1
|
Liu Y, Chen Z, Wang ZH, Delaney KM, Tang J, Pirooznia M, Lee DY, Tunc I, Li Y, Xu H. The PPR domain of mitochondrial RNA polymerase is an exoribonuclease required for mtDNA replication in Drosophila melanogaster. Nat Cell Biol 2022; 24:757-765. [PMID: 35449456 DOI: 10.1038/s41556-022-00887-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Mitochondrial DNA (mtDNA) replication and transcription are of paramount importance to cellular energy metabolism. Mitochondrial RNA polymerase is thought to be the primase for mtDNA replication. However, it is unclear how this enzyme, which normally transcribes long polycistronic RNAs, can produce short RNA oligonucleotides to initiate mtDNA replication. We show that the PPR domain of Drosophila mitochondrial RNA polymerase (PolrMT) has 3'-to-5' exoribonuclease activity, which is indispensable for PolrMT to synthesize short RNA oligonucleotides and prime DNA replication in vitro. An exoribonuclease-deficient mutant, PolrMTE423P, partially restores mitochondrial transcription but fails to support mtDNA replication when expressed in PolrMT-mutant flies, indicating that the exoribonuclease activity is necessary for mtDNA replication. In addition, overexpression of PolrMTE423P in adult flies leads to severe neuromuscular defects and a marked increase in mtDNA transcript errors, suggesting that exoribonuclease activity may contribute to the proofreading of mtDNA transcription.
Collapse
Affiliation(s)
- Yi Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine M Delaney
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juanjie Tang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Duck-Yeon Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ilker Tunc
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuesheng Li
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Jiang ZY, Fan HY. Five questions toward mRNA degradation in oocytes and preimplantation embryos: When, who, to whom, how, and why? Biol Reprod 2022; 107:62-75. [DOI: 10.1093/biolre/ioac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
RNA, the primary product of the genome, is subject to various biological events during its lifetime. During mammalian gametogenesis and early embryogenesis, germ cells and preimplantation embryos undergo marked changes in the transcriptome, including mRNA turnover. Various factors, including specialized proteins, RNAs, and organelles, function in an intricate degradation system, and the degradation selectivity is determined by effectors and their target mRNAs. RNA homeostasis regulators and surveillance factors function in the global transcriptome of oocytes and somatic cells. Other factors, including BTG4, PABPN1L, the CCR4-NOT subunits, CNOT6L and CNOT7, and TUTs, are responsible for two maternal mRNA avalanches: M- and Z-decay. In this review, we discuss recent advances in mRNA degradation mechanisms in mammalian oocytes and preimplantation embryos. We focused on the studies in mice, as a model mammalian species, and on RNA turnover effectors and the cis-elements in targeting RNAs.
Collapse
Affiliation(s)
- Zhi-Yan Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Wang C, Liu Y, DeMario SM, Mandric I, Gonzalez-Figueroa C, Chanfreau GF. Rrp6 Moonlights in an RNA Exosome-Independent Manner to Promote Cell Survival and Gene Expression during Stress. Cell Rep 2021; 31:107754. [PMID: 32521279 PMCID: PMC7587046 DOI: 10.1016/j.celrep.2020.107754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/21/2019] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear RNA exosome is essential for RNA processing and degradation. Here, we show that the exosome nuclear-specific subunit Rrp6p promotes cell survival during heat stress through the cell wall integrity (CWI) pathway, independently of its catalytic activity or association with the core exosome. Rrp6p exhibits negative genetic interactions with the Slt2/Mpk1p or Paf1p elongation factors required for expression of CWI genes during stress. Overexpression of Rrp6p or of its catalytically inactive or exosome-independent mutants can partially rescue the growth defect of the mpk1Δ mutant and stimulates expression of the Mpk1 p target gene FKS2. The rrp6Δ and mpk1Δ mutants show similarities in deficient expression of CWI genes during heat shock, and overexpression of the CWI gene HSP150 can rescue the stress-induced lethality of the mpk1Δrp6Δ mutant. These results demonstrate that Rrp6p moonlights independently from the exosome to ensure proper expression of CWI genes and to promote cell survival during stress. Wang et al. show that Rrp6 functions with the Slt2/Mpk1 and Paf1 elongation factors for the proper expression of CWI genes during heat stress. The role of Rrp6p in promoting heat-stress-induced gene expression does not require Rrp6 catalytic activity or interaction with the nuclear RNA exosome.
Collapse
Affiliation(s)
- Charles Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanru Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel M DeMario
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Igor Mandric
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Gonzalez-Figueroa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Chu LY, Agrawal S, Chen YP, Yang WZ, Yuan HS. Structural insights into nanoRNA degradation by human Rexo2. RNA (NEW YORK, N.Y.) 2019; 25:737-746. [PMID: 30926754 PMCID: PMC6521605 DOI: 10.1261/rna.070557.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Human RNA exoribonuclease 2 (Rexo2) is an evolutionarily conserved 3'-to-5' DEDDh-family exonuclease located primarily in mitochondria. Rexo2 degrades small RNA oligonucleotides of <5 nucleotides (nanoRNA) in a way similar to Escherichia coli Oligoribonuclease (ORN), suggesting that it plays a role in RNA turnover in mitochondria. However, how Rexo2 preferentially binds and degrades nanoRNA remains elusive. Here, we show that Rexo2 binds small RNA and DNA oligonucleotides with the highest affinity, and it is most robust in degrading small nanoRNA into mononucleotides in the presence of magnesium ions. We further determined three crystal structures of Rexo2 in complex with single-stranded RNA or DNA at resolutions of 1.8-2.2 Å. Rexo2 forms a homodimer and interacts mainly with the last two 3'-end nucleobases of substrates by hydrophobic and π-π stacking interactions via Leu53, Trp96, and Tyr164, signifying its preference in binding and degrading short oligonucleotides without sequence specificity. Crystal structure of Rexo2 is highly similar to that of the RNA-degrading enzyme ORN, revealing a two-magnesium-ion-dependent hydrolysis mechanism. This study thus provides the molecular basis for human Rexo2, showing how it binds and degrades nanoRNA into nucleoside monophosphates and plays a crucial role in RNA salvage pathways in mammalian mitochondria.
Collapse
MESH Headings
- 14-3-3 Proteins/chemistry
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/metabolism
- Binding Sites
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cations, Divalent
- Cloning, Molecular
- Crystallography, X-Ray
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Exoribonucleases/chemistry
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Hydrolysis
- Hydrophobic and Hydrophilic Interactions
- Magnesium/chemistry
- Magnesium/metabolism
- Mitochondria/chemistry
- Mitochondria/metabolism
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Molecular
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Multimerization
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Lee-Ya Chu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu, Taiwan 30013, Republic of China
| | - Sashank Agrawal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Molecular and Cell Biology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 11490, Republic of China
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| |
Collapse
|
5
|
Yun JS, Yoon JH, Choi YJ, Son YJ, Kim S, Tong L, Chang JH. Molecular mechanism for the inhibition of DXO by adenosine 3',5'-bisphosphate. Biochem Biophys Res Commun 2018; 504:89-95. [PMID: 30180947 DOI: 10.1016/j.bbrc.2018.08.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Abstract
The decapping exoribonuclease DXO functions in pre-mRNA capping quality control, and shows multiple biochemical activities such as decapping, deNADding, pyrophosphohydrolase, and 5'-3' exoribonuclease activities. Previous studies revealed the molecular mechanisms of DXO based on the structures in complexes with a product, substrate mimic, cap analogue, and 3'-NADP+. Despite several reports on the substrate-specific reaction mechanism, the inhibitory mechanism of DXO remains elusive. Here, we demonstrate that adenosine 3', 5'-bisphosphate (pAp), a known inhibitor of the 5'-3' exoribonuclease Xrn1, inhibits the nuclease activity of DXO based on the results of structural and biochemical experiments. We determined the crystal structure of the DXO-pAp-Mg2+ complex at 1.8 Å resolution. In comparison with the DXO-RNA product complex, the position of pAp is well superimposed with the first nucleotide of the product RNA in the vicinity of two magnesium ions. Furthermore, biochemical assays showed that the inhibition by pAp is comparable between Xrn1 and DXO. Collectively, these structural and biochemical studies reveal that pAp inhibits the activities of DXO by occupying the active site to act as a competitive inhibitor.
Collapse
Affiliation(s)
- Ji-Sook Yun
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Young Jun Choi
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea
| | - Young Jin Son
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Sunghwan Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
6
|
Mooney CM, Jimenez-Mateos EM, Engel T, Mooney C, Diviney M, Venø MT, Kjems J, Farrell MA, O'Brien DF, Delanty N, Henshall DC. RNA sequencing of synaptic and cytoplasmic Upf1-bound transcripts supports contribution of nonsense-mediated decay to epileptogenesis. Sci Rep 2017; 7:41517. [PMID: 28128343 PMCID: PMC5269742 DOI: 10.1038/srep41517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
The nonsense mediated decay (NMD) pathway is a critical surveillance mechanism for identifying aberrant mRNA transcripts. It is unknown, however, whether the NMD system is affected by seizures in vivo and whether changes confer beneficial or maladaptive responses that influence long-term outcomes such the network alterations that produce spontaneous recurrent seizures. Here we explored the responses of the NMD pathway to prolonged seizures (status epilepticus) and investigated the effects of NMD inhibition on epilepsy in mice. Status epilepticus led to increased protein levels of Up-frameshift suppressor 1 homolog (Upf1) within the mouse hippocampus. Upf1 protein levels were also higher in resected hippocampus from patients with intractable temporal lobe epilepsy. Immunoprecipitation of Upf1-bound RNA from the cytoplasmic and synaptosomal compartments followed by RNA sequencing identified unique populations of NMD-associated transcripts and altered levels after status epilepticus, including known substrates such as Arc as well as novel targets including Inhba and Npas4. Finally, long-term video-EEG recordings determined that pharmacologic interference in the NMD pathway after status epilepticus reduced the later occurrence of spontaneous seizures in mice. These findings suggest compartment-specific recruitment and differential loading of transcripts by NMD pathway components may contribute to the process of epileptogenesis.
Collapse
Affiliation(s)
- Claire M Mooney
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine Mooney
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mairead Diviney
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Morten T Venø
- Department of Molecular Biology and Genetics and Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics and Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | | | | | | | - David C Henshall
- Department of Physiology &Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
7
|
Lin YC, Hsiao CL, Hsieh AR, Lian IB, Fann CSJ. Using maximal segmental score in genome-wide association studies. Genet Epidemiol 2012; 36:594-601. [PMID: 22807216 DOI: 10.1002/gepi.21652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 12/20/2022]
Abstract
Genome-wide association studies (GWAS) have become the method of choice for identifying disease susceptibility genes in common disease genetics research. Despite successes in these studies, much of the heritability remains unexplained due to lack of power and low resolution. High-density genotyping arrays can now screen more than 5 million genetic markers. As a result, multiple comparison has become an important issue especially in the era of next-generation sequencing. We propose to use a two-stage maximal segmental score procedure (MSS) which uses region-specific empirical P-values to identify genomic segments most likely harboring the disease gene. We develop scoring systems based on Fisher's P-value combining method to convert locus-specific significance levels into region-specific scores. Through simulations, our result indicated that MSS increased the power to detect genetic association as compared with conventional methods provided type I error was at 5%. We demonstrated the application of MSS on a publicly available case-control dataset of Parkinson's disease and replicated the findings in the literature. MSS provides an efficient exploratory tool for high-density association data in the current era of next-generation sequencing. R source codes to implement the MSS procedure are freely available at http://www.csjfann.ibms.sinica.edu.tw/EAG/program/programlist.htm.
Collapse
Affiliation(s)
- Ying-Chao Lin
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Chernyavskaya Y, Ebert AM, Milligan E, Garrity DM. Voltage-gated calcium channel CACNB2 (β2.1) protein is required in the heart for control of cell proliferation and heart tube integrity. Dev Dyn 2012; 241:648-62. [DOI: 10.1002/dvdy.23746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 01/11/2023] Open
|
9
|
Aberrant Single Exon Skipping is not Altered by Age in Exons of NF1, RABAC1, AATF or PCGF2 in Human Blood Cells and Fibroblasts. Genes (Basel) 2011; 2:562-77. [PMID: 24710210 PMCID: PMC3927615 DOI: 10.3390/genes2030562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 11/17/2022] Open
Abstract
In human pre-mRNA splicing, infrequent errors occur resulting in erroneous splice products as shown in a genome-wide approach. One characteristic subgroup consists of products lacking one cassette exon. The noise in the splicing process, represented by those misspliced products, can be increased by cold shock treatment or by inhibiting the nonsense mediated decay. Here, we investigated whether the splicing noise frequency increases with age in vivo in peripheral bloods cells or in vitro in cultured and aged fibroblasts from healthy donors. Splicing noise frequency was measured for four erroneously skipped NF1 exons and one exon of RABAC1, AATF and PCGF2 by RT-qPCR. Measurements were validated in cultured fibroblasts treated with cold shock or puromycin. Intragenic but not interpersonal differences were detected in splicing noise frequencies in vivo in peripheral blood cells of 11 healthy donors (15 y–85 y) and in in vitro senescent fibroblasts from three further donors. No correlation to the age of the donors was found in the splicing noise frequencies. Our data demonstrates that splicing error frequencies are not altered by age in peripheral blood cells or in vitro aged fibroblasts in the tested exons of the four investigated genes, indicating a high importance of correct splicing in these proliferating aged cells.
Collapse
|
10
|
Aihara Y, Fujiwara N, Yamazaki T, Kambe T, Nagao M, Hirose Y, Masuda S. Enhancing recombinant protein production in human cell lines with a constitutive transport element and mRNA export proteins. J Biotechnol 2011; 153:86-91. [PMID: 21473891 DOI: 10.1016/j.jbiotec.2011.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/05/2011] [Accepted: 03/29/2011] [Indexed: 11/16/2022]
Abstract
Recent research into mRNA maturation processes in the nucleus has identified a number of proteins involved in mRNA transcription, capping, splicing, end processing and export. Among them, the Tap-p15 heterodimer acts as an mRNA export receptor. Tap-p15 is recruited onto fully processed mRNA in the nucleus, which is ready for export to the cytoplasm, through associating with Aly or SR proteins on mRNA, or by directly associating with a constitutive transport element (CTE), an RNA element derived from type D retroviruses. mRNA containing a CTE is exported to the cytoplasm by directly associating with Tap-p15, even in the absence of Tap-recruiting proteins such as Aly or SR proteins on the mRNA. Here, we showed that the use of a CTE enhanced the expression of recombinant protein in human cell lines. The co-expression of reporter proteins and Tap-p15 also enhanced recombinant protein expression. Moreover, the use of a CTE and Tap-p15 synergistically further enhanced the recombinant protein expression. In addition to Tap-p15, several Tap-p15-recruiting proteins, including Aly and SR proteins, enhanced recombinant protein expression, albeit independently of the CTE. The incorporation of a CTE and Tap-p15-recruiting proteins into protein expression system is useful to increase recombinant protein yield in human cells.
Collapse
Affiliation(s)
- Yuki Aihara
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Castro-Chavez F. The Rules of Variation Expanded, Implications for the Research on Compatible Genomics. BIOSEMIOTICS 2011; 2011:1-25. [PMID: 21743816 PMCID: PMC3130522 DOI: 10.1007/s12304-011-9118-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The main focus of this article is to present the practical aspect of the code rules of variation and the search for a second set of genomic rules, including comparison of sequences to understand how to preserve compatible organisms in danger of extinction and how to generate biodiversity. Three new rules of variation are introduced: 1) homologous recombination, 2) a healthy fertile offspring, and 3) comparison of compatible genomes. The novel search in the natural world for fully compatible genomes capable of homologous recombination is explored by using examples of human polymorphisms in the LDLRAP1 gene, and by the production of fertile offspring by crossbreeding. Examples of dogs, llamas and finches will be presented by a rational control of: natural crossbreeding of organisms with compatible genomes (something already happening in nature), the current work focuses on the generation of new varieties after a careful plan. This study is presented within the context of biosemiotics, which studies the processing of information, signaling and signs by living systems. I define a group of organisms having compatible genomes as a single theme: the genomic species or population, able to speak the same molecular language through different accents, with each variety within a theme being a different version of the same book. These studies have a molecular, compatible genetics context. Population and ecosystem biosemiotics will be exemplified by a possible genetic damage capable of causing mutations by breaking the rules of variation through the coordinated patterns of atoms present in the 9/11 World Trade Center contaminated dust (U, Ba, La, Ce, Sr, Rb, K, Mn, Mg, etc.), combination that may be able to overload the molecular quality control mechanisms of the human body. I introduce here the balance of codons in the circular genetic code: 2[1(1)+1(3)+1(4)+4(2)]=2[2(2)+3(4)].
Collapse
|
12
|
Compromise in mRNA processing machinery in senescent human fibroblasts: implications for a novel potential role of Phospho-ATR (ser428). Biogerontology 2010; 11:421-36. [PMID: 20084458 DOI: 10.1007/s10522-010-9261-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/03/2010] [Indexed: 01/30/2023]
Abstract
Ataxia-Telangiectasia and Rad3 related kinase (ATR) is a major gatekeeper of genomic stability and has been the subject of exhaustive study in the context of cell cycle progression and senescence as a DNA damage-induced response. Conditional knockout of the kinase in adult mice results in accelerated aging phenomena, such as such hair graying, alopecia, kyphosis, osteoporosis, thymic involution, fibrosis, and other abnormalities. In addition to that, recent reports strongly implicate signaling mediated by this kinase in the regulation of alternative splicing of certain, mostly cancer-associated transcripts. Interest to the function of mRNA synthesis and processing is constantly increasing as severe degenerative diseases, such as cancer, cystic fibrosis and Hutchinson-Gilford progeria syndrome are at least partly attributed to these abnormalities. In light of the above, we investigate the RNA processing machinery in senescent fibroblasts as opposed to young, either exponentially proliferating or quiescent, further focusing on the distribution and localization of active, phosphorylated ATR at ser428. This study implicates the spatiotemporal presence of the phosphorylated kinase in the regulation of mRNA splicing and polyadenylation. This function appears perturbed in senescent cells, accompanied by a distinct pattern of phospho-ATR in the senescent nucleus.
Collapse
|