, Kungl AJ, Reeves EP, McElvaney NG. The effect of the decoy molecule PA401 on CXCL8 levels in bronchoalveolar lavage fluid of patients with cystic fibrosis. Mol Immunol 2014; 63:550-8. [PMID: 25453468 DOI: 10.1016/j.molimm.2014.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND The chemokine interleukin-8 (CXCL8) is a key mediator of inflammation in airways of patients with cystic fibrosis (CF). Glycosaminoglycans (GAGs) possess the ability to influence the chemokine profile of the CF lung by binding CXCL8 and protecting it from proteolytic degradation. CXCL8 is maintained in an active state by this glycan interaction thus increasing infiltration of immune cells such as neutrophils into the lungs. As the CXCL8-based decoy PA401 displays no chemotactic activity, yet demonstrates glycan binding affinity, the aim of this study was to investigate the anti-inflammatory effect of PA401 on CXCL8 levels, and activity, in CF airway samples in vitro. METHODS Bronchoalveolar lavage fluid (BALF) was collected from patients with CF homozygous for the ΔF508 mutation (n=13). CXCL8 in CF BALF pre and post exposure to PA401 was quantified by ELISA. Western blot analysis was used to determine PA401 degradation in CF BALF. The ex vivo chemotactic activity of purified neutrophils in response to CF airway secretions was evaluated post exposure to PA401 by use of a Boyden chamber-based motility assay. RESULTS Exposure of CF BALF to increasing concentrations of PA401 (50-1000pg/ml) over a time course of 2-12h in vitro, significantly reduced the level of detectable CXCL8 (P<0.05). Interestingly, PA401 engendered release of CXCL8 from GAGs exposing the chemokine susceptible to proteolysis. Subsequently, a loss of PA401 was observed (P<0.05) due to proteolytic degradation by elastase like proteases. A 25% decrease in neutrophil chemotactic efficiency towards CF BALF samples incubated with PA401 was also observed (P<0.05). CONCLUSION PA401 can disrupt CXCL8:GAG complexes, rendering the chemokine susceptible to proteolytic degradation. Clinical application of a CXCL8 decoy, such as PA401, may serve to decrease the inflammatory burden in the CF lung in vivo.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Niamh O'Reilly
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Michelle White
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Noreen Lacey
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Kerstin Pohl
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Tanja Gerlza
- ProtAffin Biotechnologie AG, Impulszentrum Graz-West, Reininghausstraße 13a, 8020 Graz, Austria
| | - David A Bergin
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Hilary Kerr
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Cormac McCarthy
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - M Emmet O'Brien
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| | - Tiziana Adage
- ProtAffin Biotechnologie AG, Impulszentrum Graz-West, Reininghausstraße 13a, 8020 Graz, Austria
| | - Andreas J Kungl
- ProtAffin Biotechnologie AG, Impulszentrum Graz-West, Reininghausstraße 13a, 8020 Graz, Austria
| | - Emer P Reeves
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland.
| | - Noel G McElvaney
- Respiratory Research Division, Royal College of Surgeons in Ireland, ERC Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
9
|
Dani C, Poggi C. The role of genetic polymorphisms in antioxidant enzymes and potential antioxidant therapies in neonatal lung disease. Antioxid Redox Signal 2014; 21:1863-80. [PMID: 24382101 PMCID: PMC4203110 DOI: 10.1089/ars.2013.5811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Oxidative stress is involved in the development of newborn lung diseases, such as bronchopulmonary dysplasia and persistent pulmonary hypertension of the newborn. The activity of antioxidant enzymes (AOEs), which is impaired as a result of prematurity and oxidative injury, may be further affected by specific genetic polymorphisms or an unfavorable combination of more of them. RECENT ADVANCES Genetic polymorphisms of superoxide dismutase and catalase were recently demonstrated to be protective or risk factors for the main complications of prematurity. A lot of research focused on the potential of different antioxidant strategies in the prevention and treatment of lung diseases of the newborn, providing promising results in experimental models. CRITICAL ISSUES The effect of different genetic polymorphisms on protein synthesis and activity has been poorly detailed in the newborn, hindering to derive conclusive results from the observed associations with adverse outcomes. Therapeutic strategies that aimed at enhancing the activity of AOEs were poorly studied in clinical settings and partially failed to produce clinical benefits. FUTURE DIRECTIONS The clarification of the effects of genetic polymorphisms on the proteomics of the newborn is mandatory, as well as the assessment of a larger number of polymorphisms with a possible correlation with adverse outcome. Moreover, antioxidant treatments should be carefully translated to clinical settings, after further details on optimal doses, administration techniques, and adverse effects are provided. Finally, the study of genetic polymorphisms could help select a specific high-risk population, who may particularly benefit from targeted antioxidant strategies.
Collapse
Affiliation(s)
- Carlo Dani
- Section of Neonatology, Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University Hospital , Florence, Italy
| | | |
Collapse
|
10
|
Kamity R, Patel H, Younis S, Nasim M, Miller E, Ahmed M. Inhibition of Cxcr 1 and 2 Delays Preterm Delivery and Reduces Neonatal Mortality in a Mouse Model of Chorioamnionitis. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Intrauterine infection is one of the main etiologies associated with preterm delivery. Cytokines involved in chorioamnionitis, including IL-1, TNF-α, IL-6, IL-8, and MCP1, activate different pathways that lead to preterm delivery. Antileukinate (AL) is a potent selective IL-8 inhibitor that binds to CXC receptors 1&2 on neutrophils, thereby inhibiting IL-8-induced neutrophil chemotaxis and degranulation. Since CXC receptors 1&2 are critically involved in the pathology of chorioamnionitis, their inhibition with AL may have therapeutic potential. Four timed-pregnant C57BL6 mice groups were studied. LPS group received LPS intraperitoneally on gestational day (GD) 15. The AL group received LPS on GD15 followed immediately by intraperitoneal AL injection and repeated on GD16, and 17. Control groups received either saline, or no injections. In the LPS group, 90% delivered within 24 hours after LPS administration compared to 20% in the AL group. The LPS group had 85% stillborn compared to 15% in the AL group. Uterine histopathology AL group showed evidence of less inflammatory reaction compared to the LPS group. Uterine tissue and serum from the AL group had a significant reduction of inflammatory cytokines compared with the LPS group. Cytokine levels in brain and lung tissues from surviving pups were not significantly different between the AL and control groups. Our data show that antileukinate significantly delays preterm delivery in a mouse model of chorioamnionitis, and reduces neonatal mortality and morbidity.
Collapse
Affiliation(s)
- R. Kamity
- Neonatal-Perinatal Medicine, Cohen Children's Medical Center of NY, New Hyde Park, NY, USA
- Lilling Family Neonatal Research Lab, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - H. Patel
- Lilling Family Neonatal Research Lab, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - S. Younis
- Lilling Family Neonatal Research Lab, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M. Nasim
- Hofstra-North Shore LIJ School of Medicine, Hempstead, NY, USA
- Pathology Department, NS-LIJ, New Hyde Park, NY, USA
| | - E. Miller
- Hofstra-North Shore LIJ School of Medicine, Hempstead, NY, USA
- Center for Heart and Lung Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M. Ahmed
- Neonatal-Perinatal Medicine, Cohen Children's Medical Center of NY, New Hyde Park, NY, USA
- Lilling Family Neonatal Research Lab, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Hofstra-North Shore LIJ School of Medicine, Hempstead, NY, USA
- Center for Heart and Lung Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
11
|
Allo-reactivity of mesenchymal stem cells in rhesus macaques is dose and haplotype dependent and limits durable cell engraftment in vivo. PLoS One 2014; 9:e87238. [PMID: 24489878 PMCID: PMC3906169 DOI: 10.1371/journal.pone.0087238] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022] Open
Abstract
The emerging paradigm that MSCs are immune privileged has fostered the use of “off-the-shelf” allogeneic MSC-based therapies in human clinical trials. However, this approach ignores studies in experimental animals wherein transplantation of MSCs across MHC boundaries elicits measurable allo-immune responses. To determine if MSCs are hypo-immunogeneic, we characterized the immune response in rhesus macaques following intracranial administration of allogeneic vs. autologous MSCs. This analysis revealed unambiguous evidence of productive allo-recognition based on expansion of NK, B and T cell subsets in peripheral blood and detection of allo-specific antibodies in animals administered allogeneic but not autologous MSCs. Moreover, the degree of MHC class I and II mismatch between the MSC donor and recipient significantly influenced the magnitude and nature of the allo-immune response. Consistent with these findings, real-time PCR analysis of brain tissue from female recipients administered varying doses of male, allogeneic MSCs revealed a significant inverse correlation between MSC engraftment levels and cell dose. Changes in post-transplant neutrophil and lymphocyte counts also correlated with dose and were predictive of overall MSC engraftment levels. However, secondary antigen challenge failed to elicit a measurable immune response in allogeneic recipients. Finally, extensive behavior testing of animals revealed no main effect of cell dose on motor skills, social development, or temperament. Collectively, these data indicate that allogeneic MSCs are weakly immunogenic when transplanted across MHC boundaries in rhesus macaques and this negatively impacts durable engraftment levels. Therefore the use of unrelated donor MSCs should be carefully evaluated in human patients.
Collapse
|
12
|
Larocca RA, Moraes-Vieira PM, Bassi ÊJ, Semedo P, de Almeida DC, da Silva MB, Thornley T, Pacheco-Silva A, Câmara NOS. Adipose tissue-derived mesenchymal stem cells increase skin allograft survival and inhibit Th-17 immune response. PLoS One 2013; 8:e76396. [PMID: 24124557 PMCID: PMC3790669 DOI: 10.1371/journal.pone.0076396] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/29/2013] [Indexed: 12/29/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSC) exhibit immunosuppressive capabilities both in vitro and in vivo. Their use for therapy in the transplant field is attractive as they could render the use of immunosuppressive drugs unnecessary. The aim of this study was to investigate the effect of ADSC therapy on prolonging skin allograft survival. Animals that were treated with a single injection of donor allogeneic ADSC one day after transplantation showed an increase in donor skin graft survival by approximately one week. This improvement was associated with preserved histological morphology, an expansion of CD4(+) regulatory T cells (Treg) in draining lymph nodes, as well as heightened IL-10 expression and down-regulated IL-17 expression. In vitro, ADSC inhibit naïve CD4(+) T cell proliferation and constrain Th-1 and Th-17 polarization. In summary, infusion of ADSC one day post-transplantation dramatically increases skin allograft survival by inhibiting the Th-17 pathogenic immune response and enhancing the protective Treg immune response. Finally, these data suggest that ADSC therapy will open new opportunities for promoting drug-free allograft survival in clinical transplantation.
Collapse
Affiliation(s)
- Rafael Assumpção Larocca
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Harvard Medical School, Department of Medicine, The Transplant Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| | - Pedro Manoel Moraes-Vieira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Harvard Medical School, Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ênio José Bassi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia Semedo
- Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Danilo Candido de Almeida
- Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Marina Burgos da Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thomas Thornley
- Harvard Medical School, Department of Medicine, The Transplant Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Alvaro Pacheco-Silva
- Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
- Instituto Israelita de Ensino e Pesquisa Albert Einstein Hospital, Renal Transplantation Division, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Clinical and Experimental Immunology, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Min JH, Codipilly CN, Nasim S, Miller EJ, Ahmed MN. Synergistic protection against hyperoxia-induced lung injury by neutrophils blockade and EC-SOD overexpression. Respir Res 2012; 13:58. [PMID: 22816678 PMCID: PMC3441354 DOI: 10.1186/1465-9921-13-58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/20/2012] [Indexed: 01/03/2023] Open
Abstract
Background Oxygen may damage the lung directly via generation of reactive oxygen species (ROS) or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD) has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate) successfully inhibits neutrophil influx into the lung following a variety of pulmonary insults. In this study, we tested the hypothesis that the combined strategy of overexpression of EC-SOD and inhibiting neutrophil influx would reduce the inflammatory response and oxidative stress in the lung after acute hyperoxic exposure more efficiently than either single intervention. Methods Neonate transgenic (Tg) (with an extra copy of hEC-SOD) and wild type (WT) were exposed to acute hyperoxia (95% FiO2 for 7 days) and compared to matched room air groups. Inflammatory markers (myeloperoxidase, albumin, number of inflammatory cells), oxidative markers (8-isoprostane, ratio of reduced/oxidized glutathione), and histopathology were examined in groups exposed to room air or hyperoxia. During the exposure, some mice received a daily intraperitoneal injection of Antileukinate. Results Antileukinate-treated Tg mice had significantly decreased pulmonary inflammation and oxidative stress compared to Antileukinate-treated WT mice (p < 0.05) or Antileukinate-non-treated Tg mice (p < 0.05). Conclusion Combined strategy of EC-SOD and neutrophil influx blockade may have a therapeutic benefit in protecting the lung against acute hyperoxic injury.
Collapse
Affiliation(s)
- Jae H Min
- Department of Pediatrics, State University of New York, Downstate MedicalCenter, Brooklyn, New York, NY, USA
| | | | | | | | | |
Collapse
|
14
|
Zhang Y, Lin X, Koga K, Takahashi K, Linge HM, Mello A, Laragione T, Gulko PS, Miller EJ. Strain differences in alveolar neutrophil infiltration and macrophage phenotypes in an acute lung inflammation model. Mol Med 2011; 17:780-9. [PMID: 21541443 DOI: 10.2119/molmed.2010.00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 04/27/2011] [Indexed: 12/18/2022] Open
Abstract
Pulmonary infection is a major cause of mortality and morbidity, and the magnitude of the lung inflammatory response correlates with patient survival. Previously, we have shown that neutrophil migration into joints is regulated by arthritis severity quantitative trait loci (QTLs). However, it is unclear whether these QTLs contribute to the regulation of lung inflammation in pneumonias. Therefore, to more clearly define the factors regulating acute inflammatory responses in the lung, we examined two inbred rat strains, DA and F344, that differ in these QTLs and their susceptibility to joint inflammation. Staphylococcal cell wall components lipoteichoic acid (LTA) and peptidoglycan (PGN), administered intratracheally, significantly increased the numbers of neutrophils retrieved in the bronchoalveolar lavage fluid (BALF). F344 had approximately 10-fold more neutrophils in the BALF compared with DA (P < 0.001) and higher BALF concentrations of total protein, tumor necrosis factor-α and macrophage inflammatory protein 2. LTA/PGN administration in DA×F344 congenic strains (Cia3d, Cia4, Cia5a, and Cia6) resulted in inflammation similar to that in DA, demonstrating that the genes responsible for the differences in pulmonary inflammation are not contained within the chromosomal intervals carried by these congenic strains. Alveolar macrophages (AMs) isolated from naïve F344 stimulated in vitro with LTA/PGN produced significantly higher levels of keratinocyte-derived chemokine and macrophage inflammatory protein 2 than alveolar macrophages from DA rats. The differences were related to differential mitogen-activated protein kinase phosphorylation. We conclude that the factors contributing to inflammation can be site and challenge dependent. A better understanding of site-specific inflammation may lead to more effective treatment of acute lung inflammation and injury.
Collapse
Affiliation(s)
- Yinzhong Zhang
- Center for Heart and Lung Research, Feinstein Institute for Medical Research, Manhasset, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jackson PL, Noerager BD, Jablonsky MJ, Hardison MT, Cox BD, Patterson JC, Dhanapal B, Blalock JE, Muccio DD. A CXCL8 receptor antagonist based on the structure of N-acetyl-proline-glycine-proline. Eur J Pharmacol 2011; 668:435-42. [PMID: 21458447 DOI: 10.1016/j.ejphar.2011.02.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/25/2011] [Accepted: 02/05/2011] [Indexed: 01/15/2023]
Abstract
A role for the collagen-derived tripeptide, N-acetyl proline-glycine-proline (NAc-PGP), in neutrophil recruitment in chronic airway inflammatory diseases, including COPD and cystic fibrosis, has recently been delineated. Due to structural similarity to an important motif for interleukin-8 (CXCL8) binding to its receptor, NAc-PGP binds to CXCR1/2 receptors, leading to neutrophil activation and chemotaxis. In an effort to develop novel CXCL8 antagonists, we describe the synthesis of four chiral isomers of NAc-PGP (NAc-L-Pro-Gly-L-Pro (LL-NAc-PGP), NAc-L-Pro-Gly-D-Pro (LD-NAc-PGP), NAc-D-Pro-Gly-L-Pro (DL-NAc-PGP), and NAc-D-Pro-Gly-D-Pro (DD-NAc-PGP)), characterize them by circular dichroism and NMR spectroscopy, compare their structures to the equivalent region of CXCL8, and test them as potential antagonists of ll-NAc-PGP and CXCL8. We find that LL-NAc-PGP superimposes onto the CXCR1/2 contacting E(29)S(30)G(31)P(32) region of CXCL8 (0.59A rmsd for heavy atoms). In contrast, DD-NAc-PGP has an opposing orientation of key functional groups as compared to the G(31)P(32) region of CXCL8. As a consequence, DD-NAc-PGP binds CXCR1/2, as demonstrated by competition with radiolabeled CXCL8 binding in a radioreceptor assay, yet acts as a receptor antagonist as evidenced by inhibition of CXCL8 and LL-NAc-PGP mediated neutrophil chemotaxis. The ability of DD-NAc-PGP to prevent the activation of CXC receptors indicates that DD-NAc-PGP may serve as a lead compound for the development of CXCR1/2 inhibitors. In addition, this study further proves that using a different technical approach, namely preincubation of NAc-PGP instead of simultaneous addition of NAc-PGP with radiolabeled CXCL8, the direct binding of NAc-PGP to the CXCL8 receptor is evident.
Collapse
Affiliation(s)
- Patricia L Jackson
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zynek-Litwin M, Kuzniar J, Marchewka Z, Kopec W, Kusztal M, Patrzalek D, Biecek P, Klinger M. Plasma and urine leukocyte elastase-alpha1protease inhibitor complex as a marker of early and long-term kidney graft function. Nephrol Dial Transplant 2010; 25:2346-51. [PMID: 20164046 DOI: 10.1093/ndt/gfq041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neutrophils are mediators of ischaemia/reperfusion (I/R) injury following kidney transplantation (kTx). Leukocyte elastase (LE) complex with alpha(1)protease inhibitor (LE-alpha(1)PI) is a marker of neutrophil degranulation. The aim of this study was to evaluate LE-alpha(1)PI as a marker of I/R kidney damage and to search for correlations between leukocyte activation and post-transplant complications. METHODS Plasma and urine LE-alpha(1)PI were estimated in 55 deceased-donor kidney graft recipients on postoperative days (POD) 1, 3 and 7, as well as in the late post-transplant period. RESULTS The plasma LE-alpha(1)PI level peaked on POD 1 after kTx, and the urine LE-alpha(1)PI peaked on POD 3. On POD 1 and POD 3, the urine LE-alpha(1)PI levels were higher in delayed graft function (DGF) patients than in patients with immediate graft function (IGF: P < 0.001 and P < 0.003, respectively). Urine LE-alpha(1)PI excretion on POD 1 was significantly higher in patients with longer cold ischaemia time (CIT) than in patients with shorter CIT, P < 0.002. Multivariate regression model revealed two factors influencing the occurrence of early acute rejection-urine LE-alpha(1)PI complex on POD 3 and human leukocyte antigen (HLA) mismatches. There was a significant association between the plasma LE-alpha(1)PI on POD 3 and serum creatinine level 6 and 12 months after kTx (r(2) 0.24; P < 0.005 and 0.19; P < 0.005, respectively). CONCLUSIONS This study is the first presentation of a simple, non-invasive measurement of neutrophil activation after kTx. It also demonstrates a strong correlation between the early post-transplant LE-alpha(1)PI complex level and kidney graft function.
Collapse
Affiliation(s)
- Malgorzata Zynek-Litwin
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Activated Protein C in Ischemia-Reperfusion Injury After Experimental Lung Transplantation. J Heart Lung Transplant 2009; 28:1180-4. [DOI: 10.1016/j.healun.2009.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 06/19/2009] [Accepted: 06/26/2009] [Indexed: 11/21/2022] Open
|
18
|
Murata K, Baldwin WM. Mechanisms of complement activation, C4d deposition, and their contribution to the pathogenesis of antibody-mediated rejection. Transplant Rev (Orlando) 2009; 23:139-50. [PMID: 19362461 PMCID: PMC2797368 DOI: 10.1016/j.trre.2009.02.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Complement split products have emerged as useful markers of antibody-mediated rejection in solid organ transplants. One split product, C4d, is now widely accepted as a marker for antibody-mediated rejection in renal and cardiac allografts. This review summarizes the rationale for the use of C4d as a marker of antibody-mediated rejection, along with the clinical evidence supporting its use in the clinical diagnosis of antibody-mediated rejection. Antibody-independent mechanisms by which C4d can be activated by the classical and lectin pathways of complement activation are also identified. Finally, mechanisms by which complement activation stimulates effector cells (neutrophils, monocytes, macrophages, platelets, and B and T lymphocytes) as well as target cells (endothelial cells) are discussed in relation to antibody-mediated allograft rejection.
Collapse
Affiliation(s)
- Kazunori Murata
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - William M Baldwin
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
19
|
Sato M, Hirayama S, Hwang DM, Lara-Guerra H, Wagnetz D, Waddell TK, Liu M, Keshavjee S. The role of intrapulmonary de novo lymphoid tissue in obliterative bronchiolitis after lung transplantation. THE JOURNAL OF IMMUNOLOGY 2009; 182:7307-16. [PMID: 19454728 DOI: 10.4049/jimmunol.0803606] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic rejection after lung transplantation is manifested as obliterative bronchiolitis (OB). The development of de novo lymphoid tissue (lymphoid neogenesis) may contribute to local immune responses in small airways. Compared with normal lungs, the lung tissue of 13 lung transplant recipients who developed OB demonstrated a significantly larger number of small, airway-associated, peripheral node addressin-positive (PNAd(+)) high endothelial venules (HEVs) unique to lymphoid tissue (p < 0.001). HEVs were most abundant in lesions of lymphocytic bronchiolitis and "active" OB infiltrated by lymphocytes compared with those of "inactive" OB. T cells in lymphocytic bronchiolitis and active OB were predominantly of the CD45RO(+)CCR7(-) effector memory phenotype. Similar lymphoid tissue was also observed in the rat lung after intrapulmonary transplantation of allograft trachea (Brown Norway (BN) to Lewis), but not after isograft transplantation. Subsequent orthotopic transplantation of the recipient Lewis lung containing a BN trachea into an F(1) (Lewis x BN) rat demonstrated stable homing of Lewis-derived T cells in the lung and their Ag-specific effector function against the secondary intrapulmonary BN trachea. In conclusion, we found de novo lymphoid tissue in the lung composed of effector memory T cells and HEVs but lacking delineated T cell and B cell zones. This de novo lymphoid tissue may play a critical role in chronic local immune responses after lung transplantation.
Collapse
Affiliation(s)
- Masaaki Sato
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sato M, Hirayama S, Lara-Guerra H, Anraku M, Waddell TK, Liu M, Keshavjee S. MMP-dependent migration of extrapulmonary myofibroblast progenitors contributing to posttransplant airway fibrosis in the lung. Am J Transplant 2009; 9:1027-36. [PMID: 19422332 DOI: 10.1111/j.1600-6143.2009.02605.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myofibroblasts play a central role in fibroproliferative airway remodeling in obliterative bronchiolitis (OB) after lung transplantation. The purpose of the study is to elucidate the mechanisms whereby matrix metalloproteinases (MMPs) contribute to myofibroblast-mediated allograft airway fibrosis. In an intrapulmonary tracheal transplant model of OB, broad-spectrum MMP inhibitors, SC080 and MMI270 reduced the number of myofibroblasts at day 28 without changing differentiation, proliferation or apoptosis of myofibroblasts or fibroblasts. Next, myofibroblasts in allograft airway fibrosis were demonstrated to be almost exclusively of extrapulmonary origin by analyzing RT1A(n) positive myofibroblasts in an animal model combining orthotopic lung transplantation (from Lewis (RT1A(l)) to F1 (Brown-Norway (RT1A(n)) x Lewis)) and intrapulmonary tracheal transplantation (from a Wister-Furth rat (RT1A(u)) into the transplanted Lewis-derived lung). Using peripheral blood mononuclear cells (PBMCs) that can differentiate into alpha-SMA positive myofibroblasts in vitro, we demonstrated their contribution to the myofibroblast population of allograft airway fibrosis in vivo using a fluorescence-labeling cell tracking system. Moreover, PBMC-derived fibroblast-like cells expressed high levels of MMP-9 and MMP-12 and their migration was inhibited by MMP inhibitors in a wound healing assay. In conclusion, MMP-dependent migration of PBMC-derived myofibroblast precursors is an important contributing mechanism to the development of allograft airway fibrosis.
Collapse
Affiliation(s)
- M Sato
- Latner Thoracic Research Laboratories, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Murata K, Iwata T, Nakashima S, Fox-Talbot K, Qian Z, Wilkes DS, Baldwin WM. C4d deposition and cellular infiltrates as markers of acute rejection in rat models of orthotopic lung transplantation. Transplantation 2008; 86:123-9. [PMID: 18622289 PMCID: PMC2659637 DOI: 10.1097/tp.0b013e31817b0b57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND C4d is a useful marker of antibody-mediated rejection in cardiac and renal transplants, but clinical studies examining correlations between circulating alloantibodies, C4d deposition, and rejection in lung transplants have yielded conflicting results. METHODS We studied circulating alloantibody levels and C4d deposition in two rat models of lung transplantation: Brown Norway (BN) to Wistar-Kyoto (WKY) and PVG.R8 to PVG.1U lung allografts. The availability of C6 deficient (C6-) and C6 sufficient (C6+) PVG 1U rats allowed evaluation of the effects of the terminal complement components on graft injury and C4d deposition. RESULTS The lung allografts had histologic features resembling human posttransplant capillaritis, characterized by neutrophilic infiltration of alveoli, edema, and hemorrhage. Immunoperoxidase stains on cross sections of allografts showed intense, diffuse, C4d deposition in a continuous linear pattern on the vascular endothelium. C4d deposits were found in both BN to WKY and PVG R8 to 1U allografts, whereas no staining was detectable in WKY to WKY isografts or native lungs. Complement deposition was associated with vascular disruption in C6+, but not in C6- recipients. The presence of circulating donor-specific alloantibodies was verified by flow cytometry. Cell-specific staining revealed perivascular accumulation of macrophages and T lymphocytes whereas neutrophils were sequestered in the intravascular and alveolar capillary compartments. CONCLUSIONS The deposition of C4d on vascular endothelium as well as the coincident presence of alloantibodies is consistent with previous findings in antibody-mediated rejection of renal and cardiac transplants. Furthermore, the histological features of our allografts support the concept that posttransplant capillaritis is a form of humoral rejection.
Collapse
Affiliation(s)
- Kazunori Murata
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Bezzerri V, Borgatti M, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Rizzotti P, Gambari R, Cabrini G. Transcription factor oligodeoxynucleotides to NF-kappaB inhibit transcription of IL-8 in bronchial cells. Am J Respir Cell Mol Biol 2008; 39:86-96. [PMID: 18258920 DOI: 10.1165/rcmb.2007-0176oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic pulmonary inflammation in patients affected by cystic fibrosis (CF) is characterized by massive bronchial infiltrates of neutrophils, which is sustained by the interaction of pathogens (e.g., Pseudomonas aeruginosa) with surface bronchial cells. To explore new treatment options focused on the reduction of neutrophil chemotaxis, we applied the transcription factor (TF) decoy approach, based on the intracellular delivery of double-stranded oligodeoxynucleotides (ODNs) causing inhibition of the binding of TF-related proteins to the different consensus sequences in the promoter of specific genes. In CF bronchial IB3-1 cells, P. aeruginosa induced transcription of the neutrophil chemokines IL-8 and GRO-gamma, of the adhesion molecule intercellular adhesion molecule (ICAM)-1, and of the cytokines IL-1beta and IL-6. Since consensus sequences for the TF, NF-kappaB, are contained in the promoters of all these genes, IB3-1, CuFi-1, Beas-2B, and CaLu-3 cells were transfected with double-stranded TF "decoy" ODNs mimicking different NF-kappaB consensus sequences. IL-8 NF-kappaB decoy ODN partially inhibited the P. aeruginosa-dependent transcription of IL-8, GRO-gamma, and IL-6, whereas decoy ODNs to both HIV-1 long terminal repeat and Igk produced a strong, 80 to 85% inhibition of transcription of IL-8, without reducing that of GRO-gamma, ICAM-1, IL-1beta, and IL-6. In conclusion, intracellular delivery of "decoy" molecules aimed to compete with the TF, NF-kappaB, is a promising strategy to obtain inhibition of IL-8 gene transcription.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University Hospital of Verona, Piazzale Stefani 1, I-37126 Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yin R, Zhu J, Wang Z, Huang H, Qian J, Li Z, Jing H. Simvastatin attenuates cardiac isograft ischemia-reperfusion injury by down-regulating CC chemokine receptor-2 expression. J Thorac Cardiovasc Surg 2007; 134:780-8. [PMID: 17723833 DOI: 10.1016/j.jtcvs.2007.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/19/2007] [Accepted: 05/02/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Accumulating evidence reveals that statins possess direct anti-inflammatory properties through inhibition of proinflammatory cytokine and chemokine secretion in addition to their antioxidant effects, which may contribute to amelioration of ischemia-reperfusion injury. This study tested the hypothesis that perioperative treatment of simvastatin suppresses the cardiac isograft ischemia-reperfusion injury by down-regulation of CC chemokine receptor-2 expression in an inbred rat model of cardiac transplantation. METHODS Donor hearts from Lewis rats were heterotopically transplanted to Lewis rat recipients. Recipients were orally treated with simvastatin (1 mg/kg) or vehicle every morning 3 days before the surgery until the harvest day. Rats were killed at 6 hours and at 1, 3, and 7 days after transplantation. Injury was assessed by infarct size measurement, histologic and immunohistochemical examination, and intragraft myeloperoxidase activity assay. Monocyte chemoattractant protein-1 levels in serum and graft were analyzed by enzyme-linked immunosorbent assay, and intragraft CC chemokine receptor-2 expression was measured by quantitative real-time polymerase chain reaction. RESULTS The infarct size and macrophage infiltration were all significantly reduced in the simvastatin-treated group compared with those of the control group at 1 day after transplantation. Neutrophil accumulation was significantly suppressed until 3 days after transplantation, whereas myeloperoxidase activity had been significantly diminished at 1 day after transplantation. Both monocyte chemoattractant protein-1 concentrations in serum and graft were remarkably decreased at 6 hours after transplantation. Intragraft CC chemokine receptor-2 expression was also down-regulated at 1 day and 3 days after transplantation. CONCLUSIONS Perioperative treatment of simvastatin could suppress the isograft ischemia-reperfusion injury through retarding intragraft monocyte chemoattractant protein-1 accumulation and CC chemokine receptor-2 expression.
Collapse
Affiliation(s)
- Rong Yin
- Department of Cardiothoracic Surgery, Jinling Hospital, Clinical Medicine School of Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|