1
|
Kannampuzha S, Gopalakrishnan AV. Cancer chemoresistance and its mechanisms: Associated molecular factors and its regulatory role. Med Oncol 2023; 40:264. [PMID: 37550533 DOI: 10.1007/s12032-023-02138-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Cancer therapy has advanced from tradition chemotherapy methods to targeted therapy, novel drug delivery mechanisms, combination therapies etc. Although several novel chemotherapy strategies have been introduced, chemoresistance still remains as one of the major barriers in cancer treatments. Chemoresistance can lead to relapse and hinder the development of improved clinical results for cancer patients, and this continues to be the major hurdle in cancer therapy. Anticancer drugs acquire chemoresistance through different mechanisms. Understanding these mechanisms is crucial to overcome and increase the efficiency of the cancer therapies that are employed. The potential molecular pathways behind chemoresistance include tumor heterogeneity, elevated drug efflux, multidrug resistance, interconnected signaling pathways, and other factors. To surpass this limitation, new clinical tactics are to be introduced. This review aims to compile the most recent information on the molecular pathways that regulate chemoresistance in cancers, which will aid in development of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Stubbe BE, Madsen PH, Larsen AC, Krarup HB, Pedersen IS, Hansen CP, Johansen JS, Henriksen SD, Thorlacius-Ussing O. Promoter hypermethylation of SFRP1 as a prognostic and potentially predictive blood-based biomarker in patients with stage III or IV pancreatic ductal adenocarcinoma. Pancreatology 2023; 23:512-521. [PMID: 37230892 DOI: 10.1016/j.pan.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma remains one of the major causes of cancer-related mortality globally. Unfortunately, current prognostic biomarkers are limited, and no predictive biomarkers exist. This study examined promoter hypermethylation of secreted frizzled-related protein 1 (phSFRP1) in cfDNA as a prognostic biomarker and predictor of treatment effect in patients with metastatic FOLFIRINOX-treated PDAC and locally advanced PDAC. METHODS We performed methylation-specific PCR of the SFRP1 genes' promoter region, based on bisulfite treatment. Survival was assessed as time-to-event data using the pseudo-observation method and analyzed with Kaplan-Meier curves and generalized linear regressions. RESULTS The study included 52 patients with FOLFIRINOX-treated metastatic PDAC. Patients with unmethylated (um) SFRP1 (n = 29) had a longer median overall survival (15.7 months) than those with phSFRP1 (6.8 months). In crude regression, phSFRP1 was associated with an increased risk of death of 36.9% (95% CI 12.0%-61.7%) and 19.8% (95% CI 1.9-37.6) at 12 and 24-months, respectively. In supplementary regression analysis, interaction terms between SFRP1 methylation status and treatment were significant, indicating reduced benefit of chemotherapy. Forty-four patients with locally advanced PDAC were included. phSFRP1 was associated with an increased risk of death at 24-months CONCLUSIONS: This indicates that phSFRP1 is a clinically useful prognostic biomarker in metastatic PDAC and possibly in locally advanced PDAC. Together with existing literature, results could indicate the value of cfDNA-measured phSFRP1 as a predictive biomarker of standard palliative chemotherapy in patients with metastatic PDAC. This could facilitate personalized treatment of patients with metastatic PDAC.
Collapse
Affiliation(s)
- Benjamin E Stubbe
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Denmark.
| | - Poul H Madsen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Molecular Diagnostics, Aalborg University Hospital, Denmark
| | - Anders C Larsen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Henrik B Krarup
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Molecular Diagnostics, Aalborg University Hospital, Denmark
| | - Inge S Pedersen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Molecular Diagnostics, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Carsten P Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Stine D Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
3
|
Stubbe BE, Larsen AC, Madsen PH, Krarup HB, Pedersen IS, Lundbye-Christensen S, Hansen CP, Hasselby JP, Johansen AZ, Thorlacius-Ussing O, Johansen JS, Henriksen SD. Promoter hypermethylation of SFRP1 as a prognostic and potentially predictive blood-based biomarker in patients with localized pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1211292. [PMID: 37333823 PMCID: PMC10272559 DOI: 10.3389/fonc.2023.1211292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Current prognostic blood-based biomarkers for pancreatic adenocarcinoma (PDAC) are limited. Recently, promoter hypermethylation of SFRP1 (phSFRP1) has been linked to poor prognosis in patients with gemcitabine-treated stage IV PDAC. This study explores the effects of phSFRP1 in patients with lower stage PDAC. Methods Based on a bisulfite treatment process, the promoter region of the SFRP1 gene was analyzed with methylation-specific PCR. Kaplan-Meier curves, log-rank tests, and generalized linear regression analysis were used to assess restricted mean survival time survival at 12 and 24 months. Results The study included 211 patients with stage I-II PDAC. The median overall survival of patients with phSFRP1 was 13.1 months, compared to 19.6 months in patients with unmethylated SFRP1 (umSFRP1). In adjusted analysis, phSFRP1 was associated with a loss of 1.15 months (95%CI -2.11, -0.20) and 2.71 months (95%CI -2.71, -0.45) of life at 12 and 24 months, respectively. There was no significant effect of phSFRP1 on disease-free or progression-free survival. In stage I-II PDAC, patients with phSFRP1 have worse prognoses than patients with umSFRP1. Discussion Results could indicate that the poor prognosis may be caused by reduced benefit from adjuvant chemotherapy. SFRP1 may help guide the clinician and be a possible target for epigenetically modifying drugs.
Collapse
Affiliation(s)
- Benjamin Emil Stubbe
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Christian Larsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Poul Henning Madsen
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Bygum Krarup
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Carsten Palnæs Hansen
- Department of Surgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Astrid Zedlitz Johansen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
- Department of Medicine, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Dam Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
4
|
Koushyar S, Meniel VS, Phesse TJ, Pearson HB. Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer. Biomolecules 2022; 12:309. [PMID: 35204808 PMCID: PMC8869457 DOI: 10.3390/biom12020309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of the Wnt pathway is emerging as a frequent event during prostate cancer that can facilitate tumor formation, progression, and therapeutic resistance. Recent discoveries indicate that targeting the Wnt pathway to treat prostate cancer may be efficacious. However, the functional consequence of activating the Wnt pathway during the different stages of prostate cancer progression remains unclear. Preclinical work investigating the efficacy of targeting Wnt signaling for the treatment of prostate cancer, both in primary and metastatic lesions, and improving our molecular understanding of treatment responses is crucial to identifying effective treatment strategies and biomarkers that help guide treatment decisions and improve patient care. In this review, we outline the type of genetic alterations that lead to activated Wnt signaling in prostate cancer, highlight the range of laboratory models used to study the role of Wnt genetic drivers in prostate cancer, and discuss new mechanistic insights into how the Wnt cascade facilitates prostate cancer growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Sarah Koushyar
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| | - Valerie S. Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
| | - Toby J. Phesse
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (S.K.); (V.S.M.)
| |
Collapse
|
5
|
Metabolic Regulation of Epigenetic Modifications and Cell Differentiation in Cancer. Cancers (Basel) 2020; 12:cancers12123788. [PMID: 33339101 PMCID: PMC7765496 DOI: 10.3390/cancers12123788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer cells change their metabolism to support a chaotic and uncontrolled growth. In addition to meeting the metabolic needs of the cell, these changes in metabolism also affect the patterns of gene activation, changing the identity of cancer cells. As a consequence, cancer cells become more aggressive and more resistant to treatments. In this article, we present a review of the literature on the interactions between metabolism and cell identity, and we explore the mechanisms by which metabolic changes affect gene regulation. This is important because recent therapies under active investigation target both metabolism and gene regulation. The interactions of these new therapies with existing chemotherapies are not known and need to be investigated. Abstract Metabolic reprogramming is a hallmark of cancer, with consistent rewiring of glucose, glutamine, and mitochondrial metabolism. While these metabolic alterations are adequate to meet the metabolic needs of cell growth and proliferation, the changes in critical metabolites have also consequences for the regulation of the cell differentiation state. Cancer evolution is characterized by progression towards a poorly differentiated, stem-like phenotype, and epigenetic modulation of the chromatin structure is an important prerequisite for the maintenance of an undifferentiated state by repression of lineage-specific genes. Epigenetic modifiers depend on intermediates of cellular metabolism both as substrates and as co-factors. Therefore, the metabolic reprogramming that occurs in cancer likely plays an important role in the process of the de-differentiation characteristic of the neoplastic process. Here, we review the epigenetic consequences of metabolic reprogramming in cancer, with particular focus on the role of mitochondrial intermediates and hypoxia in the regulation of cellular de-differentiation. We also discuss therapeutic implications.
Collapse
|
6
|
Ren J, Wang D, Huang H, Li X, Zhuang X, Li J. miR-1260b Activates Wnt Signaling by Targeting Secreted Frizzled-Related Protein 1 to Regulate Taxane Resistance in Lung Adenocarcinoma. Front Oncol 2020; 10:557327. [PMID: 33224874 PMCID: PMC7674592 DOI: 10.3389/fonc.2020.557327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives: MicroRNAs (miRNAs) have been demonstrated to contribute to carcinogenesis; however, their association with tumor chemoresistance is not fully understood. In this study we aimed to investigate the molecular mechanisms involved in resistance to taxane-based chemotherapy in lung adenocarcinoma (LAD). Methods: We established paclitaxel-resistant A549 cells (A549/PTX) and docetaxel-resistant H1299 cells (H1299/DTX). In order to hit the mark, we employed multiple methods including qRT-PCR, western blotting analysis, loss/gain-of-function analysis, luciferase assays, drug sensitivity assays, animal experiment, wound-healing assay, and invasion assay. Results: Bioinformatics analysis and a luciferase reporter assay revealed that secreted frizzled-related protein 1 (SFRP1) is a direct target of miR-1260b. By qRT-PCR analysis, we found that miR-1260b was significantly upregulated in taxane-resistant cells as compared to parental cells. Suppression of miR-1260b reversed the chemoresistance of human LAD cells to taxanes both in vitro and in vivo, whereas ectopic miR-1260b expression decreased the sensitivity of parental LAD cell lines to taxanes. Downregulation of miR-1260b expression inactivated the Wnt signaling pathway and reversed the epithelial-mesenchymal transition (EMT) phenotype of taxane-resistant LAD cells. In clinical tumor tissue samples, high miR-1260b expression was detected in tumors of non-responding patients treated with taxane-based chemotherapy and was associated with low SFRP1 expression and poor prognosis. Conclusions: Our findings reveal that targeting of the miR-1260b/SFRP1/Wnt signaling axis might provide a novel strategy for overcoming chemotherapy resistance in LAD.
Collapse
Affiliation(s)
- Jin Ren
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hanpeng Huang
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiufen Zhuang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jian Li
- Department of Pulmonary Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front Oncol 2020; 10:1152. [PMID: 32850327 PMCID: PMC7426728 DOI: 10.3389/fonc.2020.01152] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in chemotherapeutic treatments against cancer, some types of highly aggressive and invasive cancer develop drug resistance against conventional therapies, which continues to be a major problem in the fight against cancer. In recent years, studies of alterations of DNA methylome have given us a better understanding of the role of DNA methylation in the development of tumors. DNA methylation (DNAm) is an epigenetic change that promotes the covalent transfer of methyl groups to DNA. This process suppresses gene expression through the modulation of the transcription machinery access to the chromatin or through the recruitment of methyl binding proteins. DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant DNAm may occur through hypermethylation in the promoter regions of tumor suppressor genes, which leads to their silencing, while hypomethylation in the promoter regions of oncogenes can activate them. In this review, we discuss the impact of dysregulated methylation in certain genes, which impact signaling pathways associated with apoptosis avoidance, metastasis, and resistance to therapy. The analysis of methylome has revealed patterns of global methylation, which regulate important signaling pathways involved in therapy resistance in different cancer types, such as breast, colon, and lung cancer, among other solid tumors. This analysis has provided gene-expression signatures of methylated region-specific DNA that can be used to predict the treatment outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome have been associated with the acquisition of drug resistance. We also review treatments with demethylating agents that, in combination with standard therapies, seem to be encouraging, as tumors that are in early stages can be successfully treated. On the other hand, tumors that are in advanced stages can be treated with these combination schemes, which could sensitize tumor cells that are resistant to the therapy. We propose that rational strategies, which combine specific demethylating agents with conventional treatment, may improve overall survival in cancer patients.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
8
|
Baharudin R, Tieng FYF, Lee LH, Ab Mutalib NS. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers (Basel) 2020; 12:E445. [PMID: 32074995 PMCID: PMC7072595 DOI: 10.3390/cancers12020445] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Secreted frizzled-related protein 1 (SFRP1) is a gene that belongs to the secreted glycoprotein SFRP family. SFRP1 has been classified as a tumor suppressor gene due to the loss of expression in various human cancers, which is mainly attributed by epigenetic inactivation via DNA methylation or transcriptional silencing by microRNAs. Epigenetic silencing of SFRP1 may cause dysregulation of cell proliferation, migration, and invasion, which lead to cancer cells formation, disease progression, poor prognosis, and treatment resistance. Hence, restoration of SFRP1 expression via demethylating drugs or over-expression experiments opens the possibility for new cancer therapy approach. While the role of SFRP1 as a tumor suppressor gene is well-established, some studies also reported the possible oncogenic properties of SFRP1 in cancers. In this review, we discussed in great detail the dual roles of SFRP1 in cancers-as tumor suppressor and tumor promoter. The epigenetic regulation of SFRP1 expression will also be underscored with additional emphasis on the potentials of SFRP1 in modulating responses toward chemotherapeutic and epigenetic-modifying drugs, which may encourage the development of novel drugs for cancer treatment. We also present findings from clinical trials and patents involving SFRP1 to illustrate its clinical utility, extensiveness of each research area, and progression toward commercialization. Lastly, this review provides directions for future research to advance SFRP1 as a promising cancer biomarker.
Collapse
Affiliation(s)
- Rashidah Baharudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| | - Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Nurul Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.); (F.Y.F.T.)
| |
Collapse
|
9
|
Song Z, Wang H, Zhang S. Negative regulators of Wnt signaling in non-small cell lung cancer: Theoretical basis and therapeutic potency. Biomed Pharmacother 2019; 118:109336. [PMID: 31545260 DOI: 10.1016/j.biopha.2019.109336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/05/2019] [Indexed: 02/05/2023] Open
Abstract
Significant advances in the treatment of non-small cell lung cancer (NSCLC) have been made over the past decade, and they predominantly involve molecular targets such as epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements. However, despite the initial good response, drug resistance eventually develops. The Wnt signaling pathway has recently been considered important in embryonic development and tumorigenesis in many cancers, particularly NSCLC. Moreover, the aberrant Wnt pathway plays a significant role in NSCLC and is associated with cancer cell proliferation, metastasis, invasion and drug resistance, and the suppression of canonical or noncanonical Wnt signaling through various biological or pharmacological negative regulators has been proven to produce specific anticancer effects. Thus, blocking the Wnt pathway via its negative regulators may overcome the resistance of current treatment methods and lead to new treatment strategies for NSCLC. Therefore, in this review, we summarize recent studies on the role of negative regulators in Wnt signaling in NSCLC and the therapeutic potency of these molecules as agents and targets for NSCLC treatments.
Collapse
Affiliation(s)
- Zikuan Song
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haoyu Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Risk stratification of triple-negative breast cancer with core gene signatures associated with chemoresponse and prognosis. Breast Cancer Res Treat 2019; 178:185-197. [PMID: 31342312 DOI: 10.1007/s10549-019-05366-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/16/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE Neoadjuvant chemotherapy studies have consistently reported a strong correlation between pathologic response and long-term outcome in triple-negative breast cancer (TNBC). We aimed to define minimal gene signatures for predicting chemoresponse by a three-step approach and to further develop a risk-stratification method of TNBC. METHODS The first step involved the detection of genes associated with resistance to docetaxel in eight TNBC cell lines, leading to identification of thousands of candidate genes. Through subsequent second and third step analyses with gene set enrichment analysis and survival analysis using public expression profiles, the candidate gene list was reduced to prognostic core gene signatures comprising ten or four genes. RESULTS The prognostic core gene signatures include three up-regulated (CEBPD, MMP20, and WLS) and seven down-regulated genes (ASF1A, ASPSCR1, CHAF1B, DNMT1, GINS2, GOLGA2P5, and SKA1). We further develop a simple risk-stratification method based on expression profiles of the core genes. Relative expression values of the up-regulated and down-regulated core genes were averaged into two scores, Up and Down scores, respectively; then samples were stratified by a diagonal line in a xy plot of the Up and Down scores. Based on this method, the patients were successfully divided into subgroups with distinct chemoresponse and prognosis. The prognostic power of the method was validated in three independent public datasets containing 230, 141, and 117 TNBC patients with chemotherapy. In multivariable Cox regression analysis, the core gene signatures were significantly associated with prognosis independent of tumor stage and age at diagnosis. In meta-analysis, we found that five core genes (CEBPD, WLS, CHAF1B, GINS2, and SKA1) play opposing roles, either tumor promoter or suppressor, in TNBC and non-TNBC tumors respectively, depending on estrogen receptor status. CONCLUSIONS The results may provide a promising prognostic tool for predicting chemotherapy responders among TNBC patients prior to initiation of chemotherapeutic treatment.
Collapse
|
11
|
Peng JX, Liang SY, Li L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1‑mediated restraint of TGFβ/Smad3 signaling. Oncol Rep 2018; 41:224-234. [PMID: 30542739 PMCID: PMC6278527 DOI: 10.3892/or.2018.6838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
Secreted frizzled-related protein 1 (sFRP1) is an inhibitor of canonical Wnt signaling; however, previous studies have determined a tumor-promoting function of sFRP1 in a number of different cancer types. A previous study demonstrated that sFRP1 overexpression was associated with an aggressive phenotype and the activation of transforming growth factor β (TGFβ) signaling. sFRP1 overexpression and sFRP1 knockdown cell models were established. Immunoblotting was conducted to examine the protein levels of the associated molecules. Immunofluorescence staining followed by confocal microscopy was performed to visualize the cytoskeleton alterations and subcellular localization of key proteins. sFRP1 overexpression restored glycogen synthase kinase 3β (GSK3β) activity, which activated Rac family small GTPase 1 (Rac1). GSK3β and Rac1 mediated the effect of sFRP1 on the positive regulation of cell growth and migration/invasion. Inhibition of GSK3β or Rac1 abolished the regulation of sFRP1 on TGFβ/SMAD family member 3 (Smad3) signaling and the aggressive phenotype; however, GSK3β or Rac1 overexpression increased cell migration/invasion and restrained Smad3 activity by preventing its nuclear translocation and limiting its transcriptional activity. The present study demonstrated a tumor-promoting function of sFRP1-overexpression by selectively activating TGFβ signaling in gastric cancer cells. GSK3β and Rac1 serve an important function in mediating the sFRP1-induced malignant alterations and signaling changes.
Collapse
Affiliation(s)
- Ji-Xiang Peng
- Department of Gastrointestinal Surgery, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Shun-Yu Liang
- Department of Gastrointestinal Surgery, Guangzhou First Municipal People's Hospital, Affiliated Guangzhou Medical College, Guangzhou, Guangdong 510180, P.R. China
| | - Li Li
- Department of Gastrointestinal Surgery, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
12
|
Yang X, Han SW, Liu H, Zhu L, Chen YX, Ji ZN. Secreted frizzled-related protein 1 (SFRP1) gene methylation changes in the human lung adenocarcinoma cells treated with L-securinine. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:163-171. [PMID: 28545308 DOI: 10.1080/10286020.2017.1329828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. It is important to explore the biomarkers of diagnosis and prognosis in lung cancer. To evaluate the cytotoxicity of L-securinine and the expression and methylation of secreted frizzled-related proteins (SFRPs) genes in the human lung adenocarcinoma cells, cell counting kit-8 (CCK-8) assay was used to assess the proliferation of lung adenocarcinoma cells treated with L-securinine. Quantitative real-time PCR (qRT-PCR) and bisulfite sequencing PCR were used to detect the expression and the DNA methylation of SFRPs genes, respectively. L-securinine inhibited the proliferation of lung adenocarcinoma cells and induced the upregulation of SFRP1 gene expression and the methylation changes at CpG sites in the SFRP1 promoter region. L-securinine was a potential agent in the treatment of lung cancer by upregulation of SFRP1 gene expression and changing the SFRP1 gene methylation.
Collapse
Affiliation(s)
- Xi Yang
- a Department of Intervention and Radiotherapy , Huzhou Central Hospital , Huzhou 313000 , China
| | - Shu-Wen Han
- b Department of Medical Oncology , Huzhou Central Hospital , Huzhou 313000 , China
| | - Hui Liu
- c Department of Medical Oncology , Wuxi No.5 People's Hospital , Wuxi 214000 , China
| | - Ling Zhu
- d Department of Oncology , Wannan Medical College , Wuhu 241000 , China
| | - Yu-Xin Chen
- e The Cancer Center , Yijishan Hospital of Wannan Medical College , Wuhu 241001 , China
| | - Zhao-Ning Ji
- e The Cancer Center , Yijishan Hospital of Wannan Medical College , Wuhu 241001 , China
| |
Collapse
|
13
|
Butera G, Pacchiana R, Donadelli M. Autocrine mechanisms of cancer chemoresistance. Semin Cell Dev Biol 2017; 78:3-12. [PMID: 28751251 DOI: 10.1016/j.semcdb.2017.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 02/08/2023]
Abstract
An ever-increasing number of studies highlight the role of cancer secretome in the modification of tumour microenvironment and in the acquisition of cancer cell resistance to therapeutic drugs. The knowledge of the mechanisms underlying the relationship between cancer cell-secreted factors and chemoresistance is becoming fundamental for the identification of novel anticancer therapeutic strategies overcoming drug resistance and novel prognostic secreted biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells compromising drug sensitivity. In particular, we highlight data from available literature describing the involvement of cancer cell-secreted molecules determining chemoresistance in an autocrine manner, including: i) growth factors; ii) glycoproteins; iii) inflammatory cytokines; iv) enzymes and chaperones; and v) tumor-derived exosomes.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
14
|
de Bessa Garcia SA, Pavanelli AC, Cruz E Melo N, Nagai MA. Prostate apoptosis response 4 (PAR4) expression modulates WNT signaling pathways in MCF7 breast cancer cells: A possible mechanism underlying PAR4-mediated docetaxel chemosensitivity. Int J Mol Med 2017; 39:809-818. [PMID: 28259909 PMCID: PMC5360433 DOI: 10.3892/ijmm.2017.2900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
Docetaxel is an effective drug for the treatment of metastatic breast cancer. However, the exact mechanisms and/or markers associated with chemosensitivity or resistance to docetaxel remain unclear. We previously showed that the expression of prostate apoptosis response 4 (PAR4) inhibits the growth of MCF7 breast cancer cells and increases their sensitivity to docetaxel. Using cDNA microarray analysis, we evaluated transcriptome changes in MCF7 cells expressing increased levels of PAR4 and control cells before and after docetaxel treatment. Some of the top gene networks generated from the differentially expressed genes were related to the wingless‑type MMTV integration 1 (WNT) canonical (WNT/β-catenin) and non‑canonical (β‑catenin‑independent) pathways. The Human WNT signaling pathway RT2 profiler™ PCR array was used to validate the effects of PAR4 on the expression pattern of genes involved in the WNT pathway. CACNAD2A3, GDF5 and IL6 were upregulated and NANOG was downregulated in the MCF7 breast cancer cells expressing increased levels of PAR4 after treatment with docetaxel, likely indicating inactivation of the WNT/β-catenin pathway. Upregulation of FGF7, LEF1 and TWIST1 indicated activation of the WNT/β‑catenin pathway. Although preliminary, our findings could be of particular interest for understanding the action of PAR4 in chemosensitivity, particularly to increase the specificity and effectiveness of drug treatment and overcome resistance to chemotherapy. Further studies are needed to better understand the biological roles of PAR4 in the regulation of WNT pathways in breast cancer cells in response to docetaxel and other chemotherapeutic agents.
Collapse
Affiliation(s)
- Simone Aparecida de Bessa Garcia
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP 01246‑903, P.R. China
| | - Ana Carolina Pavanelli
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP 01246‑903, P.R. China
| | - Natália Cruz E Melo
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP 01246‑903, P.R. China
| | - Maria Aparecida Nagai
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, SP 01246‑903, P.R. China
| |
Collapse
|
15
|
Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep 2016; 6:38408. [PMID: 27922075 PMCID: PMC5138853 DOI: 10.1038/srep38408] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAF) are recognized as one of the key determinants in the malignant progression of lung adenocarcinoma. And its contributions to chemoresistance acquisition of lung cancer has raised more and more attention. In our study, cancer associated fibroblasts treated with cisplatin conferred chemoresistance to lung cancer cells. Meanwhile, Interleukin-11(IL-11) was significantly up-regulated in the CAF stimulated by cisplatin. As confirmed in lung adenocarcinoma cells in vivo and in vitro, IL-11 could protect cancer cells from cisplatin-induced apoptosis and thus promote their chemoresistance. Furthermore, it was also observed that IL-11 induced STAT3 phosphorylation and increased anti-apoptotic protein Bcl-2 and Survivin expression in cancer cells. The effect could be abrogated by suppressing STAT3 phosphorylation or silencing IL-11Rα expression in cancer cells. In conclusion, chemotherapy-induced IL-11 upregulation in CAF promotes lung adenocarcinoma cell chemoresistance by activating IL-11R/STAT3 anti-apoptotic signaling pathway.
Collapse
|
16
|
Examination of Epithelial Mesenchymal Transition in Keloid Tissues and Possibility of Keloid Therapy Target. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e1138. [PMID: 27975033 PMCID: PMC5142499 DOI: 10.1097/gox.0000000000001138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Background: Keloid is a fibroproliferative skin disorder that is characterized by collagen accumulation and blood vessel proliferation in the reticular layer of the dermis. It is caused by prolonged inflammation after cutaneous injury. Several studies suggested recently that epithelial mesenchymal transition (EMT) is involved in the development of fibrosis. This study assessed whether EMT also participates in keloid development and/or aggravation. Methods: Resected keloid (n = 19) and normal skin (n = 13) samples were subjected to immunohistochemical, immunofluorescent, and Western blot analyses of their expression of epidermal (E-cadherin) and mesenchymal (vimentin) proteins. Results: Immunohistochemical analysis showed that the keloid tissues had more vimentin-positive cells in the epidermis than the normal tissues. When normal primary keratinocytes were cultured with proinflammatory cytokines, the cobblestone-shaped cells changed to a spindle shape and many vimentin-positive cells were detected. When immortalized HaCaT keratinocytes were cocultured in split-well plates with normal or keloid-derived fibroblasts, they also underwent EMT, as indicated by their greater vimentin expression on Western blot analysis compared with HaCaT cells that were cultured alone. Conclusions: EMT was observed in keloid specimens. EMT was induced by inflammatory cytokines and fibroblasts. EMT may be involved in keloid generation and/or aggravation and may have potential as a keloid treatment target.
Collapse
|
17
|
Wu MY, Liang RR, Chen K, Shen M, Tian YL, Li DM, Duan WM, Gui Q, Gong FR, Lian L, Li W, Tao M. FH535 inhibited metastasis and growth of pancreatic cancer cells. Onco Targets Ther 2015; 8:1651-70. [PMID: 26185454 PMCID: PMC4500609 DOI: 10.2147/ott.s82718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Rong-Rui Liang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Ya-Li Tian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Dao-Ming Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Wei-Ming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Qi Gui
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lian Lian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, People's Republic of China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China ; Institute of Medical Biotechnology, Soochow University, Suzhou, People's Republic of China ; PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
18
|
Zhong D, Ru Y, Wang Q, Zhang J, Zhang J, Wei J, Wu J, Yao L, Li X, Li X. Chimeric ubiquitin ligases inhibit non-small cell lung cancer via negative modulation of EGFR signaling. Cancer Lett 2015; 359:57-64. [DOI: 10.1016/j.canlet.2014.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/10/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023]
|