1
|
The effect of low doses of chlorpyrifos on blood and bone marrow cells in Wistar rats. Arh Hig Rada Toksikol 2022; 73:223-232. [PMID: 36226822 PMCID: PMC9837532 DOI: 10.2478/aiht-2022-73-3665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the genotoxic potential of low doses of chlorpyrifos (CPF) on blood and bone marrow cells in adult male Wistar rats. CPF was administered by oral gavage at daily doses of 0.010, 0.015, and 0.160 mg/kg of body weight (bw) for 28 consecutive days. Positive control (PC) was administered 300 mg/kg bw/day of ethyl methane sulphonate (EMS) for the final three days of the experiment. Toxic outcomes of exposure were determined with the in vivo micronucleus (MN) assay and alkaline comet assay. The 28-day exposure to the 0.015 mg/kg CPF dose, which was three times higher than the current value of acute reference dose (ARfD), reduced body weight gain in rats the most. The in vivo MN assay showed significant differences in number of reticulocytes per 1000 erythrocytes between PC and negative control (NC) and between all control groups and the groups exposed to 0.015 and 0.160 mg/kg bw/day of CPF. The number of micronucleated polychromatic erythrocytes per 2000 erythrocytes was significantly higher in the PC than the NC group or group exposed to 0.015 mg/kg bw/day of CPF. CPF treatment did not significantly increase primary DNA damage in bone marrow cells compared to the NC group. However, the damage in bone marrow cells of CPF-exposed rats was much higher than the one recorded in leukocytes, established in the previous research. Both assays proved to be successful for the assessment of CPFinduced genome instability in Wistar rats. However, the exact mechanisms of damage have to be further investigated and confirmed by other, more sensitive methods.
Collapse
|
2
|
Grados L, Pérot M, Barbezier N, Delayre-Orthez C, Bach V, Fumery M, Anton PM, Gay-Quéheillard J. How advanced are we on the consequences of oral exposure to food contaminants on the occurrence of chronic non communicable diseases? CHEMOSPHERE 2022; 303:135260. [PMID: 35688194 DOI: 10.1016/j.chemosphere.2022.135260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The development of an individual during fetal life and childhood is characterized by rapid growth as well as gradual maturation of organs and systems. Beyond the nutritional intake in essential nutrients, food contaminants can permanently influence the way organs mature and function. These processes are called "programming" and play an essential role in the occurrence of non-communicable chronic diseases throughout the lifespan. Populations as pregnant women, fetuses and young children are vulnerable and particularly sensitive to food contaminants which can induce epigenetic modifications transmissible to future generations. Among these contaminants, pesticides are found in most food matrices exposing humans to cocktails of molecules through variable concentrations and duration of exposure. The Maillard reaction products (MRPs) represent other food contaminants resulting from heat treatment of food. Modern diet, rich in fats and sugars, is also rich in neoformed pathogenic compounds, Advanced Glycation End products (AGEs), the levels of which depend on the heat treatment of foods and eating habits and whose effects on health are controversial. In this review, we have chosen to present the current knowledge on the impacts of selected pesticides and MRPs, on the risk of developing during life non-communicable chronic diseases such as IBD, metabolic disorders or allergies. A large review of literature was performed via Pubmed, and the most appropriate studies were summarised.
Collapse
Affiliation(s)
- Lucien Grados
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Maxime Pérot
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Nicolas Barbezier
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Véronique Bach
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France
| | - Mathurin Fumery
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Pauline M Anton
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Jérôme Gay-Quéheillard
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France.
| |
Collapse
|
3
|
Nandi NK, Vyas A, Akhtar MJ, Kumar B. The growing concern of chlorpyrifos exposures on human and environmental health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105138. [PMID: 35772841 DOI: 10.1016/j.pestbp.2022.105138] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP) and its highly electrophilic intermediates are principal toxic metabolites. The active form of CP i.e. chlorpyrifos oxon (CP-oxon) is responsible for both the insecticidal activity and is also of greater risk when present in the atmosphere. Thus, the combined effects of both CP, CP-oxan, and other metabolites enhance our understanding of the safety and risk of the insecticide CP. They cause major toxicities such as AChE inhibition, oxidative stress, and endocrine disruption. Further, it can have adverse hematological, musculoskeletal, renal, ocular, and dermal effects. Excessive use of this compound results in poisoning and potentially kills a non-target species upon exposure including humans. Several examples of reactive metabolites toxicities on plants, aquatic life, and soil are presented herein. The review covers the general overview on reactive metabolites of CP, chemistry and their mechanism through toxic effects on humans as well as on the environment. Considerable progress has been made in the replacement or alternative to CP. The different strategies including antidote mechanisms for the prevention and treatment of CP poisoning are discussed in this review. The approach analyses also the active metabolites for the pesticide activity and thus it becomes more important to know the pesticide and toxicity dose of CP as much as possible.
Collapse
Affiliation(s)
- Nilay Kumar Nandi
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Akshun Vyas
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
4
|
Balalian AA, Liu X, Herbstman JB, Daniel S, Whyatt R, Rauh V, Calafat AM, Wapner R, Factor-Litvak P. Prenatal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-dichlorophenoxyacetic acid and size at birth in urban pregnant women. ENVIRONMENTAL RESEARCH 2021; 201:111539. [PMID: 34174256 PMCID: PMC8478820 DOI: 10.1016/j.envres.2021.111539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Organophosphate insecticides and the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) are used to protect crops or control weeds. Pyrethroids are used to manage pests both in agriculture and in residences, and to reduce the transmission of insect-borne diseases. Several studies have reported inverse associations between exposure to organophosphates (as a larger class) and birth outcomes but these associations have not been conclusive for pyrethroids or 2,4-D, specifically. We aimed to investigate the association between birth outcomes and urinary biomarkers of pyrethroids, organophosphates and 2,4-D among healthy pregnant women living in New York City. METHODS We quantified urinary biomarkers of 2,4-D and of organophosphate and pyrethroid insecticides from 269 women from two cohorts: a) Thyroid Disruption And Infant Development (TDID) and b) Sibling/Hermanos cohort (S/H). We used weighted quantile sum regression and multivariable linear regression models to evaluate the associations between a mixture of urinary creatinine-adjusted biomarker concentrations and birth outcomes of length, birthweight and head circumference, controlling for covariates. We also used linear regression models and further classified biomarkers concentrations into three categories (i: non-detectable; ii: between the limit of detection and median; and iii: above the median) to investigate single pesticides' association with these birth outcomes. Covariates considered were delivery mode, ethnicity, marital status, education, income, employment status, gestational age, maternal age and pre-pregnancy BMI. Analyses were conducted separately for each cohort and stratified by child sex within each cohort. RESULTS In TDID cohort, we found a significant inverse association between weighted quantile sum of mixture of pesticides and head circumference among boys. We found that the urinary biomarkers of organophosphate chlorpyrifos, TCPy, and 2,4-D had the largest contribution to the overall mixture effect in the TDID cohort among boys (b = -0.57, 95%CI: -0.92, -0.22) (weights = 0.81 and 0.16 respectively) but not among girls. In the multivariable linear regression models, we found that among boys, for each log unit increase in 3,5,6-trichloro-2-pyridinol (TCPy, metabolite of organophosphate chlorpyrifos) in maternal urine, there was a -0.56 cm decrease in head circumference (95%CI: -0.92, -0.19). Among boys in the TDID cohort, 2,4-D was associated with smaller head circumference in the second (b = -1.57; 95%CI: -2.74, -0.39) and third (b = -1.74, 95%CI: -2.98, -0.49) concentration categories compared to the first. No associations between pyrethroid and organophosphate biomarkers and birth outcomes were observed in girls analyzed in WQS regression or individually in linear regression models in TDID cohort. In the S/H cohort, head circumference increased with higher concentrations of 3-phenoxybenzoic acid (3-PBA, a biomarker of several pyrethroids) (b = 0.53, 95%CI: 0.03, 1.04) among boys and head circumference was lower among girls in the high compared to low category of 2,4-D (b = -2.27, 95%CI: - 3.98, -0.56). Birth length was also positively associated with the highest concentration of 2,4-D compared to the lowest among boys (b = 4.01, 95%CI: 0.02,8.00). CONCLUSIONS Weighted quantile sum of pesticides was negatively associated with head circumference among boys in one cohort. Nonetheless, due to directional homogeneity assumption in WQS no positive associations were detected. In linear regression models with individual pesticides, concentrations of TCPy were inversely associated with head circumference in boys and higher concentrations of 2,4-D was inversely associated with head circumference among girls; 2,4-D concentrations were also associated with higher birth length among boys. Concentrations of 3-PBA was positively associated with head circumference among boys.
Collapse
Affiliation(s)
- Arin A Balalian
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sharon Daniel
- Department of Public Health, Israel; Department of Pediatrics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Soroka University Medical Center, Beer-Sheva, Israel; Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Robin Whyatt
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Guibourdenche M, El Khayat El Sabbouri H, Djekkoun N, Khorsi-Cauet H, Bach V, Anton PM, Gay-Quéheillard J. Programming of intestinal homeostasis in male rat offspring after maternal exposure to chlorpyrifos and/or to a high fat diet. Sci Rep 2021; 11:11420. [PMID: 34075131 PMCID: PMC8169651 DOI: 10.1038/s41598-021-90981-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Alteration of programming of the intestinal wall maturation may be responsible for non-communicable chronic diseases in adulthood. It may originate from prenatal exposure of mothers to deleterious environmental factors such as pesticides or western diet. This work was undertaken to determine whether disturbances of the digestive tract function and of innate immunity of offspring at adulthood could be due to maternal exposure to a pesticide, chlorpyrifos (CPF) and a High Fat Diet (HFD) starting 4 months before gestation and lasting until weaning of offspring. Fifty-one male Wistar rats coming from 4 groups of dams exposed to CPF, HFD, both and control were followed from birth to 8 weeks of age. They were fed standard chow and received no treatment. The maternal pesticide exposure slows down fetal and postnatal weight gain without histological injuries of the gut mucosa. CPF or HFD both induced modifications of tight junctions and mucins genes expressions without inducing an increase in epithelial permeability or an inflammatory state. Co-exposure to both CPF and HFD did not exacerbate the effects observed with each factor separately. Despite the lack of direct contact except through breast milk until weaning, CPF or HFD maternal exposure have demonstrated preliminary gut barrier impacts on offspring.
Collapse
Affiliation(s)
- Marion Guibourdenche
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France.,Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Hiba El Khayat El Sabbouri
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France
| | - Narimane Djekkoun
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France
| | - Hafida Khorsi-Cauet
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France
| | - Véronique Bach
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France
| | - Pauline M Anton
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Jérôme Gay-Quéheillard
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01, UPJV/INERIS, Université Picardie Jules Verne, CURS, Présidence UPJV, Chemin du Thil, 80025, Amiens, France.
| |
Collapse
|
6
|
Guibourdenche M, El Khayat El Sabbouri H, Bonnet F, Djekkoun N, Khorsi-Cauet H, Corona A, Guibourdenche J, Bach V, Anton PM, Gay-Quéheillard J. Perinatal exposure to chlorpyrifos and/or a high-fat diet is associated with liver damage in male rat offspring. Cells Dev 2021; 166:203678. [PMID: 33994353 DOI: 10.1016/j.cdev.2021.203678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Metabolic impairments in childhood are known to promote the development of type 2 diabetes and/or obesity in adulthood. These impairments may result from perinatal exposure to harmful environmental factors, such as pesticide residues or the consumption of a "western" diet. In the present study, we sought to determine whether an obesogenic profile, metabolic disorders and liver damage in offspring (observed during young adulthood) were related to maternal exposure to the pesticide chlorpyrifos (CPF) and/or a high-fat diet (HFD) starting 4 months before conception and ending at weaning. After the end of exposure, 51 male rat pups were left to develop under normal conditions and were studied in young adulthood. Despite the absence of direct exposure to harmful factors (other than through the dam's milk), maternal exposure to CPF or an HFD was associated with changes in the offspring's metabolic activity in the liver in the offspring. This indirect exposure to CPF was associated with a relative reduction in the expression of genes coding for enzymes involved in lipid or glucose metabolism but did induce histopathological changes in the offspring at adulthood. Maternal exposure to an HFD alone or to CPF alone gave similar results in offspring, changes in the same direction. Exposure of the mother to HFD did not exacerbate CPF effects. Co-exposure to both CPF and HFD did not increase the observed effects compared to each factor taken separately.
Collapse
Affiliation(s)
- Marion Guibourdenche
- Laboratoire PériTox-INERIS UMR_I 01, Université Picardie Jules Verne, Amiens, France; Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Beauvais, France
| | | | - Fidéline Bonnet
- Laboratoire de Biologie Hormonale, CHU Cochin, Université Paris Descartes, AP-HP, Paris. France
| | - Narimane Djekkoun
- Laboratoire PériTox-INERIS UMR_I 01, Université Picardie Jules Verne, Amiens, France
| | - Hafida Khorsi-Cauet
- Laboratoire PériTox-INERIS UMR_I 01, Université Picardie Jules Verne, Amiens, France
| | - Aurélie Corona
- Laboratoire PériTox-INERIS UMR_I 01, Université Picardie Jules Verne, Amiens, France
| | - Jean Guibourdenche
- Laboratoire de Biologie Hormonale, CHU Cochin, Université Paris Descartes, AP-HP, Paris. France
| | - Véronique Bach
- Laboratoire PériTox-INERIS UMR_I 01, Université Picardie Jules Verne, Amiens, France
| | - Pauline M Anton
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Beauvais, France
| | | |
Collapse
|
7
|
Gestational exposures to organophosphorus insecticides: From acute poisoning to developmental neurotoxicity. Neuropharmacology 2020; 180:108271. [PMID: 32814088 DOI: 10.1016/j.neuropharm.2020.108271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
For over three-quarters of a century, organophosphorus (OP) insecticides have been ubiquitously used in agricultural, residential, and commercial settings and in public health programs to mitigate insect-borne diseases. Their broad-spectrum insecticidal effectiveness is accounted for by the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that catalyzes acetylcholine (ACh) hydrolysis, in the nervous system of insects. However, because AChE is evolutionarily conserved, OP insecticides are also toxic to mammals, including humans, and acute OP intoxication remains a major public health concern in countries where OP insecticide usage is poorly regulated. Environmental exposures to OP levels that are generally too low to cause marked inhibition of AChE and to trigger acute signs of intoxication, on the other hand, represent an insidious public health issue worldwide. Gestational exposures to OP insecticides are particularly concerning because of the exquisite sensitivity of the developing brain to these insecticides. The present article overviews and discusses: (i) the health effects and therapeutic management of acute OP poisoning during pregnancy, (ii) epidemiological studies examining associations between environmental OP exposures during gestation and health outcomes of offspring, (iii) preclinical evidence that OP insecticides are developmental neurotoxicants, and (iv) potential mechanisms underlying the developmental neurotoxicity of OP insecticides. Understanding how gestational exposures to different levels of OP insecticides affect pregnancy and childhood development is critical to guiding implementation of preventive measures and direct research aimed at identifying effective therapeutic interventions that can limit the negative impact of these exposures on public health.
Collapse
|
8
|
Gu J, Xu S, Liu Y, Chen X. Chlorpyrifos-induced toxicity has no gender selectivity in the early fetal brain. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:803-812. [PMID: 32602772 DOI: 10.1080/03601234.2020.1786326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides induce gender-specific developmental neurotoxicity after birth, especially in adolescents and adults. However, whether and when the selectivity occurs in fetus remains unclear. In this study, we analyzed chlorpyrifos (CPF)-induced neurotoxicity in the early fetal brains of male and female mice. The gestational dams were administered 0, 1, 3, and 5 mg/(kg.d) CPF during gestational days (GD)7-11, and brains from the fetuses were isolated and analyzed on GD12. Fetal gender was identified by PCR technique based on male-specific Sry gene and Myog control gene. The body weight and head weight, the activity of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and the content of malondialdehyde (MDA), as well as the oxidative stress-related gene expression were examined. Our results showed that CPF pretreatment induced AChE inhibition in GD12 fetal brain. CPF treatment activated SOD and GPX but not CAT and MDA. For oxidative stress-related gene expression, CPF pretreatment increased mRNA expression of Sod1, Cat, Gpx1, and Gpx2 in the fetal brain on GD12. The statistical analysis did not show gender-selective CPF-induced toxicity. Moreover, our results showed that although the gestational exposure to CPF could elicit abnormalities in the early fetal brain, the toxicity observed was not gender-specific.
Collapse
Affiliation(s)
- Jiabin Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuai Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuqiong Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoping Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
El Khayat El Sabbouri H, Gay-Quéheillard J, Joumaa WH, Delanaud S, Guibourdenche M, Darwiche W, Djekkoun N, Bach V, Ramadan W. Does the perigestational exposure to chlorpyrifos and/or high-fat diet affect respiratory parameters and diaphragmatic muscle contractility in young rats? Food Chem Toxicol 2020; 140:111322. [PMID: 32289335 DOI: 10.1016/j.fct.2020.111322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
The perinatal period is characterized by developmental stages with high sensitivity to environmental factors. Among the risk factors, maternal High-Fat Diet (HFD) consumption and early-life pesticide exposure can induce metabolic disorders at adulthood. We established the effects of perigestational exposure to Chlorpyrifos (CPF) and/or HFD on respiratory parameters, sleep apnea and diaphragm contractility in adult rats. Four groups of female rats were exposed starting from 4 months before gestation till the end of lactation period to CPF (1 mg/kg/day vs. vehicle) with or without HFD. Sleep apnea and respiratory parameters were measured by whole-body plethysmography in male offspring at postnatal day 60. Then diaphragm strips were dissected for the measurement of contractility, acetylcholinesterase (AChE) activity, and gene expression. The perigestational exposure to CPF and/or HFD increased the sleep apnea index but decreased the respiratory frequency. The twitch tension and the fatigability index were also increased, associated with reduced AChE activity and elevated mRNA expression of AChE, ryanodine receptor, and myosin heavy chain isoforms. Therefore, the perigestational exposure to either CPF and/or HFD could program the risks for altered ventilatory parameters and diaphragm contractility in young adult offspring despite the lack of direct contact to CPF and/or HFD.
Collapse
Affiliation(s)
- Hiba El Khayat El Sabbouri
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France; Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon
| | | | - Wissam H Joumaa
- Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon
| | - Stephane Delanaud
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | | | - Walaa Darwiche
- Hematim Laboratory, EA4666, University of Picardie Jules Verne, 80025, Amiens, France
| | - Narimane Djekkoun
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | - Véronique Bach
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | - Wiam Ramadan
- Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon; Lebanese Institute for Biomedical Research and Application (LIBRA), International University of Beirut (BIU) and Lebanese International University (LIU), Beirut, Lebanon
| |
Collapse
|
10
|
Czajka M, Matysiak-Kucharek M, Jodłowska-Jędrych B, Sawicki K, Fal B, Drop B, Kruszewski M, Kapka-Skrzypczak L. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. ENVIRONMENTAL RESEARCH 2019; 178:108685. [PMID: 31479978 DOI: 10.1016/j.envres.2019.108685] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Widespread use and the bioaccumulation of pesticides in the environment lead to the contamination of air, water, soil and agricultural resources. A huge body of evidence points to the association between the pesticide exposure and increase in the incidence of chronic diseases, e.g. cancer, birth defects, reproductive disorders, neurodegenerative, cardiovascular and respiratory diseases, developmental disorders, metabolic disorders, chronic renal disorders or autoimmune diseases. Organophosphorus compounds are among the most widely used pesticides. A growing body of evidence is suggesting the potential interdependence between the organophosphorus pesticides (OPs) exposure and risk of obesity and type 2 diabetes mellitus (T2DM). This article reviews the current literature to highlight the latest in vitro and in vivo evidences on the possible influence of OPs on obesity and T2DM development, as well as epidemiological evidence for the metabolic toxicity of OPs in humans. The article also draws attention to the influence of maternal OPs exposure on offspring. Summarized studies suggest that OPs exposure is associated with metabolic changes linked with obesity and T2DM indicated that such exposures may increase risk or vulnerability to other contributory components.
Collapse
Affiliation(s)
- Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080, Lublin, Poland
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Berta Fal
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics with E-learning Lab, Medical University of Lublin, 20-090, Lublin, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland; Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland.
| |
Collapse
|
11
|
Leung MCK, Silva MH, Palumbo AJ, Lohstroh PN, Koshlukova SE, DuTeaux SB. Adverse outcome pathway of developmental neurotoxicity resulting from prenatal exposures to cannabis contaminated with organophosphate pesticide residues. Reprod Toxicol 2019; 85:12-18. [PMID: 30668982 DOI: 10.1016/j.reprotox.2019.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/07/2018] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
Abstract
There is growing concern that increased use of medical and recreational cannabis may result in increased exposure to contaminants on the cannabis, such as pesticides. Several states are moving towards implementing robust regulation of the sales, cultivation, and manufacture of cannabis products. However, there are challenges with creating health-protective regulations in an industry that, to date, has been largely unregulated. The focus of this publication is a theoretical examination of what may happen when women are exposed pre-conceptually or during pregnancy to cannabis contaminated with pesticides. We propose an adverse outcome pathway of concomitant prenatal exposure to cannabinoids and the organophosphate pesticide chlorpyrifos by curating what we consider to be the key events at the molecular, cellular, and tissue levels that result in developmental neurotoxicity. The implications of this adverse outcome pathway underscore the need to elucidate the potential developmental neurotoxicity that may result from prenatal exposure to pesticide-contaminated cannabis.
Collapse
Affiliation(s)
- Maxwell C K Leung
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States.
| | - Marilyn H Silva
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Amanda J Palumbo
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Peter N Lohstroh
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Svetlana E Koshlukova
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| | - Shelley B DuTeaux
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, 1001 I Street, Sacramento, CA 95812, United States
| |
Collapse
|
12
|
Van Maele-Fabry G, Gamet-Payrastre L, Lison D. Residential exposure to pesticides as risk factor for childhood and young adult brain tumors: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2017. [PMID: 28623811 DOI: 10.1016/j.envint.2017.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Accumulating evidence suggests a positive association between exposure to non-agricultural pesticides and childhood brain tumors (CBT). OBJECTIVE (1) To conduct a systematic review and meta-analysis of published studies on the association between residential/household/domestic exposure to pesticides and childhood brain tumors. (2) To clarify variables that could impact the results. METHODS Publications in English were identified from a MEDLINE search through 28 February 2017 and from the reference list of identified publications. Risk estimates were extracted from 18 case-control studies published between 1979 and 2016 and study quality assessments were performed. Summary odds ratios (mOR) were calculated according to fixed and random-effect meta-analysis models. Separate analyses were conducted after stratification for study quality, critical exposure period, exposure location, specific exposures, pesticide category, application methods, type of pest treated, type of CBT, child's age at diagnosis and geographic location. RESULTS Statistically significant associations were observed with CBT after combining all studies (mOR: 1.26; 95% CI: 1.13-1.40) without evidence of inconsistency between study results or publication bias. Specifically, increased risks were observed for several groupings and more particularly for gliomas and exposure involving insecticides. Statistical significance was also reached for high quality studies, for all exposure periods, for indoor exposure and, more particularly, during the prenatal period for all stratifications involving insecticides (except for outdoor use), for pet treatments, for flea/tick treatment, for studies from USA/Canada and studies from Europe (borderline) as well as for data from studies including children of up to 10years at diagnosis and of up to 15years. CONCLUSIONS Our findings support an association between residential exposure to pesticides and childhood brain tumors. Although causality cannot be established, these results add to the evidence leading to recommend limiting residential use of pesticides and to support public health policies serving this objective.
Collapse
Affiliation(s)
- Geneviève Van Maele-Fabry
- Université catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Avenue E. Mounier 53.02, B-1200 Brussels, Belgium.
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS 180 chemin de Tournefeuille, BP 93173 Toulouse, France
| | - Dominique Lison
- Université catholique de Louvain, Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Avenue E. Mounier 53.02, B-1200 Brussels, Belgium
| |
Collapse
|
13
|
Hussein M, Singh V. Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. J ANAT SOC INDIA 2016. [DOI: 10.1016/j.jasi.2017.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Hocine L, Merzouk H, Merzouk SA, Ghorzi H, Youbi M, Narce M. The effects of alpha-cypermethrin exposure on biochemical and redox parameters in pregnant rats and their newborns. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 134:49-54. [PMID: 27914539 DOI: 10.1016/j.pestbp.2016.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
Pyrethroid insecticides are extensively used in agriculture and in household activities. During pregnancy, they might affect maternal metabolic status and there after fetal development. In this work, we studied metabolic and redox effects of low dose alpha-cypermethrin exposure in pregnant rats and their offspring. The diet containing alpha cypermethrin at 0.02mg/kg/day was consumed during the entire gestation. Plasma biochemical parameters as well as liver lipid and oxidative stress markers were determined. Our results showed that alpha-cypermethrin induced an increase in body weight and in plasma glucose and lipid levels, as well as in plasma aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase activities in pregnant rats and their newborns. Pregnant rats showed cellular oxidative stress and altered oxidant-antioxidant status when treated by the insecticide and these disturbances were also seen in their newborns. In conclusion, low dose alpha-cypermethrin exposure induced several metabolic and redox alterations leading to maternal physiological impairments and to fetal metabolic changes. Alpha-cypermethrin should be used with caution especially during pregnancy.
Collapse
Affiliation(s)
- Leila Hocine
- Laboratory of Physiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria.
| | - Sid Ahmed Merzouk
- Department of Technical Sciences, Faculty of Engineering, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Hafeda Ghorzi
- Laboratory of Physiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Meriem Youbi
- Laboratory of Physiology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, Tlemcen 13000, Algeria
| | - Michel Narce
- INSERM UMR 866, "Lipids Nutrition Cancer", University of Burgundy, Faculty of Sciences, 6 Boulevard Gabriel, Dijon 21000, France
| |
Collapse
|
15
|
Adedara IA, Rosemberg DB, de Souza D, Farombi EO, Aschner M, Souza DO, Rocha JBT. Neurobehavioral and biochemical changes in Nauphoeta cinerea following dietary exposure to chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 130:22-30. [PMID: 27155480 DOI: 10.1016/j.pestbp.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
The present study aimed to increase our understanding about the mode of toxic action of organophosphate pesticides in insects by evaluating the biochemical and neurobehavioral characteristics in Nauphoeta cinerea exposed to chlorpyrifos (CPF)-contaminated diet. The insects were exposed for 35 consecutive days to CPF at 0.078, 0.15625, 0.3125 and 0.625μg/g feed. Locomotor behavior was assessed for a 10-min trial in a novel arena and subsequently, biochemical analyses were carried out using the cockroaches' heads. In comparison to control, CPF-exposed cockroaches showed significant decreases in the total distance traveled, body rotation, turn angle and meandering, along with significant increase in the number of falls, time and episodes of immobility. The marked decrease in the exploratory profiles of CPF-exposed cockroaches was confirmed by track plots, whereas occupancy plot analyses showed a progressive dispersion at 0.15625μg/g feed group. Moreover, the heads of CPF-exposed cockroaches showed marked decrease in acetylcholinesterase activity and antioxidant status with concomitant significant elevation in dichlorofluorescein oxidation and lipid peroxidation levels in CPF-treated cockroaches. Gas Chromatography-Mass Spectrometry analyses revealed bioaccumulation of CPF in cockroaches exposed to concentrations above 0.078μg/g feed. The findings from this investigation showed N. cinerea as a value model organism for the risk assessment of environmental organophosphate contamination in insects.
Collapse
Affiliation(s)
- Isaac A Adedara
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Diego de Souza
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Diogo O Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
16
|
Espinoza M, Rivero Osimani V, Sánchez V, Rosenbaum E, Guiñazú N. B-esterase determination and organophosphate insecticide inhibitory effects in JEG-3 trophoblasts. Toxicol In Vitro 2016; 32:190-7. [PMID: 26790371 DOI: 10.1016/j.tiv.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/15/2015] [Accepted: 01/06/2016] [Indexed: 01/31/2023]
Abstract
The placenta and trophoblasts express several B-esterases. This family includes acethylcholinesterase (AChE), carboxylesterase (CES) and butyrylcholinesterase (BChE), which are important targets of organophosphate insecticide (OP) toxicity. To better understand OP effects on trophoblasts, B-esterase basal activity and kinetic behavior were studied in JEG-3 choriocarcinoma cell cultures. Effects of the OP azinphos-methyl (Am) and chlorpyrifos (Cp) on cellular enzyme activity were also evaluated. JEG-3 cells showed measurable activity levels of AChE and CES, while BChE was undetected. Recorded Km for AChE and CES were 0.33 and 0.26 mM respectively. Native gel electrophoresis and RT-PCR analysis demonstrated CES1 and CES2 isoform expression. Cells exposed for 4 and 24 h to the OP Am or Cp, showed a differential CES and AChE inhibition profiles. Am inhibited CES and AChE at 4 h treatment while Cp showed the highest inhibition profile at 24 h. Interestingly, both insecticides differentially affected CES1 and CES2 activities. Results demonstrated that JEG-3 trophoblasts express AChE, CES1 and CES2. B-esterase enzymes were inhibited by in vitro OP exposure, indicating that JEG-3 cells metabolization capabilities include phase I enzymes, able to bioactivate OP. In addition, since CES enzymes are important for medicinal drug activation/deactivation, OP exposure may interfere with trophoblast CES metabolization, probably being relevant in a co-exposure scenario during pregnancy.
Collapse
Affiliation(s)
- Marlon Espinoza
- Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Neuquén, Argentina
| | | | - Victoria Sánchez
- LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Enrique Rosenbaum
- LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Natalia Guiñazú
- Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Neuquén, Argentina; LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina.
| |
Collapse
|
17
|
Chlorpyrifos Exposure During Perinatal Period Affects Intestinal Microbiota Associated With Delay of Maturation of Digestive Tract in Rats. J Pediatr Gastroenterol Nutr 2015; 61:30-40. [PMID: 25643018 DOI: 10.1097/mpg.0000000000000734] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Pesticide exposure via residues in food may be especially harmful when it takes place in the developing child. The present study was designed to assess the impact of perinatal exposure to chlorpyrifos (CPF, an insecticide known to cross the placental barrier). METHODS Female rats were exposed to oral CPF (1 or 5 mg kg day vs vehicle controls) from gestation onset up to weaning of the pups that were individually gavaged (CPF or vehicle) thereafter. Two developmental time points were studied: weaning (day 21) and adulthood (day 60). After sacrifice, samples from the intestinal tract and other organs underwent microbiological and histological analyses. RESULTS Rat pups exposed to 5 mg kg day CPF were both significantly smaller (body length) and lighter than controls. Exposure to CPF was associated with changes in the histological structures (shorter and thinner intestinal villosities), an intestinal microbial dysbiosis, and increased bacterial translocation in the spleen and liver. These significant microbial changes in the gut were associated with impaired epithelium protection (mucin-2) and microbial pattern recognition receptor (Toll-like 2 and 4) gene expression. CONCLUSIONS Exposure to CPF during gestation and development affected the pups' intestinal development, with morphological alteration of the structures involved in nutrient absorption, intestinal microbial dysbiosis, alteration of mucosal barrier (mucin-2), stimulation of the innate immune system, and increased bacterial translocation. Perinatal exposure to CPF may therefore have short- and long-term impacts on the digestive tract.
Collapse
|
18
|
Mullins RJ, Xu S, Pereira EFR, Pescrille JD, Todd SW, Mamczarz J, Albuquerque EX, Gullapalli RP. Prenatal exposure of guinea pigs to the organophosphorus pesticide chlorpyrifos disrupts the structural and functional integrity of the brain. Neurotoxicology 2015; 48:9-20. [PMID: 25704171 DOI: 10.1016/j.neuro.2015.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
This study was designed to test the hypothesis that prenatal exposure of guinea pigs to the organophosphorus (OP) pesticide chlorpyrifos (CPF) disrupts the structural and functional integrity of the brain. Pregnant guinea pigs were injected with chlorpyrifos (25 mg/kg, s.c.) or vehicle (peanut oil) once per day for 10 consecutive days, starting approximately on the 50th day of gestation. Cognitive behavior of female offspring was examined starting at 40-45 post-natal days (PND) using the Morris water maze (MWM), and brain structural integrity was analyzed at PND 70 using magnetic resonance imaging (MRI) methods, including T2-weighted anatomical scans and diffusion kurtosis imaging (DKI). The offspring of exposed mothers had significantly decreased body weight and brain volume, particularly in the frontal regions of the brain including the striatum. Furthermore, the offspring demonstrated significant spatial learning deficits in MWM recall compared to the vehicle group. Diffusion measures revealed reduced white matter integrity within the striatum and amygdala that correlated with spatial learning performance. These findings reveal the lasting effect of prenatal exposure to CPF as well as the danger of mother to child transmission of CPF in the environment.
Collapse
Affiliation(s)
- Roger J Mullins
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Su Xu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Spencer W Todd
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Rao P Gullapalli
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
19
|
Hussein M, Singh V, Sethi R, Singh A, Hassan M. Study on embryonic effects of neonicotinoid insecticide on chick embryos. J ANAT SOC INDIA 2014. [DOI: 10.1016/j.jasi.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Low BS, Das PK, Chan KL. Acute, reproductive toxicity and two-generation teratology studies of a standardized quassinoid-rich extract of Eurycoma longifolia Jack in Sprague-Dawley rats. Phytother Res 2013; 28:1022-9. [PMID: 24318772 DOI: 10.1002/ptr.5094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/09/2013] [Accepted: 11/10/2013] [Indexed: 12/23/2022]
Abstract
The roots of Eurycoma longifolia Jack are popularly sought as herbal medicinal supplements to improve libido and general health amongst the local ethnic population. The major quassinoids of E. longifolia improved spermatogenesis and fertility but toxicity studies have not been well documented. The reproductive toxicity, two generation of foetus teratology and the up-and-down acute toxicity were investigated in Sprague-Dawley rats orally treated with quassinoid-rich E. longifolia extract (TAF273). The results showed that the median lethal dose (LD50 ) of TAF273 for female and male rats was 1293 and >2000 mg/kg, respectively. Fertility index and litter size of the TAF273 treated were significantly increased when compared with those of the non-treated animals. The TAF273-treated dams decreased in percentage of pre-implantation loss, post-implantation loss and late resorption. No toxic symptoms were observed on the TAF273-treated pregnant female rats and their foetuses were normal. The no-observed adverse effect level (NOAEL) obtained from reproductive toxicity and teratology studies of TAF273 in rats was 100 mg/kg body weight/day, being more than 10-fold lower than the LD50 value. Thus, any human dose derived from converting the rat doses of 100 mg/kg and below may be considered as safe for further clinical studies.
Collapse
Affiliation(s)
- Bin-Seng Low
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; School of Medicine, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | | | | |
Collapse
|
21
|
Sankhwar ML, Yadav RS, Shukla RK, Singh D, Ansari RW, Pant AB, Parmar D, Khanna VK. Monocrotophos induced oxidative stress and alterations in brain dopamine and serotonin receptors in young rats. Toxicol Ind Health 2013; 32:422-36. [DOI: 10.1177/0748233713500834] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human exposure to monocrotophos, an organophosphate pesticide, could occur due to its high use in agriculture to protect crops. Recently, we found that postlactational exposure to monocrotophos impaired cholinergic mechanisms in young rats and such changes persisted even after withdrawal of monocrotophos exposure. In continuation to this, the effect of monocrotophos on noncholinergic targets and role of oxidative stress in its neurotoxicity has been studied. Exposure of rats from postnatal day (PD)22 to PD49 to monocrotophos (0.50 or 1.0 mg kg−1 body weight, perorally) significantly impaired motor activity and motor coordination on PD50 as compared to controls. A significant decrease in the binding of 3H-spiperone to striatal membrane (26%, p < 0.01; 30%, p < 0.05) in rats exposed to monocrotophos at both the doses and increase in the binding of 3H-ketanserin to frontocortical membrane (14%, p > 0.05; 37%, p < 0.05) in those exposed at a higher dose, respectively, was observed on PD50 compared with the controls. Alterations in the binding persisted even after withdrawal of monocrotophos exposure on PD65. Increased oxidative stress in brain regions following exposure of rats to monocrotophos was also observed on PD50 that persisted 15 days after withdrawal of exposure on PD65. The results suggest that monocrotophos exerts its neurobehavioral toxicity by affecting noncholinergic functions involving dopaminergic and serotonergic systems associated with enhanced oxidative stress. The results also exhibit vulnerability of developing brain to monocrotophos as most of the changes persisted even after withdrawal of its exposure.
Collapse
Affiliation(s)
- Madhu L Sankhwar
- Council of Scientific and Industrial Research, Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Rajesh S Yadav
- Department of Criminology and Forensic Science, School of Applied Sciences, Dr. Hari Singh Gour Central University, Sagar, Madhya Pradesh, India
| | - Rajendra K Shukla
- Council of Scientific and Industrial Research, Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Council of Scientific and Industrial Research, Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Reyaz W Ansari
- Council of Scientific and Industrial Research, Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Aditya B Pant
- Council of Scientific and Industrial Research, Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Devendra Parmar
- Council of Scientific and Industrial Research, Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Vinay K Khanna
- Council of Scientific and Industrial Research, Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Ma P, Wu Y, Zeng Q, Gan Y, Chen J, Ye X, Yang X. Oxidative damage induced by chlorpyrifos in the hepatic and renal tissue of Kunming mice and the antioxidant role of vitamin E. Food Chem Toxicol 2013; 58:177-83. [PMID: 23624379 DOI: 10.1016/j.fct.2013.04.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/29/2013] [Accepted: 04/13/2013] [Indexed: 01/30/2023]
Abstract
Chlorpyrifos is a broad-spectrum, chlorinated organophosphate pesticide employed for pest control in various agricultural and animal husbandries. Acute and chronic exposure to CPF can elicit several adverse effects, including oxidative stress. We investigated neurotoxicity of CPF-treated mice, and evaluated the antioxidant effect of vitamin E against oxidative stress and histological changes in the livers and kidneys of CPF-treated mice. Kunming mice were divided randomly into five exposure groups of six: (A) peanut oil; (B) 3mg/kg CPF; (C) 6 mg/kg CPF; (D) 12 mg/kg CPF; (E) vitamin E (100 mg/kg), 3h after administration of CPF (12 mg/kg) and used as a post-treatment group. Oral administration of high-dose groups (12 mg/kg) CPF led to a significant increase in levels of reactive oxygen species, DNA-protein crosslinks, 8-hydroxy-2-deoxyguanosine and malondialdehyde, decreases in acetylcholinesterase activity and glutathione level, as well as causing hepatic and renal histopathological change. Except for AChE activity levels, administration of vitamin E to CPF-treated mice restored these biochemical parameters to within normal levels, and resulted in overall improvement in damage to livers and kidneys. These data suggest that oxidative stress is involved in CPF-induced toxicity and that vitamin E can protect against the tissue damage induced by CPF.
Collapse
Affiliation(s)
- Ping Ma
- College of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Nurulain SM, Shafiullah M. TERATOGENICITY AND EMBRYOTOXICITY OF ORGANOPHOSPHORUS COMPOUNDS IN ANIMAL MODELS - A SHORT REVIEW. ACTA ACUST UNITED AC 2012. [DOI: 10.31482/mmsl.2012.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Guiñazú N, Rena V, Genti-Raimondi S, Rivero V, Magnarelli G. Effects of the organophosphate insecticides phosmet and chlorpyrifos on trophoblast JEG-3 cell death, proliferation and inflammatory molecule production. Toxicol In Vitro 2012; 26:406-13. [PMID: 22265773 DOI: 10.1016/j.tiv.2012.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/20/2022]
Abstract
Epidemiological data have associated environmental organophosphate insecticide (OP) exposure during pregnancy with fetal growth deficits. To better understand OP injury that may adversely affect pregnancy, we used the JEG-3 choriocarcinoma cell line, which provide a recognized in vitro model to study placental function. The effects of the OP phosmet (Pm) and chlorpyrifos (Cp) on JEG-3 cells viability, proliferation, cell cycle and inflammatory molecule production were evaluated. Both insecticides affected cellular viability in a concentration- and time-dependent manner, inducing apoptosis and decreasing [(3)H]-thymidine incorporation. However, only Pm reduced DNA synthesis independently of cellular death and decreased the cell percentage at the S-phase. Unlike apoptosis, TNFα production varied with the concentration tested, suggesting that other TNFα independent mechanisms might trigger cell death. No induction of the inflammatory molecule nitric oxide was detected. The mRNA levels of pro-inflammatory IL-6, IL-17 and the anti-inflammatory IL-13 cytokines were differentially modulated. These findings show that Pm and Cp generate a specific toxicity signature, altering cell viability and inducing an inflammatory cytokine profile, suggesting that trophoblasts may represent a possible target for OP adverse effects.
Collapse
Affiliation(s)
- Natalia Guiñazú
- IDEPA-CONICET, LIBIQUIMA, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina.
| | | | | | | | | |
Collapse
|
25
|
Mink PJ, Kimmel CA, Li AA. Potential effects of chlorpyrifos on fetal growth outcomes: implications for risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:281-316. [PMID: 22571222 PMCID: PMC3431551 DOI: 10.1080/10937404.2012.672150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chlorpyrifos (CPF) is one of the most widely used organophosphate insecticides in the United States. By December 2000, nearly all residential uses were voluntarily canceled, so that today, CPF is only used to control insect pests on a variety of crops. Periodic review of the potential effects of CPF on all developmental outcomes is necessary in the United States because the Food Quality Protection Act mandates special consideration of risk assessments for infants and children. This article reviews epidemiologic studies examining the association of potential CPF exposure with growth indices, including birth weight, birth length, and head circumference, and animal studies focusing on related somatic developmental endpoints. It differs from earlier reviews by including an additional cohort study and providing in-depth systematic evaluation of the patterns of association across different studies with respect to specificity of biomarkers for CPF, consistency, dose response, strength of association, temporality, and biological plausibility (Hill 1965), as well as consideration of the potential role of effect modification and bias. The review did not identify any strong associations exhibiting consistent exposure-response patterns that were observed in more than one of the four cohort studies evaluated. In addition, the animal data indicate that developmental effects occur at doses that produce substantial maternal toxicity and red blood cell (RBC) acetylcholinesterase (AChE) inhibition. Based on consideration of both the epidemiologic and animal data, maternal RBC AChE inhibition is a more sensitive endpoint for risk assessment than somatic developmental effects reviewed in this article.
Collapse
Affiliation(s)
- Pamela J. Mink
- Exponent, Inc., Health Sciences Group, Menlo Park, California, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Carole A. Kimmel
- Exponent, Inc., Health Sciences Group, Menlo Park, California, USA
| | - Abby A. Li
- Exponent, Inc., Health Sciences Group, Menlo Park, California, USA
| |
Collapse
|
26
|
Elmazoudy RH, Attia AA, Abdelgawad HS. Evaluation of developmental toxicity induced by anticholinesterase insecticide, diazinon in female rats. ACTA ACUST UNITED AC 2011; 92:534-42. [PMID: 21770030 DOI: 10.1002/bdrb.20322] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/06/2011] [Indexed: 11/11/2022]
Abstract
Developmental toxicities, including birth defects, are significant public health problems. This study was planned to assess the cholinergic and developmental potentials of diazinon that is widely used as an organophosphate insecticide. Pregnant female Sprague-Dawley rats were given diazinon orally at doses of 0, 1.9, 3.8, and 7.6 mg/kg body weight (b.w.)/day on gestation days 6 to 15. Maternal brain acetylcholinesterase activities, measured on gestation day20, were significantly decreased at 3.8 and 7.6 mg/kg b.w./day, but fetal acetylcholinesterase activity was not altered. Maternal toxicities, as evidenced by cholinergic symptoms including diarrhea, tremors, weakness, salivation, and decreased activities, were observed at the 3.8 and 7.6 mg/kg b.w./day dose groups. Net gravid uterine weight was decreased at a dose of 7.6 mg/kg b.w./day. No maternal effects were apparent in the 1.9 mg/kg b.w./day dose group. Maternal toxicity at a dose of 3.8 mg/kg b.w./day did not induce fetotoxicity or teratogeneicity. However, 7.6 mg/kg b.w./day doses significantly resulted in fetal toxicity and malformations in addition to maternal toxicity in animals. In conclusion, teratogenic disorders only outlined by doses that produced marked maternal toxicity. Since the malformations were not morphologically related, they were considered to be secondary to maternal toxicity; hence, the malformations were not related to cholinesterase inhibition.
Collapse
|
27
|
Syed F, Soni I, John PJ, Bhatnagar P. Evaluation of teratogenic potential of cyfluthrin, a synthetic pyrethroid in Swiss albino mice. Toxicol Ind Health 2010; 26:105-11. [DOI: 10.1177/0748233709360199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A toxicity study was planned to assess the teratogenic potential of cyfluthrin that is widely used as a household insecticide to control mosquitoes, flies and cockroaches. Pregnant Swiss albino mice of one group were orally administered two doses of the pesticide (16 mg/kg and 32 mg/kg body weight) daily during the organogenetic phase (days 5—14) of gestation. The second group received the same two doses daily during the maturation phase (days 14—18) of gestation. The animals receiving the higher dose exhibited burrowing behaviour, which is a characteristic symptom of pyrethroid poisoning. The autopsies were performed on the 18th day of gestation and routine teratological observations were made. No external malformations occurred in any of the fetus. The higher dose significantly reduced the number of live fetuses, litter size and increased the resorption of embryos when administered during organogenesis, while exposure to the pesticide during the maturation phase did not significantly affect the reproductive parameters. During both the phases, the higher dose reduced the maternal weight gain and the average weight of the fetuses. The fetal anomalies observed were reduced ossification of skull bones, widened cranial sutures, short or absent ribs, hydrocephaly of the ventricles, microphthalmia, anophthalmia, pulmonary edema and subcutaneous edema.
Collapse
Affiliation(s)
- Farah Syed
- Environmental Toxicology Laboratory, Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Rajasthan, India,
| | - Inderpal Soni
- Environmental Toxicology Laboratory, Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Rajasthan, India
| | - PJ John
- Environmental Toxicology Laboratory, Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Rajasthan, India
| | - Pradeep Bhatnagar
- Environmental Toxicology Laboratory, Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Rajasthan, India
| |
Collapse
|
28
|
De Angelis S, Tassinari R, Maranghi F, Eusepi A, Di Virgilio A, Chiarotti F, Ricceri L, Pesciolini AV, Gilardi E, Moracci G, Calamandrei G, Olivieri A, Mantovani A. Developmental Exposure to Chlorpyrifos Induces Alterations in Thyroid and Thyroid Hormone Levels Without Other Toxicity Signs in Cd1 Mice. Toxicol Sci 2009; 108:311-9. [DOI: 10.1093/toxsci/kfp017] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schulte-Hermann R, Spencer PS. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Crit Rev Toxicol 2008; 38 Suppl 2:1-125. [PMID: 18726789 DOI: 10.1080/10408440802272158] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Morgan AM, Abd El-Aty AM. Reproductive Toxicity Evaluation of Pestban Insecticide Exposure in Male and Female Rats. Toxicol Res 2008; 24:137-150. [PMID: 32038788 PMCID: PMC7006254 DOI: 10.5487/tr.2008.24.2.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/02/2008] [Accepted: 05/02/2008] [Indexed: 11/20/2022] Open
Abstract
Sexually mature male and female rats were orally intubated with the organophosphorus insecticide, Pestban at a daily dosage of 7.45 or 3.72 mg/kg bwt, equivalent to 1/20 and 1/40 LD50, respectively. Male rats were exposed for 70 days, while the female rats were exposed for 14 days, premating, during mating and throughout the whole length of gestation and lactation periods till weaning. The results showed depressed acetylcholinesterase (AChE) activity in the brain of parents, fetuses and their placentae in a dose-dependent manner. The fertility was significantly reduced with increasing the dose in both treated groups, with more pronounced suppressive effects in the male treated group. The number of implantation sites and viable fetuses were significantly reduced in pregnant females of both treated groups. However, the number of resorptions, dead fetuses, and pre-and postimplantation losses were significantly increased. The incidence of resorptions was more pronounced in treated female compared to male group and was dose dependant. The behavioral responses as well as fetal survival and viability indices were altered in both treated groups during the lactation period. The incidence of these effects was more pronounced in the treated female group and occurred in a dose-related manner. The recorded morphological, visceral, and skeletal anomalies were significantly increased with increasing the dose in fetuses of both treated groups, with more pronounced effects on fetuses of treated females. In conclusion, the exposure of adult male and female rats to Pestban would cause adverse effects on fertility and reproduction.
Collapse
Affiliation(s)
- Ashraf M. Morgan
- Department of Toxicology and Forensic Medicine; Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - A. M. Abd El-Aty
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul, 143-701 Korea
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| |
Collapse
|