1
|
Wang Y, Zhou X. Exosomes and microRNAs: insights into their roles in thermal-induced skin injury, wound healing and scarring. Mol Genet Genomics 2024; 299:89. [PMID: 39317785 DOI: 10.1007/s00438-024-02183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
A burn is a type of injury to the skin or other tissues caused by heat, chemicals, electricity, sunlight, or radiation. Burn injuries have been proven to have the potential for long-term detrimental effects on the human body. The conventional therapeutic approaches are not able to effectively and easily heal these burn wounds completely. The main potential drawbacks of these treatments include hypertrophic scarring, contracture, infection, necrosis, allergic reactions, prolonged healing times, and unsatisfactory cosmetic results. The existence of these drawbacks and limitations in current treatment approaches necessitates the need to search for and develop better, more efficient therapies. The regenerative potential of microRNAs (miRNAs) and the exosomal miRNAs derived from various cell types, especially stem cells, offer advantages that outweigh traditional burn wound healing treatment procedures. The use of multiple types of stem cells is gaining interest due to their improved healing efficiency for various applications. Stem cells have several key distinguishing characteristics, including the ability to promote more effective and rapid healing of burn wounds, reduced inflammation levels at the wound site, and less scar tissue formation and fibrosis. In this review, we have discussed the stages of wound healing, the role of exosomes and miRNAs in improving thermal-induced wounds, and the impact of miRNAs in preventing the formation of hypertrophic scars. Research studies, pre-clinical and clinical, on the use of different cell-derived exosomal miRNAs and miRNAs for the treatment of thermal burns have been documented from the year 2000 up to the current time. Studies show that the use of different cell-derived exosomal miRNAs and miRNAs can improve the healing of burn wounds. The migration of exosomal miRNAs to the site of a wound leads to inhibition of apoptosis, induction of autophagy, re-epithelialization, granulation, regeneration of skin appendages, and angiogenesis. In conclusion, this study underscores the importance of integrating miRNA and exosome research into treatment strategies for burn injuries, paving the way for novel therapeutic approaches that could significantly improve patient outcomes and recovery times.
Collapse
Affiliation(s)
- Yong Wang
- School of Medicine, Yichun University, Yichun, 336000, China.
| | - Xiufang Zhou
- School of Chemistry and Bioengineering, Yichun University, Yichun, 336000, China
| |
Collapse
|
2
|
Rajalekshmi R, Rai V, Agrawal DK. Deciphering Collagen Phenotype Dynamics Regulators: Insights from In-Silico Analysis. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2024; 7:169-181. [PMID: 39484658 PMCID: PMC11526781 DOI: 10.26502/jbsb.5107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Collagen (Col) types I and III are integral components in wound healing and tissue regeneration, influencing tissue development, homeostasis, and related pathologies. Col I and Col III expression changes during different stages of wound healing and understanding the regulation of collagen phenotype determination is crucial for unraveling the complexities of these processes. Transcription factors and microRNAs, directly and indirectly, play a critical role in regulating collagen expression, however, a comprehensive understanding of the factors regulating Col I and III phenotypes remains elusive. This critically analyzed published reports with focuses on various factors regulating the expression of Col I and Col III at the transcriptional and translational levels. We performed bioinformatics analysis with an input of proinflammatory mediators, growth factors, elastases, and matrix metalloproteinases and predicted transcription factors and microRNAs involved in the regulation of collagen expression. Network analysis revealed an interaction between genes, transcription factors, and microRNAs and provided a holistic view of the regulatory landscape governing collagen expression and unveils intricate interconnections. This analysis lays a founda-tional framework for guiding future research and therapeutic interventions to promote extracellular matrix remodeling, wound healing, and tissue regeneration after an injury by modulating collagen expression. In essence, this scientific groundwork offers a comprehensive exploration of the regulatory dynamics in collagen synthesis, serving as a valuable resource for advancing both basic research and clinical interventions in tissue repair.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
3
|
Li Y, Wang Y, Chen S, Liu L. The landscape of miRNA-mRNA regulatory network and cellular sources in inflammatory bowel diseases: insights from text mining and single cell RNA sequencing analysis. Front Immunol 2024; 15:1454532. [PMID: 39238649 PMCID: PMC11374595 DOI: 10.3389/fimmu.2024.1454532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Background Inflammatory Bowel Diseases (IBDs), encompassing Ulcerative Colitis (UC) and Crohn's Disease (CD), are chronic, recurrent inflammatory conditions of the gastrointestinal tract. The microRNA (miRNA) -mRNA regulatory network is pivotal in the initiation and progression of IBDs. Although individual studies provide valuable insights into miRNA mechanisms in IBDs, they often have limited scope due to constraints in population diversity, sample size, sequencing platform variability, batch effects, and potential researcher bias. Our study aimed to construct comprehensive miRNA-mRNA regulatory networks and determine the cellular sources and functions of key miRNAs in IBD pathogenesis. Methods To minimize potential bias from individual studies, we utilized a text mining-based approach on published scientific literature from PubMed and PMC databases to identify miRNAs and mRNAs associated with IBDs and their subtypes. We constructed miRNA-mRNA regulatory networks by integrating both predicted and experimentally validated results from DIANA, Targetscan, PicTar, Miranda, miRDB, and miRTarBase (all of which are databases for miRNA target annotation). The functions of miRNAs were determined through gene enrichment analysis of their target mRNAs. Additionally, we used two large-scale single-cell RNA sequencing datasets to identify the cellular sources of miRNAs and the association of their expression levels with clinical status, molecular and functional alternation in CD and UC. Results Our analysis systematically summarized IBD-related genes using text-mining methodologies. We constructed three comprehensive miRNA-mRNA regulatory networks specific to IBD, CD, and UC. Through cross-analysis with two large-scale scRNA-seq datasets, we determined the cellular sources of the identified miRNAs. Despite originating from different cell types, hsa-miR-142, hsa-miR-145, and hsa-miR-146a were common to both CD and UC. Notably, hsa-miR-145 was identified as myofibroblast-specific in both CD and UC. Furthermore, we found that higher tissue repair and enhanced glucose and lipid metabolism were associated with hsa-miR-145 in myofibroblasts in both CD and UC contexts. Conclusion This comprehensive approach revealed common and distinct miRNA-mRNA regulatory networks in CD and UC, identified cell-specific miRNA expressions (notably hsa-miR-145 in myofibroblasts), and linked miRNA expression to functional alterations in IBD. These findings not only enhance our understanding of IBD pathogenesis but also offer promising diagnostic biomarkers and therapeutic targets for clinical practice in managing IBDs.
Collapse
Affiliation(s)
- Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Simeng Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijia Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Wang C, Huang L, Li J, Liu D, Wu B. MicroRNA miR-145-5p Inhibits Cutaneous Wound Healing by Targeting PDGFD in Diabetic Foot Ulcer. Biochem Genet 2024; 62:2437-2454. [PMID: 37950842 DOI: 10.1007/s10528-023-10551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 11/13/2023]
Abstract
Diabetic foot ulcer (DFU) is one major, common and serious chronic complication of diabetes mellitus, which is characterized by high incidence, high risk, high burden, and high treatment difficulty and is a leading cause of disability and death in patients with diabetes. Long-term hyperglycemia can result in cellular dysfunction of fibroblasts, which play pivotal roles in wound healing. MicroRNAs (miRNAs) were reported to mediate the pathological processes of multiple diseases, including diabetic wound healing. This research aimed to investigate the functional role of miR-145-5p in high-glucose (HG)-exposed fibroblasts and in DFU mouse models. Human foreskin fibroblast cells (HFF-1) were stimulated by HG to induce cell injury. MiR-145-5p level in HG-stimulated HFF-1 cells was detected via RT-qPCR. The binding between miR-145-5p and PDGFD was validated by Luciferase reporter assay. The effects of the miR-145-5p/PDGFD axis on the viability, migration, and apoptosis of HG-exposed HFF-1 cells were determined by CCK-8, wound healing, and flow cytometry assays. DFU mouse models were subcutaneously injected at the wound edges with miR-145-5p inhibitor/mimics. Images of the wounds were captured on day 0 and 8 post-injection, and wound samples were collected after mice were sacrificed for histological analysis by H&E staining. HG decreased cell viability and increased miR-145-5p expression in HFF-1 cells in a dose- and time-dependent manner. MiR-145-5p downregulation promoted cell viability and migration and inhibited cell apoptosis of HG-stimulated HFF-1 cells, while miR-145-5p overexpression exerted an opposite effect on cell viability, migration, and apoptosis. PDGFD was a direct target gene of miR-145-5p, whose silencing reversed the influence of miR-145-5p downregulation on HG-induced cellular dysfunction of HFF-1 cells. Additionally, downregulating miR-145-5p facilitated while overexpressing miR-145-5p inhibited wound healing in DFU mouse models. MiR-145-5p level was negatively associated with PDGFD level in wound tissue samples of DFU mouse models. MiR-145-5p inhibition improves wound healing in DFU through upregulating PDGFD expression.
Collapse
Affiliation(s)
- Chun Wang
- Jinan University, Guangzhou, 510632, China
- Department of General Medicine, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233040, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Bengbu, 233030, China
| | - Juan Li
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233040, China
| | - Dan Liu
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233040, China
| | - Biaoliang Wu
- Jinan University, Guangzhou, 510632, China.
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Second Road, Youjiang District, Baise City, 533000, Guangxi, China.
| |
Collapse
|
5
|
Zhang H, Zhou Y, Jiang C, Jian N, Wang J. Crosstalk of ubiquitin system and non-coding RNA in fibrosis. Int J Biol Sci 2024; 20:3802-3822. [PMID: 39113708 PMCID: PMC11302871 DOI: 10.7150/ijbs.93644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/14/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic tissue injury triggers changes in the cell type and microenvironment at the site of injury and eventually fibrosis develops. Current research suggests that fibrosis is a highly dynamic and reversible process, which means that human intervention after fibrosis has occurred has the potential to slow down or cure fibrosis. The ubiquitin system regulates the biological functions of specific proteins involved in the development of fibrosis, and researchers have designed small molecule drugs to treat fibrotic diseases on this basis, but their therapeutic effects are still limited. With the development of molecular biology technology, researchers have found that non-coding RNA (ncRNA) can interact with the ubiquitin system to jointly regulate the development of fibrosis. More in-depth explorations of the interaction between ncRNA and ubiquitin system will provide new ideas for the clinical treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Huamin Zhang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| |
Collapse
|
6
|
Wang J, Du J, Wang Y, Song Y, Wu J, Wang T, Yu Z, Song B. CILP2 promotes hypertrophic scar through Snail acetylation by interaction with ACLY. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167202. [PMID: 38670440 DOI: 10.1016/j.bbadis.2024.167202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND & AIMS Hypertrophic scar (HS) is a skin fibroproliferative disorder occurring after burns, surgeries or traumatic injuries, and it has caused a tremendous economic and medical burden. Its molecular mechanism is associated with the abnormal proliferation and transition of fibroblasts and excessive deposition of extracellular matrix. Cartilage intermediate layer protein 2 (CILP2), highly homologous to cartilage intermediate layer protein 1 (CILP1), is mainly secreted predominantly from chondrocytes in the middle/deeper layers of articular cartilage. Recent reports indicate that CILP2 is involved in the development of fibrotic diseases. We investigated the role of CILP2 in the progression of HS. METHODS AND RESULTS It was found in this study that CILP2 expression was significantly higher in HS than in normal skin, especially in myofibroblasts. In a clinical cohort, we discovered that CILP2 was more abundant in the serum of patients with HS, especially in the early stage of HS. In vitro studies indicated that knockdown of CILP2 suppressed proliferation, migration, myofibroblast activation and collagen synthesis of hypertrophic scar fibroblasts (HSFs). Further, we revealed that CILP2 interacts with ATP citrate lyase (ACLY), in which CILP2 stabilizes the expression of ACLY by reducing the ubiquitination of ACLY, therefore prompting Snail acetylation and avoiding reduced expression of Snail. In vivo studies indicated that knockdown of CILP2 or ACLY inhibitor, SB-204990, significantly alleviated HS formation. CONCLUSION CILP2 exerts a vital role in hypertrophic scar formation and might be a detectable biomarker reflecting the progression of hypertrophic scar and a therapeutic target for hypertrophic scar.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yajuan Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Junzheng Wu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tong Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Wang C, Jiang D. Exogenous PRAS40 reduces KLF4 expression and alleviates hypertrophic scar fibrosis and collagen deposition through inhibiting mTORC1. Burns 2024; 50:936-946. [PMID: 38369439 DOI: 10.1016/j.burns.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND To identify the anti-fibrosis effect of PRAS40 in scar, and its potential mechanism. METHODS We constructed a rat model of hypertrophic scarthat was locally injected the PRAS40 overexpression adenoviruses, mTORC1 inhibitor MHY1485 and activator rapamycin, and further observed the pathological changes of skin tissue and the severity of fibrosis by HE, Masson and sirius red staining, and analyzed the deposition of a-SMA and collagen I by western blot and immunofluorescence test. Meanwhile, the co-localization of KLF4 with a-SMA and type I collagen was analyzed, as well as the regulatory effect of PRAS40 on KLF4. In addition, we also verified whether the inhibition of scar fibrosis by PRAS40 is related to mTORC1, and whether the upregulation of KLF4 is related to mTORC1. RESULTS The results showed that the expression of PRAS40 was low and p-PRAS40 was high in scar skin tissue. After local injection of PRAS40 overexpression adenovirus, the expression of PRAS40 in skin tissue was increased. The overexpression of PRAS40 can inhibit scar skin fibrosis and reduce the content of a-SMA and collagen I. Further mechanism analysis confirms that the inhibitory effect of PRAS40 on skin fibrosis is related to mTORC1, and PRAS40 inhibits the activation of mTORC1. The expression of KLF4 is relatively low in scar tissue. PRAS40 administration upregulated the expression of KLF4, which is related to mTORC1 CONCLUSIONS: PRAS40 significantly improves fibrosis of scar skin tissue and increases the expression of KLF4 in scars. The anti-fibrotic effect of PRAS40 depends on mTORC1.
Collapse
Affiliation(s)
- Chao Wang
- Department of Burn and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Duyin Jiang
- Department of Burn and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China.
| |
Collapse
|
8
|
Chauhan S, Gulia M, Singh RP, Jhawat V. Diabetic Wound: Pathophysiology, Complications and Treatment Strategies. Curr Protein Pept Sci 2024; 25:200-205. [PMID: 37909438 DOI: 10.2174/0113892037276171231016103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Diabetic wound healing is expected to affect 25% of all diabetics, resulting in less severe external factors, economic costs, and less trauma. Topical formulations have been continually improved to achieve a range of amazing properties and have had a significant impact on the management of diabetic wounds. Topical insulin has become one of the most attractive and convenient wound healing techniques due to its excellent biocompatibility, water retention, and therapeutic properties. Multiple versatile topical insulins have been identified and have shown promise over the past few years as they greatly facilitate the management of diabetic wounds as we understand their etiology. The physiological wound healing process repairs damaged tissue and restores skin integrity. For about a century, insulin, a powerful healing agent, and it has been utilized in several clinical and experimental researches research studies to accelerate the healing of various injuries.
Collapse
Affiliation(s)
- Sunita Chauhan
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika Gulia
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
9
|
Walter AS, Volkmer E, Gauglitz G, Böcker W, Saller MM. Systematic review of molecular pathways in burn wound healing. Burns 2023; 49:1525-1533. [PMID: 37821280 DOI: 10.1016/j.burns.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/29/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Depending on extent and depth, burn injuries and resulting scars may be challenging and expensive to treat and above all heavily impact the patients' lives. This systematic review represents the current state of knowledge on molecular pathways activated during burn wound healing. All currently known molecular information about gene expression and molecular interactions in mammals has been summarized. An ample interaction of regenerative cytokines, growth factors, ECM-regenerative molecules and proinflammatory immune response became apparent. We identified three molecules to be most often involved in the pathways: TGFB1, ACTA1 and COL1A1. Yet, other factors including FLII, AKT1 and miR-145 were shown to play pivotal roles in burn wound healing as well. This systematic review helps to explain the fundamental molecular proceedings participating in burn wound healing. A number of new molecular interactions and functional connections were identified yielding intriguing new research targets. An interactive version of the first network about molecular pathways and interactions during burn wound healing is provided in the online edition and on WikiPathways.
Collapse
Affiliation(s)
- Annika S Walter
- Musculoskeletal University Center Munich (MUM), Department of Orthopeadics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Martinsried, Germany
| | - Elias Volkmer
- Musculoskeletal University Center Munich (MUM), Department of Orthopeadics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Martinsried, Germany; Division of Hand Surgery, Helios Klinikum München West, Steinerweg 5, 81241 Munich, Germany
| | - Gerd Gauglitz
- Department of Dermatology and Allergy, Ludwig-Maximillians-University (LMU), Frauenlobstraße 9-11, 80337 Munich, Germany
| | - Wolfgang Böcker
- Musculoskeletal University Center Munich (MUM), Department of Orthopeadics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Martinsried, Germany
| | - Maximilian M Saller
- Musculoskeletal University Center Munich (MUM), Department of Orthopeadics and Trauma Surgery, Ludwig-Maximilians-University (LMU), Fraunhoferstraße 20, 82152 Martinsried, Germany.
| |
Collapse
|
10
|
Su J, Wei Q, Ma K, Wang Y, Hu W, Meng H, Li Q, Zhang Y, Zhang W, Li H, Fu X, Zhang C. P-MSC-derived extracellular vesicles facilitate diabetic wound healing via miR-145-5p/ CDKN1A-mediated functional improvements of high glucose-induced senescent fibroblasts. BURNS & TRAUMA 2023; 11:tkad010. [PMID: 37860579 PMCID: PMC10583213 DOI: 10.1093/burnst/tkad010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/01/2023] [Accepted: 02/14/2023] [Indexed: 10/21/2023]
Abstract
Background Persistent hyperglycaemia in diabetes causes functional abnormalities of human dermal fibroblasts (HDFs), partially leading to delayed skin wound healing. Extracellular vesicles (EVs) containing multiple pro-healing microRNAs (miRNAs) have been shown to exert therapeutic effects on diabetic wound healing. The present study aimed to observe the effects of EVs derived from placental mesenchymal stem cells (P-MSC-EVs) on diabetic wound healing and high glucose (HG)-induced senescent fibroblasts and to explore the underlying mechanisms. Methods P-MSC-EVs were isolated by differential ultracentrifugation and locally injected into the full-thickness skin wounds of diabetic mice, to observe the beneficial effects on wound healing in vivo by measuring wound closure rates and histological analysis. Next, a series of assays were conducted to evaluate the effects of low (2.28 x 1010 particles/ml) and high (4.56 x 1010 particles/ml) concentrations of P-MSC-EVs on the senescence, proliferation, migration, and apoptosis of HG-induced senescent HDFs in vitro. Then, miRNA microarrays and real-time quantitative PCR (RT-qPCR) were carried out to detect the differentially expressed miRNAs in HDFs after EVs treatment. Specific RNA inhibitors, miRNA mimics, and small interfering RNA (siRNA) were used to evaluate the role of a candidate miRNA and its target genes in P-MSC-EV-induced improvements in the function of HG-induced senescent HDFs. Results Local injection of P-MSC-EVs into diabetic wounds accelerated wound closure and reduced scar widths, with better-organized collagen deposition and decreased p16INK4a expression. In vitro, P-MSC-EVs enhanced the antisenescence, proliferation, migration, and antiapoptotic abilities of HG-induced senescent fibroblasts in a dose-dependent manner. MiR-145-5p was found to be highly enriched in P-MSC-EVs. MiR-145-5p inhibitors effectively attenuated the P-MSC-EV-induced functional improvements of senescent fibroblasts. MiR-145-5p mimics simulated the effects of P-MSC-EVs on functional improvements of fibroblasts by suppressing the expression of cyclin-dependent kinase inhibitor 1A and activating the extracellular signal regulated kinase (Erk)/protein kinase B (Akt) signaling pathway. Furthermore, local application of miR-145-5p agomir mimicked the effects of P-MSC-EVs on wound healing. Conclusions These results suggest that P-MSC-EVs accelerate diabetic wound healing by improving the function of senescent fibroblasts through the transfer of miR-145-5p, which targets cyclin-dependent kinase inhibitor 1A to activate the Erk/Akt signaling pathway. P-MSC-EVs are promising therapeutic candidates for diabetic wound treatment.
Collapse
Affiliation(s)
- Jianlong Su
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- School of Medicine, NanKai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yaxi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Hao Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Qiankun Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yuehou Zhang
- Burn and Plastic Surgery, Zhongda Hospital Affiliated Southeast University, Dingjiaqiao 87, Gulou District, Nanjing 210009, China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Haihong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, 6019 Xililiuxian Road, Nanshan District, Shenzhen 518055, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- School of Medicine, NanKai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing 100048, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 51 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
11
|
Menchaca AD, Style CC, Lazar DA, Mushin O, Olutoye OO. Serum Amyloid P Attenuates Hypertrophic Scarring in Large Animal Models. J Surg Res 2023; 290:285-292. [PMID: 37327638 DOI: 10.1016/j.jss.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION This study's purpose was to (1)determine the effect of locally administered serum amyloid P (SAP) on the development of hypertrophic scars (HTS) in porcine and rabbit HTS models and (2)determine the pharmacokinetics of systemically administered SAP and its effect on circulating fibrocyte quantities. METHODS Two large animal (New Zealand White Rabbit and Female Red Duroc Pigs) HTS models were utilized to study the effects of daily local injections of SAP immediately post wounding (x5 d in rabbits; x7 d in pigs) on HTS development as measured by scar elevation index , scar area, wound closure, and molecular expression studies of scar components. For SAP pharmacokinetics, total and human SAP levels in porcine blood were measured at regular intervals following intravenous administration of human SAP. Fibrocyte quantities were determined prior to and 1 h following human SAP intravenous administration. RESULTS In the rabbit model, local SAP significantly decreased the level of tissue inhibitor of metalloproteinases-1 mRNA expression and maintained matrix mettaloproteinase-9 expression, while control and vehicle groups significantly declined. In the pig model, there was a significant decrease in the trend of scar elevation indexes treated with local SAP versus controls over the study period. This decrease was statistically significant at days 14 and 84. Human SAP administered intravenously is degraded within 24 h and does not influence circulating fibrocyte quantities. CONCLUSIONS This is the first study to demonstrate attenuation of HTS formation using locally administered SAP in large animal HTS models. Local SAP administration reduces HTS formation by maintaining matrix mettaloproteinase-9 and decreasing tissue inhibitor of metalloproteinases-1. Intravenous administration of SAP is not as effective.
Collapse
Affiliation(s)
- Alicia D Menchaca
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of General Surgery, Indiana University, Indianapolis, Indiana
| | - Candace C Style
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Surgery, Texas Children's Hospital, Baylor School of Medicine, Houston, Texas
| | - David A Lazar
- Department of Surgery, Texas Children's Hospital, Baylor School of Medicine, Houston, Texas; Rady Children's Hospital San Diego, UC San Diego School of Medicine, San Diego, California
| | - Oren Mushin
- Department of Surgery, Texas Children's Hospital, Baylor School of Medicine, Houston, Texas; Memorial Cosmetic & Reconstructive Surgery, Houston, Texas
| | - Oluyinka O Olutoye
- Center for Regenerative Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Surgery, Texas Children's Hospital, Baylor School of Medicine, Houston, Texas; Department of Surgery, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
12
|
Siu MC, Voisey J, Zang T, Cuttle L. MicroRNAs involved in human skin burns, wound healing and scarring. Wound Repair Regen 2023; 31:439-453. [PMID: 37268303 DOI: 10.1111/wrr.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
MicroRNAs are small, non-coding RNAs that regulate gene expression, and consequently protein synthesis. Downregulation and upregulation of miRNAs and their corresponding genes can alter cell apoptosis, proliferation, migration and fibroproliferative responses following a thermal injury. This review summarises the evidence for altered human miRNA expression post-burn, and during wound healing and scarring. In addition, the most relevant miRNA targets and their roles in potential pathways are described. Previous studies using molecular techniques have identified 197 miRNAs associated with human wound healing, burn wound healing and scarring. Five miRNAs alter the expression of fibroproliferative markers, proliferation and migration of fibroblasts and keratinocytes post-burn: hsa-miR-21 and hsa-miR-31 are increased after wounding, and hsa-miR-23b, hsa-miR-200b and hsa-let-7c are decreased. Four of these five miRNAs are associated with the TGF-β pathway. In the future, large scale, in vivo, longitudinal human studies utilising a range of cell types, ethnicity and clinical healing outcomes are fundamental to identify burn wound healing and scarring specific markers. A comprehensive understanding of the underlying pathways will facilitate the development of clinical diagnostic or prognostic tools for better scar management and the identification of novel treatment targets for improved healing outcomes in burn patients.
Collapse
Affiliation(s)
- Man Ching Siu
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health Research, QUT, Brisbane, Queensland, Australia
| | - Tuo Zang
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Leila Cuttle
- Faculty of Health, School of Biomedical Sciences, Centre for Children's Health Research, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R, Xu S. Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J 2023. [PMID: 36726192 DOI: 10.1111/iwj.14097] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.
Collapse
Affiliation(s)
- Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - LinLin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Zhang H, Zhou Y, Wen D, Wang J. Noncoding RNAs: Master Regulator of Fibroblast to Myofibroblast Transition in Fibrosis. Int J Mol Sci 2023; 24:1801. [PMID: 36675315 PMCID: PMC9861037 DOI: 10.3390/ijms24021801] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Myofibroblasts escape apoptosis and proliferate abnormally under pathological conditions, especially fibrosis; they synthesize and secrete a large amount of extracellular matrix (ECM), such as α-SMA and collagen, which leads to the distortion of organ parenchyma structure, an imbalance in collagen deposition and degradation, and the replacement of parenchymal cells by fibrous connective tissues. Fibroblast to myofibroblast transition (FMT) is considered to be the main source of myofibroblasts. Therefore, it is crucial to explore the influencing factors regulating the process of FMT for the prevention, treatment, and diagnosis of FMT-related diseases. In recent years, non-coding RNAs, including microRNA, long non-coding RNAs, and circular RNAs, have attracted extensive attention from scientists due to their powerful regulatory functions, and they have been found to play a vital role in regulating FMT. In this review, we summarized ncRNAs which regulate FMT during fibrosis and found that they mainly regulated signaling pathways, including TGF-β/Smad, MAPK/P38/ERK/JNK, PI3K/AKT, and WNT/β-catenin. Furthermore, the expression of downstream transcription factors can be promoted or inhibited, indicating that ncRNAs have the potential to be a new therapeutic target for FMT-related diseases.
Collapse
Affiliation(s)
| | | | | | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Xiangya Road, Changsha 410000, China
| |
Collapse
|
15
|
Amjadian S, Moradi S, Mohammadi P. The emerging therapeutic targets for scar management: genetic and epigenetic landscapes. Skin Pharmacol Physiol 2022; 35:247-265. [PMID: 35696989 PMCID: PMC9533440 DOI: 10.1159/000524990] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Background Wound healing is a complex process including hemostasis, inflammation, proliferation, and remodeling during which an orchestrated array of biological and molecular events occurs to promote skin regeneration. Abnormalities in each step of the wound healing process lead to reparative rather than regenerative responses, thereby driving the formation of cutaneous scar. Patients suffering from scars represent serious health problems such as contractures, functional and esthetic concerns as well as painful, thick, and itchy complications, which generally decrease the quality of life and impose high medical costs. Therefore, therapies reducing cutaneous scarring are necessary to improve patients' rehabilitation. Summary Current approaches to remove scars, including surgical and nonsurgical methods, are not efficient enough, which is in principle due to our limited knowledge about underlying mechanisms of pathological as well as the physiological wound healing process. Thus, therapeutic interventions focused on basic science including genetic and epigenetic knowledge are recently taken into consideration as promising approaches for scar management since they have the potential to provide targeted therapies and improve the conventional treatments as well as present opportunities for combination therapy. In this review, we highlight the recent advances in skin regenerative medicine through genetic and epigenetic approaches to achieve novel insights for the development of safe, efficient, and reproducible therapies and discuss promising approaches for scar management. Key Message Genetic and epigenetic regulatory switches are promising targets for scar management, provided the associated challenges are to be addressed.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parvaneh Mohammadi
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- *Parvaneh Mohammadi,
| |
Collapse
|
16
|
Lee JS, Kim GH, Lee JH, Ryu JY, Oh EJ, Kim HM, Kwak S, Hur K, Chung HY. MicroRNA-365a/b-3p as a Potential Biomarker for Hypertrophic Scars. Int J Mol Sci 2022; 23:ijms23116117. [PMID: 35682793 PMCID: PMC9181131 DOI: 10.3390/ijms23116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022] Open
Abstract
The clinical aspects of hypertrophic scarring vary according to personal constitution and body part. However, the mechanism of hypertrophic scar (HS) formation remains unclear. MicroRNAs (miRNAs) are known to contribute to HS formation, however, their detailed role remains unknown. In this study, candidate miRNAs were identified and analyzed as biomarkers of hypertrophic scarring for future clinical applications. HSfibroblasts and normal skin fibroblasts from patients were used for profiling and validation of miRNAs. An HS mouse model with xenografted human skin on nude mice was established. The miRNA expression between normal human, normal mouse, and mouse HS skin tissues was compared. Circulating miRNA expression levels in the serum of normal mice and mice with HSs were also analyzed. Ten upregulated and twenty-one downregulated miRNAs were detected. Among these, miR-365a/b-3p and miR-16-5p were identified as candidate miRNAs with statistically significant differences; miR-365a/b-3p was significantly upregulated (p = 0.0244). In mouse studies, miR-365a/b-3p expression levels in skin tissue and serum were higher in mice with HSs than in the control group. These results indicate that miRNAs contribute to hypertrophic scarring and that miR-365a/b-3p may be considered a potential biomarker for HS formation.
Collapse
Affiliation(s)
- Joon Seok Lee
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Gyeong Hwa Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jong Ho Lee
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Jeong Yeop Ryu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Suin Kwak
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- Correspondence: (K.H.); (H.Y.C.); Tel.: +82-53-420-4821 (K.H.); +82-53-420-5692 (H.Y.C.); Fax: +82-53-422-1466 (K.H.); +82-53-425-3879 (H.Y.C.)
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- Kyungpook National University Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (K.H.); (H.Y.C.); Tel.: +82-53-420-4821 (K.H.); +82-53-420-5692 (H.Y.C.); Fax: +82-53-422-1466 (K.H.); +82-53-425-3879 (H.Y.C.)
| |
Collapse
|
17
|
Menchaca AD, Style CC, Olutoye OO. A Review of Hypertrophic Scar and Keloid Treatment and Prevention in the Pediatric Population: Where Are We Now? Adv Wound Care (New Rochelle) 2022; 11:255-279. [PMID: 34030473 DOI: 10.1089/wound.2021.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Significance: This body of work gives a concise and comprehensive overview for the clinician and scientist on the latest treatment modalities for hypertrophic scars (HTS) and keloids in the pediatric population, as well as the most promising methods of prevention currently being investigated. This review will serve as a guide to the clinician for treatment selection and as an efficient tool for the scientist to achieve a comprehensive overview of the scientific literature to guide their future experiments aimed at pathologic scar prevention. Recent Advances: Current studies in the literature suggest carbon dioxide (CO2) laser and E-light (bipolar radiofrequency, intense pulsed light, and cooling) are two of the most effective treatment modalities for HTS, while surgical excision+CO2 laser+triamcinolone injection was one of the most successful treatments for keloids. In animal models, drug impregnated electrospun nanofiber dressings offer encouraging results for HTS prevention, while Kelulut honey showed promising results for keloid prevention. Critical Issues: Treatment outcome reproducibility is hindered by small cohorts of patients, inadequate-follow up, and variability in assessment tools. Prevention studies show multiple ways of achieving the same result, yet fall short of complete prevention. Furthermore, some studies that have purported full prevention have not been validated. Future Directions: To establish a standard of care, large clinical trials of the most successful modalities in small cohorts are needed. The key for prevention will be validation in animal models of the most successful methods, followed by translational and clinical studies.
Collapse
Affiliation(s)
- Alicia D. Menchaca
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
- Department of General Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Candace C. Style
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Oluyinka O. Olutoye
- Center for Regenerative Medicine, Department of Pediatric Surgery, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Li D, Niu G, Landén NX. Beyond the Code: Noncoding RNAs in Skin Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041230. [PMID: 35197246 PMCID: PMC9438779 DOI: 10.1101/cshperspect.a041230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An increasing number of noncoding RNAs (ncRNAs) have been found to regulate gene expression and protein functions, playing important roles in diverse biological processes and diseases. Their crucial functions have been reported in almost every cell type and all stages of skin wound healing. Evidence of their pathogenetic roles in common wound complications, such as chronic nonhealing wounds and excessive scarring, is also accumulating. Given their unique expression and functional properties, ncRNAs are promising therapeutic and diagnostic entities. In this review, we discuss current knowledge about the functional roles of noncoding elements, such as microRNAs, long ncRNAs, and circular RNAs, in skin wound healing, focusing on in vivo evidence from studies of human wound samples and animal wound models. Finally, we provide a perspective on the outlook of ncRNA-based therapeutics in wound care.
Collapse
Affiliation(s)
- Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
19
|
Otsuka T, Kan HM, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Yuan R, Dai X, Li Y, Li C, Liu L. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling. Mol Med Rep 2021; 24:758. [PMID: 34476508 PMCID: PMC8436211 DOI: 10.3892/mmr.2021.12398] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Pathological scars mainly refer to hypertrophic scars and keloids, and have a high incidence. Moreover, these scars seriously affect the patient's appearance and are associated with significant pain. The present study aimed to investigate the inhibitory effect of microRNA (miR)-29a from human adipose-derived mesenchymal stem cells (hADSCs) exosomes on scar formation. Firstly, the expression of miR-29a in thermal skin tissues of mice and human hypertrophic scar fibroblasts (HSFBs) was detected via reverse transcription-quantitative PCR. Exosomes derived from miR-29a-modified hADSCs were extracted and the influence of miR-29a-modified hADSCs-exo on the proliferation and function of HSFBs was determined. Lastly, the effect of miR-29a-modified hADSCs-exo on scar formation was determined using a thermal mouse model. The results demonstrated that miR-29a was downregulated in scar tissues after scalding and in HSFBs. After treating HSFBs with miR-29a-modified hADSC exosomes, miR-29a-overexpressing hADSC exosomes inhibited the proliferation and migration of HSFBs. Moreover, it was found that TGF-β2 was the target of miR-29a, and that hADSC exosome-derived miR-29a inhibited the fibrosis of HSFBs and scar hyperplasia after scalding in mice by targeting the TGF-β2/Smad3 signaling pathway. In summary, the current data indicated that miR-29a-modified hADSC exosome therapy can decrease scar formation by inhibiting the TGF-β2/Smad3 signaling pathway via its derived exogenous miR-29a, and this may be useful for the future treatment of pathological scars by providing a potential molecular basis.
Collapse
Affiliation(s)
- Ruihong Yuan
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiaoming Dai
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yisong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chunshan Li
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liu Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
21
|
Zhou LY, Lin SN, Rieder F, Chen MH, Zhang SH, Mao R. Noncoding RNAs as Promising Diagnostic Biomarkers and Therapeutic Targets in Intestinal Fibrosis of Crohn's Disease: The Path From Bench to Bedside. Inflamm Bowel Dis 2021; 27:971-982. [PMID: 33324986 PMCID: PMC8344842 DOI: 10.1093/ibd/izaa321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Fibrosis is a major pathway to organ injury and failure, accounting for more than one-third of deaths worldwide. Intestinal fibrosis causes irreversible and serious clinical complications, such as strictures and obstruction, secondary to a complex pathogenesis. Under the stimulation of profibrotic soluble factors, excessive activation of mesenchymal cells causes extracellular matrix deposition via canonical transforming growth factor-β/Smads signaling or other pathways (eg, epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition) in intestinal fibrogenesis. In recent studies, the importance of noncoding RNAs (ncRNAs) stands out in fibrotic diseases in that ncRNAs exhibit a remarkable variety of biological functions in modulating the aforementioned fibrogenic responses. In this review, we summarize the role of ncRNAs, including the emerging long ncRNAs and circular RNAs, in intestinal fibrogenesis. Notably, the translational potential of ncRNAs as diagnostic biomarkers and therapeutic targets in the management of intestinal fibrosis is discussed based on clinical trials from fibrotic diseases in other organs. The main points of this review include the following: • Characteristics of ncRNAs and mechanisms of intestinal fibrogenesis • Wide participation of ncRNAs (especially the emerging long ncRNAs and circular RNAs) in intestinal fibrosis, including transforming growth factor-β signaling, epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition, and extracellular matrix remodeling • Translational potential of ncRNAs in the diagnosis and treatment of intestinal fibrosis based on clinical trials from fibrotic diseases in other organs.
Collapse
Affiliation(s)
- Long-Yuan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Si-Nan Lin
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Min-Hu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Sheng-Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Austin E, Koo E, Merleev A, Torre D, Marusina A, Luxardi G, Mamalis A, Isseroff RR, Ma'ayan A, Maverakis E, Jagdeo J. Transcriptome analysis of human dermal fibroblasts following red light phototherapy. Sci Rep 2021; 11:7315. [PMID: 33795767 PMCID: PMC8017006 DOI: 10.1038/s41598-021-86623-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Fibrosis occurs when collagen deposition and fibroblast proliferation replace healthy tissue. Red light (RL) may improve skin fibrosis via photobiomodulation, the process by which photosensitive chromophores in cells absorb visible or near-infrared light and undergo photophysical reactions. Our previous research demonstrated that high fluence RL reduces fibroblast proliferation, collagen deposition, and migration. Despite the identification of several cellular mechanisms underpinning RL phototherapy, little is known about the transcriptional changes that lead to anti-fibrotic cellular responses. Herein, RNA sequencing was performed on human dermal fibroblasts treated with RL phototherapy. Pathway enrichment and transcription factor analysis revealed regulation of extracellular matrices, proliferation, and cellular responses to oxygen-containing compounds following RL phototherapy. Specifically, RL phototherapy increased the expression of MMP1, which codes for matrix metalloproteinase-1 (MMP-1) and is responsible for remodeling extracellular collagen. Differential regulation of MMP1 was confirmed with RT-qPCR and ELISA. Additionally, RL upregulated PRSS35, which has not been previously associated with skin activity, but has known anti-fibrotic functions. Our results suggest that RL may benefit patients by altering fibrotic gene expression.
Collapse
Affiliation(s)
- Evan Austin
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA.,Department of Dermatology, SUNY Downstate, Brooklyn, NY, USA
| | - Eugene Koo
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Alexander Merleev
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Denis Torre
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai Health, New York, NY, USA
| | - Alina Marusina
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Guillaume Luxardi
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Andrew Mamalis
- Department of Dermatology, SUNY Downstate, Brooklyn, NY, USA
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA.,Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai Health, New York, NY, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA
| | - Jared Jagdeo
- Department of Dermatology, University of California at Davis, Sacramento, CA, USA. .,Department of Dermatology, SUNY Downstate, Brooklyn, NY, USA. .,Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA.
| |
Collapse
|
23
|
Shi W, Wu Y, Bian D. p75NTR silencing inhibits proliferation, migration, and extracellular matrix deposition of hypertrophic scar fibroblasts by activating autophagy through inhibiting the PI3K/Akt/mTOR pathway. Can J Physiol Pharmacol 2021; 99:349-359. [PMID: 32726570 DOI: 10.1139/cjpp-2020-0219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypertrophic scar (HS) results from abnormal wound healing, accompanied by excessive hypercellularity, migration, and extracellular matrix (ECM) deposition. Autophagy dysregulation plays crucial roles during HS formation. The overexpressed p75 neurotrophin receptor (p75NTR) in injured skin tissue after wound healing becomes a factor aggravating scar. This study was designed to investigate the role of p75NTR and p75NTR-mediated autophagy in the process of HS. The results revealed that p75NTR expression was significantly upregulated while that of autophagy proteins was downregulated in cicatrix at 3 and 6 months after a burn, which was recovered at 12 months. p75NTR silencing inhibited proliferation, migration, and ECM deposition of hypertrophic scar fibroblasts (HSF), whereas p75NTR overexpression presented the opposite results. Silencing of p75NTR reduced the expression of PI3K/Akt/mTOR signaling molecules while enhancing that of autophagy proteins. Importantly, PI3K agonist (IGF-1) intervention notably decreased the levels of LC3B II/I and Beclin-1 and restored the inhibitory effects of p75NTR silencing on proliferation, migration, and ECM deposition of HSF. Concurrently, autophagy inhibitor 3-methyladenine (3-MA) treatment exhibited the same variation trends with IGF-1. Taken together, these findings demonstrated that p75NTR silencing inhibits proliferation, migration, and ECM deposition of HSF by activating autophagy by inhibiting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Wen Shi
- Department of Burns and Plastic Surgery and Department of Wound Repair, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, 250013, China
| | - Yan Wu
- Medical Image Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, 250013, China
| | - Donghui Bian
- Department of Burns and Plastic Surgery, The 960th Hospital of People's Liberation Army, Jinan City, Shandong Province, 250031, China
| |
Collapse
|
24
|
Hamra NF, Putra A, Tjipta A, Amalina ND, Nasihun T. Hypoxia Mesenchymal Stem Cells Accelerate Wound Closure Improvement by Controlling α-smooth Muscle actin Expression in the Full-thickness Animal Model. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND: The active myofibroblast producing extracellular matrix deposition regarding wound closure is characterized by alpha-smooth muscle actin (α-SMA) expression. However, the persistence of α-SMA expression due to prolonged inflammation may trigger scar formation. A new strategy to control α-SMA expression in line with wound closure improvement uses hypoxic mesenchymal stem cells (HMSCs) due to their ability to firmly control inflammation for early initiating cell proliferation, including the regulation of α-SMA expression associated with wound closure acceleration.
AIM: This study aimed to explore the role of HMSCs in accelerating the optimum wound closure percentages through controlling the α-SMA expression.
MATERIALS AND METHODS: Twenty-four full-thickness rats wound model were randomly divided into four groups: Sham (Sh), Control (C) by NaCl administration only, and two treatment groups by HMSCs at doses of 1.5×106 cells (T1) and HMSCs at doses of 3×106 cells (T2). HMSCs were incubated under hypoxic conditions. The α-SMA expression was analyzed under immunohistochemistry staining assay, and the wound closure percentage was analyzed by ImageJ software.
RESULTS: This study showed a significant increase in wound closure percentage in all treatment groups that gradually initiated on days 6 and 9 (p < 0.05). In line with the increase of wound closure percentages on day 9, there was also a significant decrease in α-SMA expression in all treatment groups (p < 0.05), indicating the optimum wound healing has preceded.
CONCLUSION: HMSCs have a robust ability to accelerated wound closure improvement to the optimum wound healing by controlling α-SMA expression depending on wound healing phases.
Collapse
|
25
|
Role of microRNAs in Pressure Ulcer Immune Response, Pathogenesis, and Treatment. Int J Mol Sci 2020; 22:ijms22010064. [PMID: 33374656 PMCID: PMC7793489 DOI: 10.3390/ijms22010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Pressure ulcers are preventable, yet highly prevalent, chronic wounds that have significant patient morbidity and high healthcare costs. Like other chronic wounds, they are characterized by impaired wound healing due to dysregulated immune processes. This review will highlight key biochemical pathways in the pathogenesis of pressure injury and how this signaling leads to impaired wound healing. This review is the first to comprehensively describe the current literature on microRNA (miRNA, miR) regulation of pressure ulcer pathophysiology.
Collapse
|
26
|
Zhou L, Liu Z, Chen S, Qiu J, Li Q, Wang S, Zhou W, Chen D, Yang G, Guo L. Transcription factor EB‑mediated autophagy promotes dermal fibroblast differentiation and collagen production by regulating endoplasmic reticulum stress and autophagy‑dependent secretion. Int J Mol Med 2020; 47:547-560. [PMID: 33416091 PMCID: PMC7797452 DOI: 10.3892/ijmm.2020.4814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
Autophagy is reported to be involved in the formation of skin hypertrophic scar (HTS). However, the role of autophagy in the process of fibrosis remains unclear, therefore an improved understanding of the molecular mechanisms associated with autophagy may accelerate the development of effective therapeutic strategies against HTS. The present study evaluated the roles of autophagy mediated by transcription factor EB (TFEB), a pivotal regulator of lysosome biogenesis and autophagy, in transforming growth factor-β1 (TGF-β1)-induced fibroblast differentiation and collagen production. Fibroblasts were treated with TGF-β1, TGF-β1 + tauroursodeoxycholic acid (TUDCA) or TGF-β1 + TFEB-small interfering RNA (siRNA). TGF-β1 induced phenotypic transformation of fibro-blasts, as well as collagen synthesis and secretion in fibroblasts in a dose-dependent manner. Western blotting and immuno-fluorescence analyses demonstrated that TGF-β1 upregulated the expression of autophagy-related proteins through the endoplasmic reticulum (ER) stress pathway, whereas TUDCA reversed TGF-β1-induced changes. Reverse transcription-quantitative PCR (RT-qPCR), western blotting and RFP-GFP-LC3 double fluorescence analyses demonstrated that knockdown of TFEB by TFEB-siRNA decreased autophagic flux, upregulated the expression of proteins involved in the apoptotic pathway, such as phosphorylated-α subunit of eukaryotic initiation factor 2, C/EBP homologous protein and cysteinyl aspartate specific proteinase 3, and also downregulated the expression of α-smooth muscle actin and collagen I (COL I) in fibroblasts. Immunofluorescence confocal analyses and enzyme-linked immunosorbent assay indicated that TGF-β1 increased the colocalization of COL I with lysosomal-associated membrane protein 1 and Ras-related protein Rab-8A, a marker of secretory vesicles, in fibroblasts, as well as the secretion of pro-COL Iα1 in culture supernatants. Meanwhile, these effects were abolished by TFEB knockdown. The present results suggested that autophagy reduced ER stress, decreased cell apoptosis and maintained fibroblast activation not only through degradation of misfolded or unfolded proteins, but also through promotion of COL I release from the autolysosome to the extracellular environment.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zeming Liu
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Sichao Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Qiu
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Qianqian Li
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shipei Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Guang Yang
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
27
|
Yin JL, Wu Y, Yuan ZW, Gao XH, Chen HD. Advances in scarless foetal wound healing and prospects for scar reduction in adults. Cell Prolif 2020; 53:e12916. [PMID: 33058377 PMCID: PMC7653265 DOI: 10.1111/cpr.12916] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
Healing after mammalian skin injury involves the interaction between numerous cellular constituents and regulatory factors, which together form three overlapping phases: an inflammatory response, a proliferation phase and a remodelling phase. Any slight variation in these three stages can substantially alter the healing process and resultant production of scars. Of particular significance are the mechanisms responsible for the scar‐free phenomenon observed in the foetus. Uncovering such mechanisms would offer great expectations in the treatment of scars and therefore represents an important area of investigation. In this review, we provide a comprehensive summary of studies on injury‐induced skin regeneration within the foetus. The information contained in these studies provides an opportunity for new insights into the treatment of clinical scars based on the cellular and molecular processes involved.
Collapse
Affiliation(s)
- Jia-Li Yin
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Wu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zheng-Wei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xing-Hua Gao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong-Duo Chen
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning, China.,National and Local Joint Engineering Research Center of Immunodermatological Theranostics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
28
|
Zeng J, Jiang B, Xiao X, Zhang R. Inhibition of sphingosine kinase 2 attenuates hypertrophic scar formation via upregulation of Smad7 in human hypertrophic scar fibroblasts. Mol Med Rep 2020; 22:2573-2582. [PMID: 32705254 PMCID: PMC7411334 DOI: 10.3892/mmr.2020.11313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
The aims of the present study were to investigate the role of sphingosine kinase 2 (Sphk2) in hypertrophic scar (HS) formation and its underlying mechanisms. The expression levels of Sphk2 and Smad7 in HS tissues and healthy skin tissues of patients undergoing plastic surgery were determined using immunohistochemical staining. Subsequently, the expression levels of Sphk2 and collagen I in human embryonic skin fibroblasts (control) and human HS fibroblasts (HSF) were detected using western blot analysis and immunofluorescence assay, respectively. Following Sphk2 silencing, Smad7 overexpression or both Sphk2 and Smad7 silencing, HSF proliferative ability was assessed using Cell Counting Kit‑8 assay and proliferation‑associated proteins were evaluated using western blot analysis. In addition, the level of apoptosis in HSF was assessed using flow cytometry and expression levels of apoptotic‑associated proteins were determined using western blotting. Furthermore, the expression levels of collagen I and proteins in the TGF‑β1/Smad signaling pathway were detected using western blot analysis. The results indicated that the expression of Sphk2 was significantly increased, while Smad7 expression was decreased in HS tissue. Moreover, the upregulation of Sphk2 and collagen I expression levels was identified in HSF. The present results also indicated that Sphk2 silencing or Smad7 overexpression inhibited proliferation, but promoted apoptosis of HSF, coupled with changes in the expression levels of proliferation‑associated proteins, with an increase in p21 and a decrease in cyclin D1 expression levels, and apoptosis‑associated proteins, with an increase in Bax and cleaved caspase‑3, and a decrease in Bcl‑2, which were reversed following transfection with both Sphk2 and Smad7 using small interfering RNA in HSF. In addition, the expression levels of transforming growth factor‑β1, phosphorylated (p)‑Smad2, p‑Smad3 and collagen I were reduced following Sphk2 silencing or Smad7 overexpression, which were abolished by silencing both Sphk2 and Smad7. Collectively, the present results indicated that inhibition of Sphk2 attenuated HS formation via upregulation of Smad7 expression, thus Sphk2 may serve as a potential therapeutic target for the treatment of HS.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Medical Cosmetology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Bin Jiang
- Department of Medical Cosmetology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xia Xiao
- Department of Medical Cosmetology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Rou Zhang
- Department of Medical Cosmetology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
29
|
Wang H, Guo B, Hui Q, Lin F, Tao K. CO 2 lattice laser reverses skin aging caused by UVB. Aging (Albany NY) 2020; 12:7056-7065. [PMID: 32312940 PMCID: PMC7202480 DOI: 10.18632/aging.103063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
The carbon dioxide (CO2) lattice laser has been successfully used to treat facial skin photoaging induced by UV light. In this study, we analyzed the effect of CO2 lattice laser irradiation on skin photoaging, and investigated the underlying mechanisms. Our results demonstrate that the laser promoted collagen synthesis and proliferation of primary human skin fibroblasts, inhibited cell senescence, and induced expression of superoxide dismutase (SOD) and the signaling protein SMAD3. In addition, this laser reversed cell cycle arrest and fibroblast apoptosis induced by UVB irradiation, and restored fibroblast proliferation inhibited by SMAD3 silencing. Using a rat model of photoaging, our results show that the laser increased collagen expression and dermal thickness, demonstrating that the CO2 lattice laser has a profound therapeutic effect on photoaged skin. Together, our in vitro and in vivo data show that the CO2 lattice laser can reverse the skin aging caused by UVB, and indicate that this effect is mediated through SMAD3.
Collapse
Affiliation(s)
- Hongyi Wang
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Bingyu Guo
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Qiang Hui
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Feng Lin
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| | - Kai Tao
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R.China
| |
Collapse
|
30
|
Targeted apoptosis of myofibroblasts by elesclomol inhibits hypertrophic scar formation. EBioMedicine 2020; 54:102715. [PMID: 32251998 PMCID: PMC7132150 DOI: 10.1016/j.ebiom.2020.102715] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/21/2022] Open
Abstract
Background Hypertrophic scar (HS) is characterized by the increased proliferation and decreased apoptosis of myofibroblasts. Myofibroblasts, the main effector cells for dermal fibrosis, develop from normal fibroblasts. Thus, the stimulation of myofibroblast apoptosis is a possible treatment for HS. We aimed to explore that whether over-activated myofibroblasts can be targeted for apoptosis by anticancer drug elesclomol. Methods 4′,6-diamidino-2-phenylindole staining, flow cytometry, western blotting, collagen gel contraction and immunofluorescence assays were applied to demonstrate the proapoptotic effect of elesclomol in scar derived myofibroblasts and TGF-β1 induced myofibroblasts. The therapeutic potential of elesclomol was investigated by establishing rabbit ear hypertrophic scar models. Findings Both 4′,6-diamidino-2-phenylindole staining and flow cytometry indicated that elesclomol targets myofibroblasts in vitro. Collagen gel contraction assay showed that elesclomol inhibited myofibroblast contractility. Flow cytometry and western blot analysis revealed that elesclomol resulted in excessive intracellular levels of reactive oxygen species(ROS), and caspase-3 and cytochrome c proteins. Moreover, compared with the control group, the elesclomol group had a significantly lower scar elevation index in vivo. Immunofluorescence assays for TUNEL and α-smooth muscle actin indicated that elesclomol treatment increased the number of apoptotic myofibroblasts. Interpretation The above results indicate that elesclomol exerted a significant inhibitory effect on HS formation via targeted myofibroblast apoptosis associated with increased oxidative stress. Thus, elesclomol is a promising candidate drug for the treatment of myofibroblast-related diseases such as HS.
Collapse
|
31
|
Ly TD, Riedel L, Fischer B, Schmidt V, Hendig D, Distler J, Kuhn J, Knabbe C, Faust I. microRNA-145 mediates xylosyltransferase-I induction in myofibroblasts via suppression of transcription factor KLF4. Biochem Biophys Res Commun 2020; 523:1001-1006. [PMID: 31973816 DOI: 10.1016/j.bbrc.2019.12.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Remodelling of the extracellular matrix by myofibroblasts is crucial for wound repair, but if deregulated, it might contribute to the development of fibrosis. Fibroblast-to-myofibroblast differentiation is promoted by aberrant microRNA-145-5p (miR-145) expression in response to transforming growth factor β1 (TGFβ1). One of several myofibroblast markers is human xylosyltransferase-I (XT-I), which is the initial and rate-limiting enzyme of proteoglycan biosynthesis. Increased serum XT activity was quantified in patients with systemic sclerosis (SSc), but the underlying cellular mechanism of this disease remains unknown. This study aims to determine the underlying molecular basis of XT-I induction by considering the miR-mediated regulation of XT-I. We found that miR-145 is upregulated in TGFβ1-treated dermal fibroblasts and correlates with an increased cellular XYLT1 expression and XT activity. Overexpression of miR-145 in dermal fibroblasts induced XYLT1 expression and XT activity and enhanced TGFβ1-promoted XT activity increase. Since direct XYLT1 3'-UTR targeting by miR-145 could be experimentally excluded, an indirect effect of miR-145 on XT-I regulation was indicated. We identified six transcription factor-binding sites for Krueppel-like factor 4 (KLF4), a zinc-finger transcription regulator and putative miR-145 target, in the XYLT1 promoter in silico. A suppressive role of KLF4 on XYLT1 expression was confirmed by targeted gene silencing in dermal fibroblasts and the quantification of KLF4 expression in SSc fibroblasts. Taken together, this study improves the mechanistic understanding of fibrotic remodelling in SSc by identifying a hitherto unknown miR-145/KLF4 pathway mediating the fibrogenic XT-I induction. This knowledge on XYLT1 may lead to the development of novel approaches in the therapy of fibrosis.
Collapse
Affiliation(s)
- Thanh-Diep Ly
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Lara Riedel
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Vanessa Schmidt
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Jörg Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
32
|
The Microrna-143/145 Cluster in Tumors: A Matter of Where and When. Cancers (Basel) 2020; 12:cancers12030708. [PMID: 32192092 PMCID: PMC7140083 DOI: 10.3390/cancers12030708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/06/2023] Open
Abstract
The establishment and spreading of cancer involve the acquirement of many biological functions including resistance to apoptosis, enhanced proliferation and the ability to invade the surrounding tissue, extravasate from the primary site, survive in circulating blood, and finally extravasate and colonize distant organs giving origin to metastatic lesions, the major cause of cancer deaths. Dramatic changes in the expression of protein coding genes due to altered transcription factors activity or to epigenetic modifications orchestrate these events, intertwining with a microRNA regulatory network that is often disrupted in cancer cells. microRNAs-143 and -145 represent puzzling players of this game, with apparently contradictory functions. They were at first classified as tumor suppressive due to their frequently reduced levels in tumors, correlating with cell survival, proliferation, and migration. More recently, pro-oncogenic roles of these microRNAs have been described, challenging their simplistic definition as merely tumor-suppressive. Here we review their known activities in tumors, whether oncogenic or onco-suppressive, and highlight how their expression and functions are strongly dependent on their complex regulation downstream and upstream of cytokines and growth factors, on the cell type of expression and on the specific tumor stage.
Collapse
|
33
|
Liu P, Hu Y, Xia L, Du M, Hu Z. miR-4417 suppresses keloid fibrosis growth by inhibiting CyclinD1. J Biosci 2020. [DOI: 10.1007/s12038-020-0018-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Liu P, Hu Y, Xia L, DU M, Hu Z. miR-4417 suppresses keloid fibrosis growth by inhibiting CyclinD1. J Biosci 2020; 45:47. [PMID: 32345773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mounting evidence has reported that microRNAs (miRNAs) play irreplaceable roles in the development of keloid fibrosis. miR-4417 has been reported to contribute to nickel chloride-promoted lung epithelial cell fibrogenesis and tumorigenesis. However, whether miR-4417 is involved in keloid fibrogenesis as well as its underlying mechanisms remain largely elusive. In this study, the expression levels of miR-4417 and CyclinD1 in keloid tissues and fibroblasts were examined by qRT-PCR. Cell proliferation was determined by CCK assay. Western blot and flow cytometry were performed to evaluate cell apoptosis. Cell migration and invasion were measured by Transwell assay. Luciferase reporter assay was used to confirm the relationship between miR4417 and CyclinD1. As a result, we found that miR-4417 was significantly down-regulated in keloid tissues and fibroblasts. miR-4417 up-regulation led to the suppression of proliferation, migration, and invasion, while induced cell apoptosis in keloid fibroblasts. However, miR-4417 depletion exerted an opposite effect. CyclinD1 harbored the binding sites with miR-4417. Besides, the expression of CyclinD1 was evidently decreased in keloid tissues and fibroblasts. Meanwhile, miR-4417 was negatively correlated with CyclinD1 in keloid tissue. The effect of CyclinD1 knockdown on keloid fibroblasts was similar to that of miR-4417 overexpression. Furthermore, the elevated of CyclinD1 expression rescued the effect of miR-4417 up-regulation on keloid fibroblasts. miR-4417/CyclinD1 axis was required for cell proliferation, apoptosis, migration, and invasion in keloid fibroblasts. In conclusion, miR-4417 and CyclinD1 may be potential therapeutic targets for the treatment of keloid.
Collapse
Affiliation(s)
- Pei Liu
- Department of Plastic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
35
|
Chen L, Li Q, Lu X, Dong X, Li J. Overexpression of miR-340-5p Inhibits Skin Fibroblast Proliferation by Targeting Kruppel-like Factor 2. Curr Pharm Biotechnol 2019; 20:1147-1154. [PMID: 31345144 DOI: 10.2174/1389201020666190725112304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/25/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
<P>Objective: MicroRNA (miR)-340-5p has been identified to play a key role in several cancers.
However, the function of miR-340-5p in skin fibroblasts remains largely unknown.
</P><P>
Methods: Gain of function experiments were performed by infecting normal skin fibroblast cells with
a lentivirus carrying 22-bp miR-340-5p. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8)
assay. To uncover the mechanisms, mRNA-seq was used. Differentially expressed mRNAs were further
determined by Gene Ontology and KEGG pathway analyses. The protein levels were analysed by
Western blotting. A dual-luciferase reporter assay was used to detect the direct binding of miR-340-5p
with the 3'UTR of Kruppel-like factor 2 (KLF2).
</P><P>
Results: MiR-340-5p lentivirus infection suppressed normal skin fibroblast proliferation. The mRNAseq
data revealed that 41 mRNAs were differentially expressed, including 22 upregulated and 19
downregulated transcripts in the miR-340-5p overexpression group compared with those in the control
group. Gene Ontology and KEGG pathway analyses revealed that miR-340-5p overexpression correlated
with the macromolecule biosynthetic process, cellular macromolecule biosynthetic process,
membrane, and MAPK signalling pathway. Bioinformatics analysis and luciferase reporter assays
showed that miR-340-5p binds to the 3'UTR of KLF2. Forced expression of miR-340-5p decreased the
expression of KLF2 in normal skin fibroblasts. Overexpression of KLF2 restored skin fibroblast proliferation
in the miR-340-5p overexpression group.
</P><P>
Conclusion: This study demonstrates that miR-340-5p may suppress skin fibroblast proliferation, possibly
through targeting KLF2. These findings could help us understand the function of miR-340-5p in
skin fibroblasts. miR-340-5p could be a therapeutic target for preventing scarring.</P>
Collapse
Affiliation(s)
- Ling Chen
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Qian Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Xun Lu
- Milken School of Public Health, George Washington University, Washington DC, 20052, United States
| | - Xiaohua Dong
- Department of Pediatric, Jingjiang People's Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
36
|
Condorelli AG, Logli E, Cianfarani F, Teson M, Diociaiuti A, El Hachem M, Zambruno G, Castiglia D, Odorisio T. MicroRNA-145-5p regulates fibrotic features of recessive dystrophic epidermolysis bullosa skin fibroblasts. Br J Dermatol 2019; 181:1017-1027. [PMID: 30816994 DOI: 10.1111/bjd.17840] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a skin fragility disorder caused by mutations in the COL7A1 gene encoding type VII collagen, a cutaneous basement membrane component essential for epidermal-dermal adhesion. Hallmarks of the disease are unremitting blistering and chronic wounds with severe inflammation and fibrosis. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression also implicated in fibrotic processes. However, the role of miRNAs in RDEB fibrosis is almost unexplored. OBJECTIVES Our study aimed to identify miRNAs deregulated in primary RDEB skin fibroblasts (RDEBFs) and to characterize their function in RDEB fibrosis. METHODS Real-time quantitative polymerase chain reaction (qRT-PCR) was used to screen RDEBFs for expression levels of a group of miRNAs deregulated in hypertrophic scars and keloids, pathological conditions with abnormal wound healing and fibrosis. Contractility, proliferation and migration rate were evaluated by different in vitro assays in RDEBFs transfected with a miR-145-5p inhibitor. Expression levels of fibrotic markers and miR-145-5p targets were measured using qRT-PCR and western blot. RESULTS The miR-143/145 cluster was upregulated in RDEBFs compared with fibroblasts from healthy subjects. RDEBFs transfected with a miR-145-5p inhibitor showed attenuated fibrotic traits of contraction, proliferation and migration, accompanied by reduced expression of the contractile proteins α-smooth muscle actin and transgelin. These effects were associated with upregulation of Krüppel-like factor 4 transcriptional repressor and downregulation of Jagged1, a known inducer of fibrosis. CONCLUSIONS Our results highlight the profibrotic role of miR-145-5p and its regulatory networks in RDEB, shedding light on novel disease pathomechanisms and targets for future therapeutic approaches. What's already known about this topic? Recessive dystrophic epidermolysis bullosa (RDEB) is a highly disabling genetic skin disease caused by mutations in the collagen VII gene and characterized by unremitting blistering and defective wound healing, leading to inflammation and fibrosis. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in health and disease, and their deregulation has been implicated in fibrotic skin conditions. To date, only miR-29 has been associated with injury-driven fibrosis in RDEB. What does this study add? In patients with RDEB, miR-145-5p is overexpressed in RDEB skin fibroblasts (RDEBFs), where it plays a profibrotic role, as its inhibition reduces RDEBF fibrotic traits (contraction, proliferation and migration). miR-145-5p inhibition in RDEBFs determines the reduction of contractile markers α-smooth muscle actin and transgelin through upregulation of Krüppel-like factor 4, a transcriptional repressor of contractile proteins, and downregulation of Jagged1 (JAG1), an inducer of fibrosis. What is the translational message? Our findings expand the knowledge on miRNA-driven pathomechanisms implicated in RDEB fibrosis. miR-145-5p and its targets (e.g. JAG1) could represent relevant molecules for the development of novel therapeutic strategies to counteract fibrosis progression in patients with RDEB.
Collapse
Affiliation(s)
- A G Condorelli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - E Logli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - F Cianfarani
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | - M Teson
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | - A Diociaiuti
- Dermatology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - M El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - G Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - D Castiglia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | - T Odorisio
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| |
Collapse
|
37
|
Park KS, Bandeira E, Shelke GV, Lässer C, Lötvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10:288. [PMID: 31547882 PMCID: PMC6757418 DOI: 10.1186/s13287-019-1398-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have been identified as essential signaling mediators under both physiological and pathological conditions, and they appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues, including EVs from other cells, has been shown to influence the contents and biological activities of subsequent MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions and suggestions for knowledge gaps to be filled.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Elga Bandeira
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh V Shelke
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
38
|
Yang L, Li X, Zhang S, Song J, Zhu T. Baicalein inhibits proliferation and collagen synthesis of mice fibroblast cell line NIH/3T3 by regulation of miR-9/insulin-like growth factor-1 axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3202-3211. [PMID: 31362535 DOI: 10.1080/21691401.2019.1645150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Li Yang
- Department of Dermatology, Henan Provincial People’s Hospital, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueli Li
- Department of Dermatology, Henan Provincial People’s Hospital, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shoumin Zhang
- Department of Dermatology, Henan Provincial People’s Hospital, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinghui Song
- Department of Dermatology, Henan Provincial People’s Hospital, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
39
|
Melling GE, Flannery SE, Abidin SA, Clemmens H, Prajapati P, Hinsley EE, Hunt S, Catto JWF, Coletta RD, Mellone M, Thomas GJ, Parkinson EK, Prime SS, Paterson IC, Buttle DJ, Lambert DW. A miRNA-145/TGF-β1 negative feedback loop regulates the cancer-associated fibroblast phenotype. Carcinogenesis 2019; 39:798-807. [PMID: 29506142 DOI: 10.1093/carcin/bgy032] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
The dissemination of cancer cells to local and distant sites depends on a complex and poorly understood interplay between malignant cells and the cellular and non-cellular components surrounding them, collectively termed the tumour microenvironment. One of the most abundant cell types of the tumour microenvironment is the fibroblast, which becomes corrupted by locally derived cues such as TGF-β1 and acquires an altered, heterogeneous phenotype (cancer-associated fibroblasts, CAF) supportive of tumour cell invasion and metastasis. Efforts to develop new treatments targeting the tumour mesenchyme are hampered by a poor understanding of the mechanisms underlying the development of CAF. Here, we examine the contribution of microRNA to the development of experimentally-derived CAF and correlate this with changes observed in CAF derived from tumours. Exposure of primary normal human fibroblasts to TGF-β1 resulted in the acquisition of a myofibroblastic CAF-like phenotype. This was associated with increased expression of miR-145, a miRNA predicted in silico to target multiple components of the TGF-β signalling pathway. miR-145 was also overexpressed in CAF derived from oral cancers. Overexpression of miR-145 blocked TGF-β1-induced myofibroblastic differentiation and reverted CAF towards a normal fibroblast phenotype. We conclude that miR-145 is a key regulator of the CAF phenotype, acting in a negative feedback loop to dampen acquisition of myofibroblastic traits, a key feature of CAF associated with poor disease outcome.
Collapse
Affiliation(s)
| | - Sarah E Flannery
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | - Siti A Abidin
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | - Hannah Clemmens
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | | | - Emma E Hinsley
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | - Stuart Hunt
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | - James W F Catto
- Unit of Academic Urology, University of Sheffield, Sheffield, UK
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | - Massimiliano Mellone
- Faculty of Medicine Cancer Sciences Unit, Southampton University, Somers Building, Southampton, UK
| | - Gareth J Thomas
- Faculty of Medicine Cancer Sciences Unit, Southampton University, Somers Building, Southampton, UK
| | - E Ken Parkinson
- Centre for Clinical & Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stephen S Prime
- Centre for Clinical & Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - David J Buttle
- Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Daniel W Lambert
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| |
Collapse
|
40
|
Liu B, Guo Z, Gao W. miR-181b-5p promotes proliferation and inhibits apoptosis of hypertrophic scar fibroblasts through regulating the MEK/ERK/p21 pathway. Exp Ther Med 2019; 17:1537-1544. [PMID: 30783419 PMCID: PMC6364240 DOI: 10.3892/etm.2019.7159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic scar (HS) is a common skin disorder occurring during the wound healing process, and the pathogenesis of HS remains unclear. Previous studies indicated that miRNAs may be involved in the onset and progression of HS. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to investigate the expression of miR-181b-5p and decorin in HS tissues. Direct interaction between miR-181b-5p and decorin was confirmed using a dual-luciferase assay. Human HS fibroblasts (HSFbs) were cultured and transfected with miR-181b-5p mimics, and MTT assay and Annexin V fluorescein isothiocyanate/propidium iodide staining were performed to investigate the role of miR-181b-5p in the proliferation and apoptosis of HSFbs. Subsequently, the expression levels of mitogen-activated protein kinase kinase (MEK), phospho (p)-extracellular signal-regulated kinase (ERK) and p21 were determined in HSFbs transfected with miR-181b-5p mimics and untransfected cells using RT-qPCR and western blotting. The results indicated upregulation of miR-181b-5p and downregulation of decorin expression in HS tissues compared with normal skin samples. miR-181b-5p may regulate the expression of decorin through direct binding to the 3′-untranslated region, as demonstrated by the results of the dual-luciferase assay. Transfection with miR-181b-5p mimics in HSFbs enhanced cell proliferation, reduced apoptosis and increased the expression of MEK, p-ERK and p21. Furthermore, treatment with MEK inhibitor in HSFbs transfected with miR-181b-5p mimics partially inhibited miR-181b-5p-induced antiapoptotic effects. Taken together, increased expression of miR-181b-5p may serve important roles in the pathogenesis of HS through regulating the MEK/ERK/p21 pathway, suggesting that miR-181b-5p may be a therapeutic target for the treatment of HS.
Collapse
Affiliation(s)
- Bo Liu
- Department of Medical Cosmetology, Eastern Liaoning University, Dandong, Liaoning 118003, P.R. China
| | - Zhe Guo
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Weiming Gao
- Department of Medicine, Eastern Liaoning University, Dandong, Liaoning 118003, P.R. China
| |
Collapse
|
41
|
Figueiredo C, Carvalho Oliveira M, Chen-Wacker C, Jansson K, Höffler K, Yuzefovych Y, Pogozhykh O, Jin Z, Kühnel M, Jonigk D, Wiegmann B, Sommer W, Haverich A, Warnecke G, Blasczyk R. Immunoengineering of the Vascular Endothelium to Silence MHC Expression During Normothermic Ex Vivo Lung Perfusion. Hum Gene Ther 2018; 30:485-496. [PMID: 30261752 DOI: 10.1089/hum.2018.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Disparities at the major histocompatibility complex (MHC) antigens and associated minor antigens trigger harmful immune responses, leading to graft rejection after transplantation. We showed that MHC-silenced cells and tissues are efficiently protected against rejection. In complex vascularized organs, the endothelium is the major interface between donor and recipient. This study therefore aimed to reduce the immunogenicity of the lung by silencing MHC expression on the endothelium. In porcine lungs, short-hairpin RNAs targeting beta-2-microglobulin and class II-transactivator transcripts were delivered by lentiviral vectors during normothermic ex vivo perfusion to silence swine leukocyte antigen (SLA) I and II expression permanently. The results demonstrated the feasibility of genetically engineering all lung regions, achieving a targeted silencing effect for SLA I and II of 67% and 52%, respectively, without affecting cell viability or tissue integrity. This decrease in immunogenicity carries the potential to generate immunologically invisible organs to counteract the burden of rejection and immunosuppression.
Collapse
Affiliation(s)
- Constanca Figueiredo
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany
| | - Marco Carvalho Oliveira
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany
| | - Chen Chen-Wacker
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Katharina Jansson
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Klaus Höffler
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Yuliia Yuzefovych
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Olena Pogozhykh
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Zhu Jin
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Mark Kühnel
- 5 German Center for Lung Research , BREATH site, Hanover, Germany .,6 Institute for Pathology , Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- 5 German Center for Lung Research , BREATH site, Hanover, Germany .,6 Institute for Pathology , Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Wiebke Sommer
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Axel Haverich
- 2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany.,4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Gregor Warnecke
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Rainer Blasczyk
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany
| |
Collapse
|
42
|
Li M, Wang J, Liu D, Huang H. High‑throughput sequencing reveals differentially expressed lncRNAs and circRNAs, and their associated functional network, in human hypertrophic scars. Mol Med Rep 2018; 18:5669-5682. [PMID: 30320389 PMCID: PMC6236202 DOI: 10.3892/mmr.2018.9557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Growing evidence suggests that long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are involved in the occurrence and development of tumors and fibrotic diseases. However, the integrated analysis of lncRNA and circRNA expression, alongside associated co-expression and competing endogenous RNA (ceRNA) networks, has not yet been performed in human hypertrophic scars (HS). The present study compared the expression levels of lncRNAs, circRNAs and mRNAs in human HS and normal skin tissues by high-throughput RNA sequencing. Numerous differentially expressed lncRNAs, circRNAs and mRNAs were detected. Subsequently, five aberrantly expressed lncRNAs and mRNAs, and six circRNAs were measured to verify the RNA sequencing results by reverse transcription-quantitative polymerase chain reaction. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed for the dysregulated genes, in order to elucidate their principal functions. In addition, a coding-noncoding gene co-expression (CNC) network and ceRNA network were constructed for specific significantly altered genes. The CNC network analysis suggested that AC048380.1 and LINC00299 were associated with metastasis-related genes, including inhibin subunit βA (INHBA), SMAD family member 7 (SMAD7), collagen type I α1 chain (COL1A1), transforming growth factor β3 (TGFβ3) and MYC proto-oncogene, bHLH transcription factor (MYC). Inhibitor of DNA binding 2 was associated with the lncRNAs cancer susceptibility 11, TGFβ3-antisense RNA 1 (AS1), INHBA-AS1, AC048380.1, LINC00299 and LINC01969. Circ-Chr17:50187014_50195976_-, circ-Chr17:50189167_50194626_-, circ-Chr17:50189167_ 50198002_- and circ-Chr17:50189858_50195330_- were also associated with INHBA, SMAD7, COL1A1, TGFβ3 and MYC. COL1A1 and TGFβ3 were associated with circ-Chr9:125337017_125337591_+ and circ-Chr12:120782654_120784593_-. The ceRNA network indicated that INHBA-AS1 and circ-Chr9:125337017_125337591_+ were ceRNAs of microRNA-182-5p targeting potassium voltage-gated channel subfamily J member 6, ADAM metallopeptidase with thrombospondin type 1 motif 18, SRY-box 11, MAGE family member L2, matrix metallopeptidase 16, thrombospondin 2, phosphodiesterase 11A and collagen type V a1 chain. These findings suggested that lncRNAs and circRNAs may act as ceRNAs, which are implicated in the pathophysiology and development of human HS, and lay a foundation for further insight into the novel regulatory mechanism of lncRNAs and circRNAs in hypertrophic scarring.
Collapse
Affiliation(s)
- Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dewu Liu
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Heping Huang
- Department of Plastic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
43
|
miR-145 via targeting ERCC2 is involved in arsenite-induced DNA damage in human hepatic cells. Toxicol Lett 2018; 295:220-228. [DOI: 10.1016/j.toxlet.2018.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/06/2023]
|
44
|
Identification of chronological and photoageing-associated microRNAs in human skin. Sci Rep 2018; 8:12990. [PMID: 30154427 PMCID: PMC6113407 DOI: 10.1038/s41598-018-31217-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are short non-coding RNAs that play key roles in regulating biological processes. In this study, we explored effects of chronological and photoageing on the miRNome of human skin. To this end, biopsies were collected from sun-exposed (outer arm, n = 45) and sun-protected (inner arm, n = 45) skin from fair-skinned (phototype II/III) healthy female volunteers of three age groups: young, 18-25 years, middle age, 40-50 years and aged, > 70 years. Strict inclusion criteria were used for photoageing scoring and for chronological ageing. Microarray analysis revealed that chronological ageing had minor effect on the human skin miRNome. In contrast, photoageing had a robust impact on miRNAs, and a set of miRNAs differentially expressed between sun-protected and sun-exposed skin of the young and aged groups was identified. Upregulation of miR-383, miR-145 and miR-34a and downregulation of miR-6879, miR-3648 and miR-663b were confirmed using qRT-PCR in sun-exposed skin compared with sun-protected skin. qRT-PCR analysis revealed that miR-383, miR-34a and miR-134 were differentially expressed in all three age groups both in chronological and photoageing, suggesting a synergetic effect of intrinsic and extrinsic ageing on their expression. In conclusion, our study identifies a unique miRNA signature which may contribute to skin ageing.
Collapse
|
45
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
46
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
47
|
Zhang L, Qin H, Wu Z, Chen W, Zhang G. Identification of the potential targets for keloid and hypertrophic scar prevention. J DERMATOL TREAT 2018; 29:600-605. [PMID: 29271272 DOI: 10.1080/09546634.2017.1421309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuoxia Wu
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wanying Chen
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guang Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Inhibition of FKBP10 Attenuates Hypertrophic Scarring through Suppressing Fibroblast Activity and Extracellular Matrix Deposition. J Invest Dermatol 2017; 137:2326-2335. [DOI: 10.1016/j.jid.2017.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
49
|
Li Y, Zhang J, Zhang W, Liu Y, Li Y, Wang K, Zhang Y, Yang C, Li X, Shi J, Su L, Hu D. MicroRNA-192 regulates hypertrophic scar fibrosis by targeting SIP1. J Mol Histol 2017; 48:357-366. [PMID: 28884252 DOI: 10.1007/s10735-017-9734-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023]
Abstract
Hypertrophic scar (HS) is a fibro-proliferative disorder which is characterized by excessive deposition of collagen and accumulative activity of myofibroblasts. Increasing evidences have demonstrated miRNAs play a pivotal role in the pathogenesis of HS. MiR-192 is closely associated with renal fibrosis, but its effect on HS formation and skin fibrosis remains unknown. In the study, we presented that miR-192 was up-regulated in HS and HS derived fibroblasts (HSFs) compared to normal skin (NS) and NS derived fibroblasts (NSFs), accompanied by the reduction of smad interacting protein 1 (SIP1) expression and the increase of Col1, Col3 and α-SMA levels. Furthermore, we confirmed SIP1 was a direct target of miR-192 by using luciferase reporter assays. Meanwhile, the overexpression of miR-192 increased the levels of Col1, Col3 and α-SMA. The synthesis of collagen and more positive α-SMA staining were also observed in bleomycin-induced dermal fibrosis model of BALB/c mice treated with subcutaneous miR-192 mimics injection, whereas the inhibition of miR-192 decreased the expression of Col1, Col3 and α-SMA. Moreover, SIP1 siRNA could enhance the levels of Col1, Col3 and α-SMA, showing that the effect of knockdown SIP1 was similar to miR-192 mimics, and the phenomenon manifested miR-192 regulated HS fibrosis by targeting SIP1. Together, our results indicated that miR-192 was a critical factor of HS formation and facilitated skin fibrosis by targeting directly SIP1.
Collapse
Affiliation(s)
- Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Julei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Yuehua Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Yijie Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Chen Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 127 West Chang-le Road, Xi'an, 710032, China.
| |
Collapse
|
50
|
Dong S, Sun Y. MicroRNA-22 may promote apoptosis and inhibit the proliferation of hypertrophic scar fibroblasts by regulating the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase/p21 pathway. Exp Ther Med 2017; 14:3841-3845. [PMID: 29042989 DOI: 10.3892/etm.2017.4942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 06/05/2017] [Indexed: 12/19/2022] Open
Abstract
Hypertrophic scarring (HS) is a common skin disorder that occurs during the wound healing process, and the pathogenesis of HS remains unclear. Increasing evidence indicated that specific microRNAs (miRs) may be involved in the onset and progression of HS. In the present study, the association between miR-22 and HS was investigated. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to examine the expression of miR-22 in 30 HS and matched normal skin tissues. In addition, human hypertrophic scar fibroblasts (HSFBs) were cultured and transfected with miR-22 mimics, and MTT and Annexin V apoptosis assays were performed to investigate the role of miR-22 in the proliferation and apoptosis of the human HSFBs. Next, RT-qPCR and western blot assays were performed to compare the expression levels of mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase (ERK) and p21 in untransfected and miR-22 mimic-transfected skin fibroblasts. The results identified that miR-22 was significantly downregulated in HS tissues as compared with the normal skin. Furthermore, transfection with miR-22 mimics in human HSFBs led to inhibited cell proliferation, increased apoptosis, as well as to decreased MEK expression and ERK1/2 phosphorylation, and increased expression of p21. In conclusion, the present study was the first to prove that aberrant expression of miR-22 may serve an important role in the pathogenesis of HS by regulating the MEK/ERK/p21 pathway, thus suggesting that miR-22 has the potential to become a therapeutic target for the treatment of HS.
Collapse
Affiliation(s)
- Shihua Dong
- Department of Burn and Plastic Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Yanfeng Sun
- Department of Burn and Plastic Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001, P.R. China
| |
Collapse
|