1
|
Li Q, Vijaykumar K, Phillips SE, Hussain SS, Huynh NV, Fernandez-Petty CM, Lever JEP, Foote JB, Ren J, Campos-Gómez J, Daya FA, Hubbs NW, Kim H, Onuoha E, Boitet ER, Fu L, Leung HM, Yu L, Detchemendy TW, Schaefers LT, Tipper JL, Edwards LJ, Leal SM, Harrod KS, Tearney GJ, Rowe SM. Mucociliary transport deficiency and disease progression in Syrian hamsters with SARS-CoV-2 infection. JCI Insight 2023; 8:e163962. [PMID: 36625345 PMCID: PMC9870055 DOI: 10.1172/jci.insight.163962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/16/2022] [Indexed: 01/10/2023] Open
Abstract
Substantial clinical evidence supports the notion that ciliary function in the airways is important in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, the extent or nature of impairment of mucociliary transport (MCT) in in vivo models remains unknown. We hypothesize that SARS-CoV-2 infection results in MCT deficiency in the airways of golden Syrian hamsters that precedes pathological injury in lung parenchyma. Micro-optical coherence tomography was used to quantitate functional changes in the MCT apparatus. Both genomic and subgenomic viral RNA pathological and physiological changes were monitored in parallel. We show that SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 days postinfection (dpi) in hamsters, principally due to 79% diminished airway coverage of motile cilia. Correlating quantitation of physiological, virological, and pathological changes reveals steadily descending infection from the upper airways to lower airways to lung parenchyma within 7 dpi. Our results indicate that functional deficits of the MCT apparatus are a key aspect of COVID-19 pathogenesis, may extend viral retention, and could pose a risk factor for secondary infection. Clinically, monitoring abnormal ciliated cell function may indicate disease progression. Therapies directed toward the MCT apparatus deserve further investigation.
Collapse
Affiliation(s)
- Qian Li
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | | | - Scott E. Phillips
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Shah S. Hussain
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | | | | | | | | | | | | | - Farah Abou Daya
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Nathaniel W. Hubbs
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Harrison Kim
- Gregory Fleming James Cystic Fibrosis Research Center
- Department of Radiology, and
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ezinwanne Onuoha
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Evan R. Boitet
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Lianwu Fu
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Linhui Yu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Levi T. Schaefers
- Department of Microbiology
- Department of Anesthesiology and Perioperative Medicine
| | | | | | - Sixto M. Leal
- Department of Microbiology
- Department of Anesthesiology and Perioperative Medicine
| | | | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven M. Rowe
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center
- Department of Pediatrics
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Williams A, Zhan CG. Fast Prediction of Binding Affinities of SARS-CoV-2 Spike Protein and Its Mutants with Antibodies through Intermolecular Interaction Modeling-Based Machine Learning. J Phys Chem B 2022; 126:5194-5206. [PMID: 35817617 PMCID: PMC9301770 DOI: 10.1021/acs.jpcb.2c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Since the introduction of the novel SARS-CoV-2 virus (COVID-19) in late 2019, various new variants have appeared with mutations that confer resistance to the vaccines and monoclonal antibodies that were developed in response to the wild-type virus. As we continue through the pandemic, an accurate and efficient methodology is needed to help predict the effects certain mutations will have on both our currently produced therapeutics and those that are in development. Using published cryo-electron microscopy and X-ray crystallography structures of the spike receptor binding domain region with currently known antibodies, in the present study, we created and cross-validated an intermolecular interaction modeling-based multi-layer perceptron machine learning approach that can accurately predict the mutation-caused shifts in the binding affinity between the spike protein (wild-type or mutant) and various antibodies. This validated artificial intelligence (AI) model was used to predict the binding affinity (Kd) of reported SARS-CoV-2 antibodies with various variants of concern, including the most recently identified "Deltamicron" (or "Deltacron") variant. This AI model may be employed in the future to predict the Kd of developed novel antibody therapeutics to overcome the challenging antibody resistance issue and develop structural bases for the effects of both current and new mutants of the spike protein. In addition, the similar AI strategy and approach based on modeling of the intermolecular interactions may be useful in development of machine learning models predicting binding affinities for other protein-protein binding systems, including other antibodies binding with their antigens.
Collapse
Affiliation(s)
- Alexander
H. Williams
- Molecular
Modeling and Biopharmaceutical Center, University
of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Molecular
Modeling and Biopharmaceutical Center, University
of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
3
|
Singh DD, Sharma A, Lee HJ, Yadav DK. SARS-CoV-2: Recent Variants and Clinical Efficacy of Antibody-Based Therapy. Front Cell Infect Microbiol 2022; 12:839170. [PMID: 35237535 PMCID: PMC8883582 DOI: 10.3389/fcimb.2022.839170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple variants of SARS-CoV-2 have emerged and are now prevalent at the global level. Currently designated variants of concern (VOCs) are B.1.1.7, B1.351, P.1, B.1.617.2 variants and B.1.1.529. Possible options for VOC are urgently required as they carry mutations in the virus spike protein that allow them to spread more easily and cause more serious illness. The primary targets for most therapeutic methods against SARS-CoV-2 are the S (Spike) protein and RBD (Receptor-Binding Domain), which alter the binding to ACE2 (Angiotensin-Converting Enzyme 2). The most popular of these strategies involves the use of drug development targeting the RBD and the NTD (N-terminal domain) of the spike protein and multiple epitopes of the S protein. Various types of mutations have been observed in the RBDs of B.1.1.7, B1.351, P. and B.1.620. The incidence of RBD mutations increases the binding affinity to the ACE2 receptor. The high binding affinity of RBD and ACE2 has provided a structural basis for future evaluation of antibodies and drug development. Here we discuss the variants of SARS-CoV-2 and recent updates on the clinical evaluation of antibody-based treatment options. Presently, most of the antibody-based treatments have been effective in patients with SARS-CoV-2. However, there are still significant challenges in verifying independence, and the need for further clinical evaluation.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do, South Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do, South Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do, South Korea
- Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, South Korea
- *Correspondence: Hae-Jeung Lee, ; Dharmendra K. Yadav,
| | - Dharmendra K. Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon, South Korea
- *Correspondence: Hae-Jeung Lee, ; Dharmendra K. Yadav,
| |
Collapse
|
4
|
Li Q, Vijaykumar K, Philips SE, Hussain SS, Huynh VN, Fernandez-Petty CM, Lever JEP, Foote JB, Ren J, Campos-Gómez J, Daya FA, Hubbs NW, Kim H, Onuoha E, Boitet ER, Fu L, Leung HM, Yu L, Detchemendy TW, Schaefers LT, Tipper JL, Edwards LJ, Leal SM, Harrod KS, Tearney GJ, Rowe SM. Mucociliary Transport Deficiency and Disease Progression in Syrian Hamsters with SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.16.476016. [PMID: 35075457 PMCID: PMC8786228 DOI: 10.1101/2022.01.16.476016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Substantial clinical evidence supports the notion that ciliary function in the airways plays an important role in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, consequent impaired mucociliary transport (MCT) remains unknown for the intact MCT apparatus from an in vivo model of disease. Using golden Syrian hamsters, a common animal model that recapitulates human COVID-19, we quantitatively followed the time course of physiological, virological, and pathological changes upon SARS-CoV-2 infection, as well as the deficiency of the MCT apparatus using micro-optical coherence tomography, a novel method to visualize and simultaneously quantitate multiple aspects of the functional microanatomy of intact airways. Corresponding to progressive weight loss up to 7 days post-infection (dpi), viral detection and histopathological analysis in both the trachea and lung revealed steadily descending infection from the upper airways, as the main target of viral invasion, to lower airways and parenchymal lung, which are likely injured through indirect mechanisms. SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 dpi, largely due to diminished motile ciliation coverage, but not airway surface liquid depth, periciliary liquid depth, or cilia beat frequency of residual motile cilia. Further analysis indicated that the fewer motile cilia combined with abnormal ciliary motion of residual cilia contributed to the delayed MCT. The time course of physiological, virological, and pathological progression suggest that functional deficits of the MCT apparatus predispose to COVID-19 pathogenesis by extending viral retention and may be a risk factor for secondary infection. As a consequence, therapies directed towards the MCT apparatus deserve further investigation as a treatment modality.
Collapse
Affiliation(s)
- Qian Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kadambari Vijaykumar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Scott E Philips
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shah S Hussain
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Van N Huynh
- Department of Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney M Fernandez-Petty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jacelyn E Peabody Lever
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Janna Ren
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Javier Campos-Gómez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Farah Abou Daya
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nathaniel W Hubbs
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison Kim
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ezinwanne Onuoha
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Evan R Boitet
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lianwu Fu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Linhui Yu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas W Detchemendy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Levi T Schaefers
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer L Tipper
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lloyd J Edwards
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sixto M Leal
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kevin S Harrod
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|