1
|
Wang Y, Geng X, Qin S, Che T, Yan L, Yuan B, Li W. Advance on the effects of algal carotenoids on inflammatory signaling pathways. Eur J Med Chem 2025; 281:117020. [PMID: 39536497 DOI: 10.1016/j.ejmech.2024.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The development of inflammation has an indispensable importance in the self-protection of the human body. However, over-inflammation may damage human health, and inflammatory pathways and inflammasomes have a significant impact on the onset of inflammation. Therefore, how to constrain the development of inflammation through inflammatory pathways or inflammasomes becomes a hot research issue. Carotenoids are a natural pigment and an active substance in algae, with anti-inflammatory and antioxidant effects. Many studies have shown that carotenoids have inhibitory effects on the inflammatory pathways and inflammasomes. In this review, we discussed the mechanism of carotenoids targeting those important inflammatory pathways and their effects on common inflammasome NLRP3 and inflammation-related diseases from the perspective of several inflammatory pathways, including p38 MAPK, IL-6/JAK/STAT3, and PI3K, with a focus on the targets and targeting effects of carotenoids on different inflammatory signaling pathways, and at last proposed possible anti-inflammatory targets.
Collapse
Affiliation(s)
- Yudi Wang
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Xinrong Geng
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Tuanjie Che
- Zhigong Biomedicine Co., Ltd, Yantai, Shandong, 2640035, China
| | - Libo Yan
- Zhigong Biomedicine Co., Ltd, Yantai, Shandong, 2640035, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Wenjun Li
- Institute of Marine Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
2
|
Ding L, Luo X, Xian Q, Zhu S, Wen W. Innovative Approaches to Fucoxanthin Delivery: Characterization and Bioavailability of Solid Lipid Nanoparticles with Eco-Friendly Ingredients and Enteric Coating. Int J Mol Sci 2024; 25:12825. [PMID: 39684536 DOI: 10.3390/ijms252312825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Fucoxanthin (FN), a carotenoid derived from brown seaweed and algae, offers significant health benefits. However, its unique structure leads to challenges in stability and bioavailability. To overcome these issues, we successfully encapsulated fucoxanthin in solid lipid nanoparticles (SLNs) utilizing health-safe materials, achieving remarkable results. SLNs exhibited a nanoscale size of 248.98 ± 4.0 nm, along with an impressive encapsulation efficiency of 98.30% ± 0.26% and a loading capacity of 5.48% ± 0.82% in lipid. The polydispersity index (PDI) was measured at 0.161 ± 0.03, indicating a narrow size distribution, while the high negative zeta potential of -32.93 ± 1.2 mV suggests excellent stability. Pharmacokinetic studies conducted in Sprague-Dawley rats revealed an exceptional oral bioavailability of 2723.16% compared to fucoxanthin crystals, likely attributed to the enhanced stability and improved cellular uptake of the SLNs. To further improve bioavailability, we creatively applied enteric coatings to the freeze-dried SLNs, effectively protecting fucoxanthin from gastric degradation, which is supported by in vitro digestion results. These findings underscore the potential of SLNs as a superior delivery system for fucoxanthin, significantly enhancing its therapeutic efficacy and broadening its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lijun Ding
- Thrust of Bioscience and Biomedical Engineering, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| | - Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| | - Qingyue Xian
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| | - Sishi Zhu
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| | - Weijia Wen
- Thrust of Bioscience and Biomedical Engineering, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
| |
Collapse
|
3
|
Utpal BK, Dehbia Z, Zidan BMRM, Sweilam SH, Singh LP, Arunkumar MS, Sona M, Panigrahy UP, Keerthana R, Mandadi SR, Rab SO, Alshehri MA, Koula D, Suliman M, Nafady MH, Emran TB. Carotenoids as modulators of the PI3K/Akt/mTOR pathway: innovative strategies in cancer therapy. Med Oncol 2024; 42:4. [PMID: 39549201 DOI: 10.1007/s12032-024-02551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Cancer progression is primarily driven by the uncontrolled activation of cellular signaling pathways, with the PI3K/Akt/mTOR (PAMT) pathway playing a central role. This pathway significantly contributes to the proliferation and survival of cancer cells, and its hyperactivity is a major challenge in managing several types of malignancies. This article delves into the promising potential of carotenoids, natural pigments found in abundance in fruits and vegetables, as a novel therapeutic strategy for cancer treatment. By specifically targeting and inhibiting the PAMT pathway, carotenoids may effectively disrupt the growth and survival of cancer cells. The article examines the complex mechanisms underlying these interactions and highlights the obstacles faced in cancer treatment. It proposes a compelling approach to developing therapies that leverage natural products to target this critical pathway, offering a fresh perspective on cancer treatment. Further research is essential to enhance the therapeutic efficacy of these compounds.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - B M Redwan Matin Zidan
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram (Rohtas) Bihar, Jamuhar, 821305, India
| | - M S Arunkumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - M Sona
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, India
| | - R Keerthana
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sandhya Rani Mandadi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Tuljaraopet, Telangana , 502313, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Doukani Koula
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt.
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
4
|
Das A, Shahriar TG, Zehravi M, Sweilam SH, Alshehri MA, Ahmad I, Nafady MH, Emran TB. Clinical management of eye diseases: carotenoids and their nanoformulations as choice of therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03376-1. [PMID: 39167170 DOI: 10.1007/s00210-024-03376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Eye diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR), impose a substantial health cost on a worldwide scale. Carotenoids have emerged as intriguing candidates for pharmacological treatment of various disorders. Their therapeutic effectiveness, however, is hindered by poor solubility and vulnerability to degradation. Nanocarriers, such as nanoparticles, liposomes, and micelles, provide a transformational way to overcome these limits. This review explores the pharmacological potential of carotenoids, namely lutein, zeaxanthin, and astaxanthin, to treat several ocular disorders. The main emphasis is on their anti-inflammatory and antioxidant actions, which help to counteract inflammation and oxidative stress, crucial factors in the development of AMD and DR. The review evaluates the significant benefits of nano-formulated carotenoids, such as improved bioavailability, higher cellular absorption, precise administration to particular ocular tissues, and greater biostability, which make them superior to conventional carotenoids. Some clinical studies on the beneficial properties of carotenoids in eye diseases are discussed. Furthermore, safety and regulatory concerns are also taken into account. Ultimately, carotenoids, especially when created in their nano form, have significant potential for safeguarding eyesight and enhancing the overall well-being of several individuals afflicted with vision-endangering eye diseases.
Collapse
Affiliation(s)
- Amit Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
5
|
Du HF, Jiang JM, Wu SH, Shi YF, Liu HT, Hua ZH, Wang CS, Qian GY, Ding HM. Fucoxanthin Inhibits the Proliferation and Metastasis of Human Pharyngeal Squamous Cell Carcinoma by Regulating the PI3K/Akt/mTOR Signaling Pathway. Molecules 2024; 29:3603. [PMID: 39125009 PMCID: PMC11314479 DOI: 10.3390/molecules29153603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Human pharyngeal squamous cell carcinoma (HPSCC) is the most common malignancy in the head and neck region, characterized by high mortality and a propensity for metastasis. Fucoxanthin, a carotenoid isolated from brown algae, exhibits pharmacological properties associated with the suppression of tumor proliferation and metastasis. Nevertheless, its potential to inhibit HPSCC proliferation and metastasis has not been fully elucidated. This study represents the first exploration of the inhibitory effects of fucoxanthin on two human pharyngeal squamous carcinoma cell lines (FaDu and Detroit 562), as well as the mechanisms underlying those effects. The results showed dose-dependent decreases in the proliferation, migration, and invasion of HPSCC cells after fucoxanthin treatment. Further studies indicated that fucoxanthin caused a significant reduction in the expression levels of proteins in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, as well as the downstream proteins matrix metalloproteinase (MMP)-2 and MMP-9. Specific activators of PI3K/AKT reversed the effects of fucoxanthin on these proteins, as well as on cell proliferation and metastasis, in FaDu and Detroit 562 cells. Molecular docking assays confirmed that fucoxanthin strongly interacted with PI3K, AKT, mTOR, MMP-2, and MMP-9. Overall, fucoxanthin, a functional food component, is a potential therapeutic agent for HPSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guo-Ying Qian
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo 315100, China; (H.-F.D.); (J.-M.J.); (S.-H.W.); (Y.-F.S.); (H.-T.L.); (Z.-H.H.); (C.-S.W.)
| | - Hao-Miao Ding
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo 315100, China; (H.-F.D.); (J.-M.J.); (S.-H.W.); (Y.-F.S.); (H.-T.L.); (Z.-H.H.); (C.-S.W.)
| |
Collapse
|
6
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Merito Ali A, Mohamed H, Jutur PP, Ainane T. Unlocking the Green Gold: Exploring the Cancer Treatment and the Other Therapeutic Potential of Fucoxanthin Derivatives from Microalgae. Pharmaceuticals (Basel) 2024; 17:960. [PMID: 39065808 PMCID: PMC11280058 DOI: 10.3390/ph17070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Fucoxanthin, a carotenoid widely studied in marine microalgae, is at the heart of scientific research because of its promising bioactive properties for human health. Its unique chemical structure and specific biosynthesis, characterized by complex enzymatic conversion in marine organisms, have been examined in depth in this review. The antioxidant, anti-inflammatory, and anti-cancer activities of fucoxanthin have been rigorously supported by data from in vitro and in vivo experiments and early clinical trials. Additionally, this review explores emerging strategies to optimize the stability and efficacy of fucoxanthin, aiming to increase its solubility and bioavailability to enhance its therapeutic applications. However, despite these potential benefits, challenges persist, such as limited bioavailability and technological obstacles hindering its large-scale production. The medical exploitation of fucoxanthin thus requires an innovative approach and continuous optimization to overcome these barriers. Although further research is needed to refine its clinical use, fucoxanthin offers promising potential in the development of natural therapies aimed at improving human health. By integrating knowledge about its biosynthesis, mechanisms of action, and potential beneficial effects, future studies could open new perspectives in the treatment of cancer and other chronic diseases.
Collapse
Affiliation(s)
| | - Ayoub Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Ibrahim Houmed Aboubaker
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Ali Merito Ali
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Tarik Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
7
|
Yang S, Li J, Yan L, Wu Y, Zhang L, Li B, Tong H, Lin X. Molecular Mechanisms of Fucoxanthin in Alleviating Lipid Deposition in Metabolic Associated Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10391-10405. [PMID: 38669300 DOI: 10.1021/acs.jafc.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is witnessing a global surge; however, it still lacks effective pharmacological interventions. Fucoxanthin, a natural bioactive metabolite derived from marine brown algae, exhibits promising pharmacological functions, particularly in ameliorating metabolic disorders. However, the mechanisms underlying its therapeutic efficacy in addressing MAFLD remain elusive. Our present findings indicated that fucoxanthin significantly alleviated palmitic acid (PA)-induced hepatic lipid deposition in vitro and obesity-induced hepatic steatosis in ob/ob mice. Moreover, at both the protein and transcriptional levels, fucoxanthin effectively increased the expression of PPARα and CPT1 (involved in fatty acid oxidation) and suppressed FASN and SREBP1c (associated with lipogenesis) in both PA-induced HepG2 cells and hepatic tissues in ob/ob mice. This modulation was accompanied by the activation of AMPK. The capacity of fucoxanthin to improve hepatic lipid deposition was significantly attenuated when utilizing the AMPK inhibitor or siRNA-mediated AMPK silencing. Mechanistically, fucoxanthin activates AMPK, subsequently regulating the KEAP1/Nrf2/ARE signaling pathway to exert antioxidative effects and stimulating the PGC1α/NRF1 axis to enhance mitochondrial biogenesis. These collective actions contribute to fucoxanthin's amelioration of hepatic steatosis induced by metabolic perturbations. These findings offer valuable insights into the prospective utilization of fucoxanthin as a therapeutic strategy for managing MAFLD.
Collapse
Affiliation(s)
- Shouxing Yang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Jinhai Li
- Department of Liver and Gall Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, P.R. China
| | - Liping Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, P.R. China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, P.R. China
| | - Lin Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, P.R. China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, P.R. China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, P.R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, P.R. China
| | - Xiaochun Lin
- Department of Pediatrics Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, P.R. China
| |
Collapse
|
8
|
Wu Z, Tang Y, Liu Y, Chen Z, Feng Y, Hu H, Liu H, Chen G, Lu Y, Hu Y, Xu R. Co-delivery of fucoxanthin and Twist siRNA using hydroxyethyl starch-cholesterol self-assembled polymer nanoparticles for triple-negative breast cancer synergistic therapy. J Adv Res 2024:S2090-1232(24)00160-7. [PMID: 38636588 DOI: 10.1016/j.jare.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer with an extremely dismal prognosis and few treatment options. As a desmoplastic tumor, TNBC tumor cells are girdled by stroma composed of cancer-associated fibroblasts (CAFs) and their secreted stromal components. The rapidly proliferating tumor cells, together with the tumor stroma, exert additional solid tissue pressure on tumor vasculature and surrounding tissues, severely obstructing therapeutic agent from deep intratumoral penetration, and resulting in tumor metastasis and treatment resistance. OBJECTIVES Fucoxanthin (FX), a xanthophyll carotenoid abundant in marine algae, has attracted widespread attention as a promising alternative candidate for tumor prevention and treatment. Twist is a pivotal regulator of epithelial to mesenchymal transition, and its depletion has proven to sensitize antitumor drugs, inhibit metastasis, reduce CAFs activation and the following interstitial deposition, and increase tumor perfusion. The nanodrug delivery system co-encapsulating FX and nucleic acid drug Twist siRNA (siTwist) was expected to form a potent anti-TNBC therapeutic cyclical feedback loop. METHODS AND RESULTS Herein, our studies constituted a novel self-assembled polymer nanomedicine (siTwist/FX@HES-CH) based on the amino-modified hydroxyethyl starch (HES-NH2) grafted with hydrophobic segment cholesterol (CH). The MTT assay, flow cytometry apoptosis analysis, transwell assay, western blot, and 3D multicellular tumor spheroids growth inhibition assay all showed that siTwist/FX@HES-CH could kill tumor cells and inhibit their metastasis in a synergistic manner. The in vivo anti-TNBC efficacy was demonstrated that siTwist/FX@HES-CH remodeled tumor microenvironment, facilitated interstitial barrier crossing, killed tumor cells synergistically, drastically reduced TNBC orthotopic tumor burden and inhibited lung metastasis. CONCLUSION Systematic studies revealed that this dual-functional nanomedicine that targets both tumor cells and tumor microenvironment significantly alleviates TNBC orthotopic tumor burden and inhibits lung metastasis, establishing a new paradigm for TNBC therapy.
Collapse
Affiliation(s)
- Zeliang Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxiang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuao Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Gang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Sun H, Wang J, Li Y, Yang S, Chen DD, Tu Y, Liu J, Sun Z. Synthetic biology in microalgae towards fucoxanthin production for pharmacy and nutraceuticals. Biochem Pharmacol 2024; 220:115958. [PMID: 38052271 DOI: 10.1016/j.bcp.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Synthetic biology has emerged as a powerful tool for engineering biological systems to produce valuable compounds, including pharmaceuticals and nutraceuticals. Microalgae, in particular, offer a promising platform for the production of bioactive compounds due to their high productivity, low land and water requirements, and ability to perform photosynthesis. Fucoxanthin, a carotenoid pigment found predominantly in brown seaweeds and certain microalgae, has gained significant attention in recent years due to its numerous health benefits, such as antioxidation, antitumor effect and precaution osteoporosis. This review provides an overview of the principles and applications of synthetic biology in the microbial engineering of microalgae for enhanced fucoxanthin production. Firstly, the fucoxanthin bioavailability and metabolism in vivo was introduced for the beneficial roles, followed by the biological functions of anti-oxidant activity, anti-inflammatory activity, antiapoptotic role antidiabetic and antilipemic effects. Secondly, the cultivation condition and strategy were summarized for fucoxanthin improvement with low production costs. Thirdly, the genetic engineering of microalgae, including gene overexpression, knockdown and knockout strategies were discussed for further improving the fucoxanthin production. Then, synthetic biology tools of CRISPR-Cas9 genome editing, transcription activator-like effector nucleases as well as modular assembly and chassis engineering were proposed to precise modification of microalgal genomes to improve fucoxanthin production. Finally, challenges and future perspectives were discussed to realize the industrial production and development of functional foods of fucoxanthin from microalgae.
Collapse
Affiliation(s)
- Han Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuelian Li
- China National Chemical Information Center, Beijing 100020, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | | | - Yidong Tu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Algae Innovation Center for Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
10
|
Islam F, Khan J, Zehravi M, Das R, Haque MA, Banu A, Parwaiz S, Nainu F, Nafady MH, Shahriar SMS, Hossain MJ, Muzammil K, Emran TB. Synergistic effects of carotenoids: Therapeutic benefits on human health. Process Biochem 2024; 136:254-272. [DOI: 10.1016/j.procbio.2023.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
11
|
Chong JWR, Tang DYY, Leong HY, Khoo KS, Show PL, Chew KW. Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae. Bioengineered 2023; 14:2244232. [PMID: 37578162 PMCID: PMC10431731 DOI: 10.1080/21655979.2023.2244232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Fucoxanthin is a carotenoid that possesses various beneficial medicinal properties for human well-being. However, the current extraction technologies and quantification techniques are still lacking in terms of cost validation, high energy consumption, long extraction time, and low yield production. To date, artificial intelligence (AI) models can assist and improvise the bottleneck of fucoxanthin extraction and quantification process by establishing new technologies and processes which involve big data, digitalization, and automation for efficiency fucoxanthin production. This review highlights the application of AI models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS), capable of learning patterns and relationships from large datasets, capturing non-linearity, and predicting optimal conditions that significantly impact the fucoxanthin extraction yield. On top of that, combining metaheuristic algorithm such as genetic algorithm (GA) can further improve the parameter space and discovery of optimal conditions of ANN and ANFIS models, which results in high R2 accuracy ranging from 98.28% to 99.60% after optimization. Besides, AI models such as support vector machine (SVM), convolutional neural networks (CNNs), and ANN have been leveraged for the quantification of fucoxanthin, either computer vision based on color space of images or regression analysis based on statistical data. The findings are reliable when modeling for the concentration of pigments with high R2 accuracy ranging from 66.0% - 99.2%. This review paper has reviewed the feasibility and potential of AI for the extraction and quantification purposes, which can reduce the cost, accelerate the fucoxanthin yields, and development of fucoxanthin-based products.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hui Yi Leong
- ISCO (Nanjing) Biotech-Company, Nanjing, Jiangning, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
12
|
Fernandes V, Mamatha BS. Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability. Curr Nutr Rep 2023; 12:567-580. [PMID: 37642932 DOI: 10.1007/s13668-023-00492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Fucoxanthin is an orange-red xanthophyll carotenoid found in brown seaweeds and known for its many bioactive properties. In recent years, the bioactive properties of fucoxanthin have been widely explored, making it a compound of immense interest for various health applications like anti-cancer, anti-tumour, anti-diabetic and anti-obesity properties. However, the poor bioavailability and instability of fucoxanthin in the gastrointestinal tract have major limitations. Encapsulation is a promising approach to overcome these challenges by enclosing fucoxanthin in a protective layer, such as liposomes or nano-particles. Encapsulation can improve the stability of fucoxanthin by protecting it from exposure to heat, pH, illumination, gastric acids and enzymes that can accelerate its degradation. RECENT FINDINGS Studies have shown that lipid-based encapsulation systems such as liposomes or nano-structured lipid carriers may solubilise fucoxanthin and enhance its bioavailability (from 25 to 61.2%). In addition, encapsulation can also improve the solubility of hydrophobic fucoxanthin, which is important for its absorption and bioavailability. This review highlights the challenges involved in the absorption of fucoxanthin in the living system, role of micro- and nano-encapsulation of fucoxanthin and their potential to enhance intestinal absorption.
Collapse
Affiliation(s)
- Vanessa Fernandes
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India.
| |
Collapse
|
13
|
Wang X, Huang C, Fu X, Jeon YJ, Mao X, Wang L. Bioactivities of the Popular Edible Brown Seaweed Sargassum fusiforme: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16452-16468. [PMID: 37876153 DOI: 10.1021/acs.jafc.3c05135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Sargassum fusiforme has a wide range of active constituents (such as polysaccharides, sterols, polyphenols, terpenes, amino acids, trace elements, etc.) and is an economically important brown algae with a long history. In recent years, S. fusiforme has been intensively studied and has attracted wide attention in the fields of agriculture, environment, medicine, and functional food. In this review, we reviewed the current research status of S. fusiforme at home and abroad over the past decade by searching Web of science, Google Scholar, and other databases, and structurally analyzed the active components of S. fusiforme, and on this basis, we focused on summarizing the cutting-edge research and scientific issues on the role of various active substances in S. fusiforme in exerting antioxidant, anti-inflammatory, antitumor, antidiabetic, immunomodulatory, antiviral antibacterial, and anticoagulant effects. The mechanisms by which different substances exert active effects were further summarized by exploring different experimental models and are shown visually. It provides a reference to promote further development and comprehensive utilization of S. fusiforme resources.
Collapse
Affiliation(s)
- Xiping Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoting Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju City, Jeju Self-Governing Province 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju City, Jeju Self-Governing Province 63333, Republic of Korea
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
14
|
Slautin VN, Grebnev DY, Maklakova IY, Sazonov SV. Fucoxanthin exert dose-dependent antifibrotic and anti-inflammatory effects on CCl 4-induced liver fibrosis. J Nat Med 2023; 77:953-963. [PMID: 37391684 DOI: 10.1007/s11418-023-01723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
The lack of an effective non-surgical liver fibrosis treatment is a major problem in hepatology. Fucoxanthin is a marine xanthophyll that exhibits anti-inflammatory, antioxidant, and hepatoprotective properties, thereby indicating its potential effectiveness in the treatment of liver fibrosis. The study aims to investigate the antifibrotic and anti-inflammatory effects of fucoxanthin and its main mechanisms on carbon tetrachloride (CCl4)-induced liver fibrosis in 50 outbred ICR/CD1 mice. 2 μl/g of CCl4 were injected intraperitoneally 2 times a week for 6 weeks. Fucoxanthin (5, 10, 30 mg/kg) was administered via gavage. Liver histopathology was evaluated by Hematoxylin-Eosin (H&E) and Sirius Red staining using the METAVIR scale. The immunohistochemical method was used to determine the number of CD45 and α-smooth muscle actin (α-SMA) positive cells, and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and α-SMA positive areas. Using enzyme immunoassays, procollagen 1 (COL1A1), transforming growth factor-β (TGF-β), and hepatocyte growth factor (HGF) were determined in homogenate, and interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) were determined in blood serum. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activity, albumin (ALB), and total bilirubin (Tbil) levels are determined by biochemical assays. Fucoxanthin significantly reduced the severity of liver fibrosis, profibrogenic markers, inflammatory infiltration, and pro-inflammatory cytokines. In summary, we confirmed that fucoxanthin has a dose-dependent antifibrotic effect on CCl4-induced liver fibrosis. We found that the anti-inflammatory effect of fucoxanthin is related to the inhibition of IL-1β and TNF-α synthesis, as well as the decrease in the number of leukocytes in the injured liver.
Collapse
Affiliation(s)
- Vasilii N Slautin
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation.
- Federal Budgetary Institution of Science "Federal Scientific Research Institute of Viral Infection "Virome", 23, Letnyaya Street, 620030, Yekaterinburg, Russian Federation.
| | - Dmitry Yu Grebnev
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russian Federation
| | - Irina Yu Maklakova
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russian Federation
| | - Sergey V Sazonov
- Federal State Budgetary Institution of Higher Professional Education, Ural State Medical University", 3, Repin Street, 620028, Yekaterinburg, Russian Federation
- Institute of Medical Cell Technologies, 22a, Karl Marx Street, 620026, Yekaterinburg, Russian Federation
| |
Collapse
|
15
|
Chini Zittelli G, Lauceri R, Faraloni C, Silva Benavides AM, Torzillo G. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem Photobiol Sci 2023; 22:1733-1789. [PMID: 37036620 DOI: 10.1007/s43630-023-00407-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023]
Abstract
Phycobiliproteins, carotenoids and fucoxanthin are photosynthetic pigments extracted from microalgae and cyanobacteria with great potential biotechnological applications, as healthy food colorants and cosmetics. Phycocyanin possesses a brilliant blue color, with fluorescent properties making it useful as a reagent for immunological essays. The most important source of phycocyanin is the cyanobacterium Arthrospira platensis, however, recently, the Rhodophyta Galdieria sulphuraria has also been identified as such. The main obstacle to the commercialization of phycocyanin is represented by its chemical instability, strongly reducing its shelf-life. Moreover, the high level of purity needed for pharmaceutical applications requires several steps which increase both the production time and cost. Microalgae (Chlorella, Dunaliella, Nannochloropsis, Scenedesmus) produce several light harvesting carotenoids, and are able to manage with oxidative stress, due to their free radical scavenging properties, which makes them suitable for use as source of natural antioxidants. Many studies focused on the selection of the most promising strains producing valuable carotenoids and on their extraction and purification. Among carotenoids produced by marine microalgae, fucoxanthin is the most abundant, representing more than 10% of total carotenoids. Despite the abundance and diversity of fucoxanthin producing microalgae only a few species have been studied for commercial production, the most relevant being Phaeodactylum tricornutum. Due to its antioxidant activity, fucoxanthin can bring various potential benefits to the prevention and treatment of lifestyle-related diseases. In this review, we update the main results achieved in the production, extraction, purification, and commercialization of these important pigments, motivating the cultivation of microalgae as a source of natural pigments.
Collapse
Affiliation(s)
- Graziella Chini Zittelli
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Rosaria Lauceri
- Istituto di Ricerca sulle Acque, CNR, Sede Di Verbania, Largo Tonolli 50, 28922, Verbania, Italy
| | - Cecilia Faraloni
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Ana Margarita Silva Benavides
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per la Bioeconomia, CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy.
- Centro de Investigación en Ciencias del Mar Y Limnologίa, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
| |
Collapse
|
16
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aguilera-Gómez M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser-Berthold M, Poulsen M, Prieto Maradona M, Siskos A, Schlatter JR, van Loveren H, Muñoz González A, Rossi A, Ververis E, Knutsen HK. Safety of an ethanolic extract of the dried biomass of the microalga Phaeodactylum tricornutum as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2023; 21:e08072. [PMID: 37448447 PMCID: PMC10336653 DOI: 10.2903/j.efsa.2023.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on an ethanolic extract of the dried biomass of the microalga Phaeodactylum tricornutum as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is an ethanolic extract of the dried biomass of the microalga P. tricornutum diluted in a medium-chain triglyceride oil carrier, with standardised fucoxanthin and tocopherol content. The main component of the NF is fat (78% on average), followed by crude protein (10% on average). The Panel is of the view that a consistent and safe production process has not been demonstrated. Additionally, the Panel considers that the information provided on the composition of the NF is not complete and may raise safety concerns. The applicant proposed to use the NF as a food supplement at the use level of 437 mg/day, with the target population being adults, excluding pregnant and breastfeeding women. There is no history of use of the NF or of its source, i.e. P. tricornutum. The Panel notes that the source of the NF, P. tricornutum, was not granted the qualified presumption of safety (QPS) status by the EFSA Panel on Biological Hazards (BIOHAZ), due to the lack of a safe history of use in the food chain and on its potential for production of bioactive compounds with toxic effects. There were no concerns regarding genotoxicity of the NF. In the 90-day study provided, a number of adverse effects were observed, some of them seen already at the lowest dose tested (750 mg/kg body weight (bw) day), which was identified by the Panel as the lowest-observed-adverse-effect-level (LOAEL). The potential phototoxicity of pheophorbide A and pyropheophorbide A in the NF was not addressed in this study. Although noting the uncertainties identified by the Panel regarding the analytical determination of these substances in the NF and the limitations in the publicly available toxicity data, a low margin of exposure (MoE) was calculated for these substances at the proposed use levels. The Panel concludes that the safety of the NF under the proposed uses and use levels has not been established.
Collapse
|
17
|
Lu J, Wu XJ, Hassouna A, Wang KS, Li Y, Feng T, Zhao Y, Jin M, Zhang B, Ying T, Li J, Cheng L, Liu J, Huang Y. Gemcitabine‑fucoxanthin combination in human pancreatic cancer cells. Biomed Rep 2023; 19:46. [PMID: 37324167 PMCID: PMC10265583 DOI: 10.3892/br.2023.1629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023] Open
Abstract
Gemcitabine is a chemotherapeutic agent for pancreatic cancer treatment. It has also been demonstrated to inhibit human pancreatic cancer cell lines, MIA PaCa-2 and PANC-1. The aim of the present study was to investigate the suppressive effect of fucoxanthin, a marine carotenoid, in combination with gemcitabine on pancreatic cancer cells. MTT assays and cell cycle analysis using flow cytometry were performed to study the mechanism of action. The results revealed that combining a low dose of fucoxanthin with gemcitabine enhanced the cell viability of human embryonic kidney cells, 293, while a high dose of fucoxanthin enhanced the inhibitory effect of gemcitabine on the cell viability of this cell line. In addition, the enhanced effect of fucoxanthin on the inhibitory effect of gemcitabine on PANC-1 cells was significant (P<0.01). Fucoxanthin combined with gemcitabine also exerted significant enhancement of the anti-proliferation effect in MIA PaCa-2 cells in a concentration dependent manner (P<0.05), compared with gemcitabine treatment alone. In conclusion, fucoxanthin improved the cytotoxicity of gemcitabine on human pancreatic cancer cells at concentrations that were not cytotoxic to non-cancer cells. Thus, fucoxanthin has the potential to be used as an adjunct in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jun Lu
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, P.R. China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Xiaowu Jenifer Wu
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Amira Hassouna
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Kelvin Sheng Wang
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yan Li
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Tao Feng
- College of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Minfeng Jin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | - Lufeng Cheng
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Johnson Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yue Huang
- Shanghai Business School, Fengxian, Shanghai 201499, P.R. China
| |
Collapse
|
18
|
Kahraman C, Kaya Bilecenoglu D, Sabuncuoglu S, Cankaya IT. Toxicology of pharmaceutical and nutritional longevity compounds. Expert Rev Mol Med 2023; 25:e28. [PMID: 37345424 PMCID: PMC10752229 DOI: 10.1017/erm.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Aging is the most prominent risk factor for many diseases, which is considered to be a complicated biological process. The rate of aging depends on the effectiveness of important mechanisms such as the protection of DNA from free radicals, which protects the structural and functional integrity of cells and tissues. In any organism, not all organs may age at the same rate. Slowing down primary aging and reaching maximum lifespan is the most basic necessity. In this process, it may be possible to slow down or stabilise some diseases by using the compounds for both dietary and pharmacological purposes. Natural compounds with antioxidant and anti-inflammatory effects, mostly plant-based nutraceuticals, are preferred in the treatment of age-related chronic diseases and can also be used for other diseases. An increasing number of long-term studies on synthetic and natural compounds aim to elucidate preclinically and clinically the mechanisms underlying being healthy and prolongation of life. To delay age-related diseases and prolong the lifespan, it is necessary to take these compounds with diet or pharmaceuticals, along with detailed toxicological results. In this review, the most promising and utilised compounds will be highlighted and it will be discussed whether they have toxic effects in short/long-term use, although they are thought to be used safely.
Collapse
Affiliation(s)
- Cigdem Kahraman
- Department of Pharmacognosy, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | | | - Suna Sabuncuoglu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Irem Tatli Cankaya
- Department of Pharmaceutical Botany, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
19
|
Winarto J, Song DG, Pan CH. The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24098203. [PMID: 37175909 PMCID: PMC10179653 DOI: 10.3390/ijms24098203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic liver disease (CLD) has emerged as a leading cause of human deaths. It caused 1.32 million deaths in 2017, which affected men more than women by a two-to-one ratio. There are various causes of CLD, including obesity, excessive alcohol consumption, and viral infection. Among them, non-alcoholic fatty liver disease (NAFLD), one of obesity-induced liver diseases, is the major cause, representing the cause of more than 50% of cases. Fucoxanthin, a carotenoid mainly found in brown seaweed, exhibits various biological activities against NAFLD. Its role in NAFLD appears in several mechanisms, such as inducing thermogenesis in mitochondrial homeostasis, altering lipid metabolism, and promoting anti-inflammatory and anti-oxidant activities. The corresponding altered signaling pathways are the β3-adorenarine receptor (β3Ad), proliferator-activated receptor gamma coactivator (PGC-1), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), SMAD2/3, and P13K/Akt pathways. Fucoxanthin also exhibits anti-fibrogenic activity that prevents non-alcoholic steatohepatitis (NASH) development.
Collapse
Affiliation(s)
- Jessica Winarto
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Dae-Geun Song
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Cheol-Ho Pan
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Microalgae Ask US Co., Ltd., Gangneung 25441, Republic of Korea
| |
Collapse
|
20
|
Mekala KPR, Dinesan A, Serva Peddha M, Dhale MA. Valorization of biowastes as fermentative substrate for production of Exiguobacterium sp. GM010 pigment and toxicity effect in rats. Food Chem 2023; 407:135131. [PMID: 36508870 DOI: 10.1016/j.foodchem.2022.135131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Bioconversion of biowastes chicken feather (CF), prawn carapace (PC), fish scale (FS), and corncob (CC) were used for Exiguobacterium sp. GM010 pigment production to reduce environmental pollution. Maximum pigment was produced in 4 % PC hydrolysate medium at pH 8 and 30 °C (0.831 Absorption Unit-AUmL-1) compared to other hydrolysate. Biomass (1061.19 ± 26.14 mg/100 mL) and pigment yield (34.26 ± 0.62 mg/100 mL) were higher in PC medium. In CF + PC hydrolysate combination, biomass and pigment yield was 890.58 ± 11.5 mg/100 mL and 13.94 ± 0.17 mg/100 mL, respectively. Carbon and nitrogen ratio in the medium influenced pigment production. The UV-visible spectrum showed absorption peak at 357, 466, and 491 nm. Further hue angle (77-72) and chroma values (8.68-11.38) distributed over yellowish-orange region of CIELAB spectrum indicated carotenoid like characteristics. Wistar rats fed with pigment (2000 mg/kg bw) did not show sign of toxicity in haematological, biochemical and histopathological analysis. Therefore, pigment produced by recycling the biowastes promotes sustainable bioprocess and circular bioeconomy.
Collapse
Affiliation(s)
- Krishna Prashanth Ramesh Mekala
- Department of Microbiology & Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru 570 020, Karnataka, India; Academy of Scientific and Innovative Research, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Amruta Dinesan
- Department of Microbiology & Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru 570 020, Karnataka, India; Academy of Scientific and Innovative Research, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR- Central Food Technological Research Institute, Mysuru 570 020, Karnataka, India; Academy of Scientific and Innovative Research, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Mohan Appasaheb Dhale
- Department of Microbiology & Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru 570 020, Karnataka, India; Academy of Scientific and Innovative Research, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
21
|
Shirouchi B, Kawahara Y, Kutsuna Y, Higuchi M, Okumura M, Mitsuta S, Nagao N, Tanaka K. Oral Administration of Chaetoceros gracilis—A Marine Microalga—Alleviates Hepatic Lipid Accumulation in Rats Fed a High-Sucrose and Cholesterol-Containing Diet. Metabolites 2023; 13:metabo13030436. [PMID: 36984876 PMCID: PMC10051878 DOI: 10.3390/metabo13030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Microalgae are attracting attention as a next-generation alternative source of protein and essential fatty acids that do not consume large amounts of water or land. Chaetoceros gracilis (C. gracilis)—a marine microalga—is rich in proteins, fucoxanthin, and eicosapentaenoic acid (EPA). Growing evidence indicates that dietary fucoxanthin and EPA have beneficial effects in humans. However, none of these studies have shown that dietary C. gracilis has beneficial effects in mammals. In this study, we investigated the effects of dietary C. gracilis on lipid abnormalities in Sprague-Dawley rats fed a high-sucrose cholesterol-containing diet. Dried C. gracilis was added to the control diet at a final dose of 2 or 5% (w/w). After four weeks, the soleus muscle weights were found to be dose-responsive to C. gracilis and showed a tendency to increase. The hepatic triglyceride and total cholesterol levels were significantly reduced by C. gracilis feeding compared to those in the control group. The activities of FAS and G6PDH, which are related to fatty acid de novo synthesis, were found to be dose-responsive to C. gracilis and tended to decrease. The hepatic glycerol content was also significantly decreased by C. gracilis feeding, and the serum HDL cholesterol levels were significantly increased, whereas the serum levels of cholesterol absorption markers (i.e., campesterol and β-sitosterol) and the hepatic mRNA levels of Scarb1 were significantly decreased. Water-soluble metabolite analysis showed that the muscular contents of several amino acids, including leucine, were significantly increased by C. gracilis feeding. The tendency toward an increase in the weight of the soleus muscle as a result of C. gracilis feeding may be due to the enhancement of muscle protein synthesis centered on leucine. Collectively, these results show that the oral administration of C. gracilis alleviates hepatic lipid accumulation in rats fed a high-sucrose and cholesterol-containing diet, indicating the potential use of C. gracilis as a food resource.
Collapse
Affiliation(s)
- Bungo Shirouchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
- Correspondence: ; Tel.: +81-95-813-5734
| | - Yuri Kawahara
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Yuka Kutsuna
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Mina Higuchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Mai Okumura
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Sarasa Mitsuta
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Norio Nagao
- Blue Scientific Shinkamigoto Co., Ltd., 770 Kogushi, Shin-Kamigoto, Minami-Matsuura, Nagasaki 857-4601, Japan
| | - Kazunari Tanaka
- Regional Partnership Center, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| |
Collapse
|
22
|
Lee N, Youn K, Yoon JH, Lee B, Kim DH, Jun M. The Role of Fucoxanthin as a Potent Nrf2 Activator via Akt/GSK-3β/Fyn Axis against Amyloid-β Peptide-Induced Oxidative Damage. Antioxidants (Basel) 2023; 12:antiox12030629. [PMID: 36978877 PMCID: PMC10045033 DOI: 10.3390/antiox12030629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Increasing evidence is suggesting that amyloid-β peptide (Aβ), a characteristic of Alzheimer’s disease (AD), induces oxidative stress and mitochondrial dysfunction, leading to neuronal death. This study aimed to demonstrate the antioxidant and anti-apoptotic effects of fucoxanthin, a major marine carotenoid found in brown algae, against neuronal injury caused by Aβ. Non-toxic dose range of fucoxanthin (0.1–5 µM) were selected for the neuroprotective study against Aβ25–35. The PC12 cells were pretreated with different concentrations of fucoxanthin for 1 h before being exposed to 10 µM Aβ25–35 for another 24 h. The present results showed that fucoxanthin inhibited Aβ25-35-induced cell death by recovering cell cycle arrest and decreasing intracellular reactive oxygen species (ROS) level. The compound enhanced mitochondrial recovery and regulated apoptosis related proteins including B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) from Aβ25-35-induced oxidative stress. Concomitantly, fucoxanthin increased the expression of nuclear factor E2-related factor 2 (Nrf2) and its downstream phase II detoxifying enzymes including NADPH: quinone oxidoreductase-1 (NQO-1), glutamate cysteine ligase modifier subunit (GCLm), and thioredoxin reductase 1 (TrxR1), whereas it decreased the expression of cytoplasmic Kelch-like ECH-associated protein 1 (Keap1). Moreover, pretreatment of fucoxanthin reduced Fyn phosphorylation via protein kinase B (Akt)-mediated inhibition of glycogen synthase kinase-3β (GSK-3β), which increased the nuclear localization of Nrf2, suggesting that the compound enhanced Nrf2 expression by the activation of upstream kinase as well as the dissociation of the Nrf2-Keap1 complex. Further validation with a specific phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 demonstrated that the fucoxanthin-mediated Nrf2 antioxidant defense system was directly associated with the Akt/GSK-3β/Fyn signaling pathway. In silico simulation revealed that the oxygen groups of fucoxanthin participated in potent interactions with target markers in the Nrf2 signaling pathway, which may affect the biological activity of target markers. Taken together, the present results demonstrated that the preventive role of fucoxanthin on Aβ-stimulated oxidative injury and apoptosis via Akt/GSK-3β/Fyn signaling pathway. This study would provide a useful approach for potential intervention for AD prevention.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Jeong-Hyun Yoon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Bokyung Lee
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: (D.H.K.); (M.J.)
| | - Mira Jun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
- Correspondence: (D.H.K.); (M.J.)
| |
Collapse
|
23
|
Manipulation in Culture Conditions of Nanofrustulum shiloi for Enhanced Fucoxanthin Production and Isolation by Preparative Chromatography. Molecules 2023; 28:molecules28041988. [PMID: 36838976 PMCID: PMC9959852 DOI: 10.3390/molecules28041988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Microalgae produce a variety of high-value chemicals including carotenoids. Fucoxanthin is also a carotenoid that has many physiological functions and biological properties. For this reason, the cost-effective production of fucoxanthin at an industrial scale has gained significant attention. In the proposed study, fucoxanthin production was aimed to be increased by altering the culture conditions of N. shiloi. The effect of light intensity aeration rate, different nitrogen sources, and oxidative stress on the biomass and fucoxanthin productivity have been discussed. Based on these results, the fucoxanthin increased to 97.45 ± 2.64 mg/g by adjusting the light intensity to 50 µmol/m2s, and aeration rate at 5 L/min using oxidative stress through the addition of 0.1 mM H2O2 and 0.1 mM NaOCl to the culture medium. Fucoxanthin was then purified with preparative HPLC using C30 carotenoid column (10 mm × 250 mm, 5 μm). After the purification procedure, Liquid chromatography tandem mass spectrometry (LC-MS/MS) and UV-vis spectroscopy were employed for the confirmation of fucoxanthin. This study presented a protocol for obtaining and purifying considerable amounts of biomass and fucoxanthin from diatom by manipulating culture conditions. With the developed methodology, N. shiloi could be evaluated as a promising source of fucoxanthin at the industrial scale for food, feed, cosmetic, and pharmaceutical industries.
Collapse
|
24
|
Wu Y, Jin X, Zhang Y, Liu J, Wu M, Tong H. Bioactive Compounds from Brown Algae Alleviate Nonalcoholic Fatty Liver Disease: An Extensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1771-1787. [PMID: 36689477 DOI: 10.1021/acs.jafc.2c06578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. The increasing NAFLD incidences are associated with unhealthy lifestyles. Currently, there are no effective therapeutic options for NAFLD. Thus, there is a need to develop safe, efficient, and economic treatment options for NAFLD. Brown algae, which are edible, contain abundant bioactive compounds, including polysaccharides and phlorotannins. They have been shown to ameliorate insulin resistance, as well as hepatic steatosis, and all of these biological functions can potentially alleviate NAFLD. Accumulating reports have shown that increasing dietary consumption of brown algae reduces the risk for NAFLD development. In this review, we summarized the animal experiments and clinical proof of brown algae and their bioactive compounds for NAFLD treatment within the past decade. Our findings show possible avenues for further research into the pathophysiology of NAFLD and brown algae therapy.
Collapse
Affiliation(s)
- Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
25
|
Nieri P, Carpi S, Esposito R, Costantini M, Zupo V. Bioactive Molecules from Marine Diatoms and Their Value for the Nutraceutical Industry. Nutrients 2023; 15:464. [PMID: 36678334 PMCID: PMC9861441 DOI: 10.3390/nu15020464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.
Collapse
Affiliation(s)
- Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Center of Marine Pharmacology, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sara Carpi
- National Enterprise for NanoScience and Nanotechnology (NEST), Piazza San Silvestro, 56127 Pisa, Italy
| | - Roberta Esposito
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Maria Costantini
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy
| | - Valerio Zupo
- Stazione Zoologica Antorn Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80077 Ischia, Italy
| |
Collapse
|
26
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
27
|
Zhang Z, Wei Z, Xue C. Delivery systems for fucoxanthin: Research progress, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4643-4659. [PMID: 36377728 DOI: 10.1080/10408398.2022.2144793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fucoxanthin is a special kind of keto-carotenoid found only in algae. The unique structure of fucoxanthin endows it with extraordinary biological activities, which are of great significance to improve food quality and enhance human health. However, due to its highly unsaturated structure, fucoxanthin also suffers from some limitations, such as instability, poor water solubility and low bioavailability. Therefore, although its content is relatively abundant, its applications in the food industry are extremely scarce. In recent years, there have been many reports on the preparation and characterization of delivery systems for fucoxanthin. These well-designed delivery systems can efficaciously alleviate the instability of fucoxanthin under adverse conditions, thereby improving its oral bioavailability. Thus, this review emphatically summarizes the delivery systems that are widely used to encapsulate, protect and release fucoxanthin. Besides, the influence of delivery systems on the absorption of fucoxanthin by intestinal epithelial cells is highlighted. The applications and future development trends of delivery systems for fucoxanthin are also discussed. The extraction of fucoxanthin, development of novel delivery systems, sensory evaluation and toxicity studies, and industrial production may be promising research directions in the future. Overall, this review provides guidance for the development of fucoxanthin-loaded delivery systems.
Collapse
Affiliation(s)
- Zimo Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
28
|
Sharma PP, Vanajakshi V, Haware D, Baskaran V. Brown algae and barley-based anti-obesity food and its safety in C57BL6 mice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4230-4243. [PMID: 36193487 PMCID: PMC9525497 DOI: 10.1007/s13197-022-05483-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 06/16/2023]
Abstract
Brown algae have been considered a potential source of bioactives and used as a dietary supplement to manage obesity and its associated health complications. However, its effective use is limited due to heavy metals and microbial contamination, unawareness of health benefits and limited dietary exploitation. We developed, the Indian brown algae Padina tetrastromatica and barley-based anti-obesity food (AOF) and examined for microbial and heavy metal safety. Additionally, acute [0 (control), 50, 100, 200, 500 g AOF/kg diet] and sub-acute [0, 5, 50 g AOF/kg diet] doses of AOF were fed to C57BL6 mice and toxicity was examined. The physical, locomotory, hematological, biochemical parameters and histopathology were examined. Postprandial plasma and tissue levels of fucoxanthin and its metabolites were analyzed. Feeding AOF did not affect the general behavior, food and water intake, growth or survival of animals. Biochemical indices did not show any differences between AOF-fed and control groups. However, significantly lower levels of plasma cholesterol and triglycerides in groups fed 5 and 50 g of AOF/kg diet were observed. The post-mortem examination revealed no macroscopic/microscopic alteration in the vital organs. Overall, results validate that AOF is a safe and effective dietary supplement (even at higher doses of 500 g AOF/kg) to mitigate obesity. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05483-4.
Collapse
Affiliation(s)
- Priya Prakash Sharma
- Department of Biochemistry, CSIR-Central Food Technological Institute, Mysore, Karnataka 570020 India
| | - V. Vanajakshi
- Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Institute, Mysore, Karnataka 570020 India
| | - Devendra Haware
- Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Institute, Mysore, Karnataka 570020 India
| | - Vallikannan Baskaran
- Department of Biochemistry, CSIR-Central Food Technological Institute, Mysore, Karnataka 570020 India
| |
Collapse
|
29
|
Li N, Gao X, Zheng L, Huang Q, Zeng F, Chen H, Farag MA, Zhao C. Advances in fucoxanthin chemistry and management of neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154352. [PMID: 35917771 DOI: 10.1016/j.phymed.2022.154352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Neurodegenerative diseases are chronic, currently incurable, diseases of the elderly, which are characterized by protein misfolding and neuronal damage. Fucoxanthin, derived from marine brown algae, presents a promising candidate for the development of effective therapeutic strategies. HYPOTHESIS AND PURPOSE The relationship between neurodegenerative disease management and fucoxanthin has not yet been clarified. This study focuses on the fundamental mechanisms and targets of fucoxanthin in Alzheimer's and Parkinson's disease management, showing that communication between the brain and the gut contributes to neurodegenerative diseases and early diagnosis of ophthalmic diseases. This paper also presents, new insights for future therapeutic directions based on the integrated application of artificial intelligence. CONCLUSION Fucoxanthin primarily binds to amyloid fibrils with spreading properties such as Aβ, tau, and α-synuclein to reduce their accumulation levels, alleviate inflammatory factors, and restore mitochondrial membranes to prevent oxidative stress via Nrf2 and Akt signaling pathways, involving reduction of specific secretases. In addition, fucoxanthin may serve as a preventive diagnosis for neurodegenerative diseases through ophthalmic disorders. It can modulate gut microbes and has potential for the alleviation and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxiang Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingjun Zheng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qihui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongbin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
30
|
Carotenoids from Marine Microalgae as Antimelanoma Agents. Mar Drugs 2022; 20:md20100618. [PMID: 36286442 PMCID: PMC9604797 DOI: 10.3390/md20100618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma cells are highly invasive and metastatic tumor cells and commonly express molecular alterations that contribute to multidrug resistance (e.g., BRAFV600E mutation). Conventional treatment is not effective in a long term, requiring an exhaustive search for new alternatives. Recently, carotenoids from microalgae have been investigated as adjuvant in antimelanoma therapy due to their safety and acceptable clinical tolerability. Many of them are currently used as food supplements. In this review, we have compiled several studies that show microalgal carotenoids inhibit cell proliferation, cell migration and invasion, as well as induced cell cycle arrest and apoptosis in various melanoma cell lines. MAPK and NF-ĸB pathway, MMP and apoptotic factors are frequently affected after exposure to microalgal carotenoids. Fucoxanthin, astaxanthin and zeaxanthin are the main carotenoids investigated, in both in vitro and in vivo experimental models. Preclinical data indicate these compounds exhibit direct antimelanoma effect but are also capable of restoring melanoma cells sensitivity to conventional chemotherapy (e.g., vemurafenib and dacarbazine).
Collapse
|
31
|
Mayer C, Côme M, Ulmann L, Martin I, Zittelli GC, Faraloni C, Ouguerram K, Chénais B, Mimouni V. The Potential of the Marine Microalga Diacronema lutheri in the Prevention of Obesity and Metabolic Syndrome in High-Fat-Fed Wistar Rats. Molecules 2022; 27:molecules27134246. [PMID: 35807489 PMCID: PMC9268017 DOI: 10.3390/molecules27134246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Long-chain polyunsaturated fatty acids n-3 series (n-3 LC-PUFAs), especially eicosapentaenoic and docosahexaenoic acids, are known to exert preventive effects on obesity and metabolic syndrome. Mainly consumed in the form of fish oil, LC-PUFAs n-3 are also found in significant quantities in other sources such as certain microalgae. The aim of this study was to evaluate the effects of Diacronema lutheri (Dia), a microalga rich in n-3 LC-PUFAs, on metabolic disorders associated with obesity. Three groups of male Wistar rats (n = 6 per group) were submitted for eight weeks to a standard diet or high-fat and high-fructose diet (HF), supplemented or not with 12% of Dia (HF-Dia). Compared to HF rats, HF-Dia rats showed a 41% decrease in plasma triacylglycerol (TAG) and an increase in plasma cholesterol (+35%) as well as in high-density lipoprotein cholesterol (+51%) without change to low-density lipoprotein cholesterol levels. Although fasting glycemia did not change, glucose and insulin tolerance tests highlighted an improvement in glucose and insulin homeostasis. Dia supplementation restored body weight and fat mass, and decreased levels of liver TAG (−75%) and cholesterol (−84%). In HF-Dia rats, leptin was decreased (−30%) below the control level corresponding to a reduction of 68% compared to HF rats. Similarly, the anti-inflammatory cytokines interleukin-4 (IL-4) and IL-10 were restored up to control levels, corresponding to a 74% and 58% increase in HF rats, respectively. In contrast, the level of IL-6 remained similar in the HF and HF-Dia groups and about twice that of the control. In conclusion, these results indicated that the D. lutheri microalga may be beneficial for the prevention of weight gain and improvement in lipid and glucose homeostasis.
Collapse
Affiliation(s)
- Claire Mayer
- Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France; (C.M.); (M.C.); (L.U.); (I.M.)
| | - Martine Côme
- Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France; (C.M.); (M.C.); (L.U.); (I.M.)
| | - Lionel Ulmann
- Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France; (C.M.); (M.C.); (L.U.); (I.M.)
| | - Isabelle Martin
- Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France; (C.M.); (M.C.); (L.U.); (I.M.)
| | - Graziella Chini Zittelli
- Department of Biology, Agriculture and Food Sciences, Institute for BioEconomy, National Research Council, Sesto Fiorentino, I-50019 Florence, Italy; (G.C.Z.); (C.F.)
| | - Cecilia Faraloni
- Department of Biology, Agriculture and Food Sciences, Institute for BioEconomy, National Research Council, Sesto Fiorentino, I-50019 Florence, Italy; (G.C.Z.); (C.F.)
| | - Khadija Ouguerram
- UMR1280 PhAN, Physiopathology of Nutritional Adaptations, INRAe, CHU Hôtel Dieu, IMAD, CRNH Ouest, Nantes Université, F-44000 Nantes, France;
| | - Benoît Chénais
- BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
- Correspondence: (B.C.); (V.M.)
| | - Virginie Mimouni
- Département Génie Biologique, BiOSSE, Biology of Organisms: Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France; (C.M.); (M.C.); (L.U.); (I.M.)
- Correspondence: (B.C.); (V.M.)
| |
Collapse
|
32
|
Terasaki M, Murase W, Kamakura Y, Kawakami S, Kubota A, Kojima H, Ohta T, Tanaka T, Maeda H, Miyashita K, Mutoh M. A Biscuit Containing Fucoxanthin Prevents Colorectal Carcinogenesis in Mice. Nutr Cancer 2022; 74:3651-3661. [PMID: 35695489 DOI: 10.1080/01635581.2022.2086703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fucoxanthin (Fx) is a critical pigment required for photosynthesis in brown algae and microalgae. Fx is also a dietary marine carotenoid that with potent anticancer activity in vitro and in vivo. Some popular light meals for increased satiety, such as biscuits, cereals, and crackers, are frequently fortified with micronutrients for human health benefits. However, data on the anticancer potential of Fx-supplemented light meals in humans and animal models remain limited. In the present study, we investigated the anticancer effects of a Fx-supplemented biscuit using a carcinogenic murine azoxymethane/dextran sodium sulfate (AOM/DSS) model. We observed that periodic administration of biscuits containing 0.3% Fx (Fx-biscuit) at an interval of 3 days (each 15 h) per week for 15 weeks significantly inhibited colorectal carcinogenesis in AOM/DSS mice. Comprehensive gene analysis demonstrated that the Fx-biscuit significantly altered the expression of 138 genes in the colorectal mucosal tissue of the mice. In particular, the expression of heat shock protein 70 (HSP70) genes, Hspa1b (-35.7-fold) and Hspa1a (-34.9-fold), was markedly downregulated. HSP70 is a polyfunctional chaperone protein that is involved in cancer development. Compared to the control-biscuit group, the number of cells with markedly high fluorescence for HSP70 protein (HSP70high) in colorectal mucosal crypts and adenocarcinomas significantly reduced by 0.3- and 0.2-fold, respectively, in the Fx-biscuit group. Our results suggested that Fx-biscuit possesses chemopreventive potential in the colorectal cancer of AOM/DSS mice via the downregulation of HSP70.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yukino Kamakura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Serina Kawakami
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
33
|
Anti-lipogenic and thermogenic potency of Padina tetrastromatica bioactives in hypertrophied 3T3-L1 cells and their efficacy based thermogenic food supplement to mitigate obesity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Consumption of Low Dose Fucoxanthin Does Not Prevent Hepatic and Adipose Inflammation and Fibrosis in Mouse Models of Diet-Induced Obesity. Nutrients 2022; 14:nu14112280. [PMID: 35684079 PMCID: PMC9183127 DOI: 10.3390/nu14112280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Fucoxanthin (FCX) is a xanthophyll carotenoid present in brown seaweed. The goal of this study was to examine whether FCX supplementation could attenuate obesity-associated metabolic abnormalities, fibrosis, and inflammation in two diet-induced obesity (DIO) mouse models. C57BL/6J mice were fed either a high-fat/high-sucrose/high-cholesterol (HFC) diet or a high-fat/high-sucrose (HFS) diet. The former induces more severe liver injury than the latter model. In the first study, male C57BL/6J mice were fed an HFC diet, or an HFC diet containing 0.015% or 0.03% (w/w) FCX powder for 12 weeks to develop obesity-induced nonalcoholic steatohepatitis (NASH). In the second study, mice were fed an HFS diet or an HFS diet containing 0.01% FCX powder for 8 weeks. FCX did not change body weight gain and serum lipid profiles compared to the HFC or HFS controls. No significant differences were present in liver triglyceride and total cholesterol, hepatic fat accumulation, and serum alanine aminotransferase levels between control and FCX-fed mice regardless of whether they were on an HFC or HFS diet. FCX did not mitigate mRNA abundance of genes involved in lipid synthesis, cholesterol metabolism, inflammation, and fibrosis in the liver and white adipose tissue, while hepatic fatty acid β-oxidation genes were significantly elevated by FCX in both HFC and HFS feeding studies. Additionally, in the soleus muscle, FCX supplementation significantly elevated genes that regulate mitochondrial biogenesis and fatty acid β-oxidation, concomitantly increasing mitochondrial DNA copy number, compared with HFC. In summary, FCX supplementation had minor effects on hepatic and white adipose inflammation and fibrosis in two different DIO mouse models.
Collapse
|
35
|
Mohibbullah M, Haque MN, Sohag AAM, Hossain MT, Zahan MS, Uddin MJ, Hannan MA, Moon IS, Choi JS. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights. Mar Drugs 2022; 20:279. [PMID: 35621930 PMCID: PMC9146768 DOI: 10.3390/md20050279] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin, belonging to the xanthophyll class of carotenoids, is a natural antioxidant pigment of marine algae, including brown macroalgae and diatoms. It represents 10% of the total carotenoids in nature. The plethora of scientific evidence supports the potential benefits of nutraceutical and pharmaceutical uses of fucoxanthin for boosting human health and disease management. Due to its unique chemical structure and action as a single compound with multi-targets of health effects, it has attracted mounting attention from the scientific community, resulting in an escalated number of scientific publications from January 2017 to February 2022. Fucoxanthin has remained the most popular option for anti-cancer and anti-tumor activity, followed by protection against inflammatory, oxidative stress-related, nervous system, obesity, hepatic, diabetic, kidney, cardiac, skin, respiratory and microbial diseases, in a variety of model systems. Despite much pharmacological evidence from in vitro and in vivo findings, fucoxanthin in clinical research is still not satisfactory, because only one clinical study on obesity management was reported in the last five years. Additionally, pharmacokinetics, safety, toxicity, functional stability, and clinical perspective of fucoxanthin are substantially addressed. Nevertheless, fucoxanthin and its derivatives are shown to be safe, non-toxic, and readily available upon administration. This review will provide pharmacological insights into fucoxanthin, underlying the diverse molecular mechanisms of health benefits. However, it requires more activity-oriented translational research in humans before it can be used as a multi-target drug.
Collapse
Affiliation(s)
- Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Md. Nazmul Haque
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
| | - Jae-Suk Choi
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| |
Collapse
|
36
|
Pajot A, Hao Huynh G, Picot L, Marchal L, Nicolau E. Fucoxanthin from Algae to Human, an Extraordinary Bioresource: Insights and Advances in up and Downstream Processes. Mar Drugs 2022; 20:md20040222. [PMID: 35447895 PMCID: PMC9027613 DOI: 10.3390/md20040222] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a brown-colored pigment from algae, with great potential as a bioactive molecule due to its numerous properties. This review aims to present current knowledge on this high added-value pigment. An accurate analysis of the biological function of fucoxanthin explains its wide photon absorption capacities in golden-brown algae. The specific chemical structure of this pigment also leads to many functional activities in human health. They are outlined in this work and are supported by the latest studies in the literature. The scientific and industrial interest in fucoxanthin is correlated with great improvements in the development of algae cultures and downstream processes. The best fucoxanthin producing algae and their associated culture parameters are described. The light intensity is a major influencing factor, as it has to enable both a high biomass growth and a high fucoxanthin content. This review also insists on the most eco-friendly and innovative extraction methods and their perspective within the next years. The use of bio-based solvents, aqueous two-phase systems and the centrifugal partition chromatography are the most promising processes. The analysis of the global market and multiple applications of fucoxanthin revealed that Asian companies are major actors in the market with macroalgae. In addition, fucoxanthin from microalgae are currently produced in Israel and France, and are mostly authorized in the USA.
Collapse
Affiliation(s)
- Anne Pajot
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
- Correspondence:
| | - Gia Hao Huynh
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| | - Laurent Picot
- Unité Mixte de Recherche CNRS 7266 Littoral Environnement et Sociétés (LIENSs), Université La Rochelle, F-17042 La Rochelle, France;
| | - Luc Marchal
- Génie des Procédés Environnement (GEPEA), Université Nantes, F-44000 Saint Nazaire, France;
| | - Elodie Nicolau
- Ifremer, GENALG Laboratory, Unité PHYTOX, F-44000 Nantes, France; (G.H.H.); (E.N.)
| |
Collapse
|
37
|
Agarwal S, Singh V, Chauhan K. Antidiabetic potential of seaweed and their bioactive compounds: a review of developments in last decade. Crit Rev Food Sci Nutr 2022; 63:5739-5770. [PMID: 35048763 DOI: 10.1080/10408398.2021.2024130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes Mellitus is a public health problem worldwide due to high morbidity and mortality rate associated with it. Diabetes can be managed by synthetic hypoglycemic drugs, although their persistent uses have several side effects. Hence, there is a paradigm shift toward the use of natural products having antidiabetic potential. Seaweeds, large marine benthic algae, are an affluent source of various bioactive compounds, including phytochemicals and antioxidants thus exhibiting various health promoting properties. Seaweed extracts and its bioactive compounds have antidiabetic potential as they inhibit carbohydrate hydrolyzing enzymes in vitro and exhibit blood glucose lowering effect in random and post prandial blood glucose tests in vivo. In addition, they have been associated with reduced weight gain in animals probably by decreasing mRNA expression of pro-inflammatory cytokines with concomitant increase in mRNA expression levels of anti-inflammatory cytokines. Their beneficial effect has been seen in serum and hepatic lipid profile and antioxidant enzymes indicating the protective role of seaweeds against free radicals mediated oxidative stress induced hyperglycemia and associated hyperlipidemia. However, the detailed and in-depth studies of seaweeds as whole, their bioactive isolates and their extracts need to be explored further for their health benefits and wide application in food, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Surbhi Agarwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipet, India
| | - Vikas Singh
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipet, India
| |
Collapse
|
38
|
Karpiński TM, Ożarowski M, Alam R, Łochyńska M, Stasiewicz M. What Do We Know about Antimicrobial Activity of Astaxanthin and Fucoxanthin? Mar Drugs 2021; 20:md20010036. [PMID: 35049891 PMCID: PMC8778043 DOI: 10.3390/md20010036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin (AST) and fucoxanthin (FUC) are natural xanthophylls, having multidirectional activity, including antioxidant, anti-inflammatory, and anticancer. Both compounds also show antimicrobial activity, which is presented in this review article. There are few papers that have presented the antimicrobial activity of AST. Obtained antimicrobial concentrations of AST (200-4000 µg/mL) are much higher than recommended by the European Food Safety Authority for consumption (2 mg daily). Therefore, we suggest that AST is unlikely to be of use in the clinical treatment of infections. Our knowledge about the antimicrobial activity of FUC is better and this compound acts against many bacteria already in low concentrations 10-250 µg/mL. Toxicological studies on animals present the safety of FUC application in doses 200 mg/kg body weight and higher. Taking available research into consideration, a clinical application of FUC as the antimicrobial substance is real and can be successful. However, this aspect requires further investigation. In this review, we also present potential mechanisms of antibacterial activity of carotenoids, to which AST and FUC belong.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
- Correspondence: ; Tel.: +48-61-854-61-38
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland; (M.O.); (M.Ł.)
| | - Rahat Alam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
- Biological Solution Centre (BioSol Centre), Farmgate, Dhaka 1215, Bangladesh
| | - Małgorzata Łochyńska
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland; (M.O.); (M.Ł.)
| | - Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland;
| |
Collapse
|
39
|
Murase W, Kamakura Y, Kawakami S, Yasuda A, Wagatsuma M, Kubota A, Kojima H, Ohta T, Takahashi M, Mutoh M, Tanaka T, Maeda H, Miyashita K, Terasaki M. Fucoxanthin Prevents Pancreatic Tumorigenesis in C57BL/6J Mice That Received Allogenic and Orthotopic Transplants of Cancer Cells. Int J Mol Sci 2021; 22:13620. [PMID: 34948416 PMCID: PMC8707761 DOI: 10.3390/ijms222413620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Fucoxanthin (Fx) is a marine carotenoid with anti-inflammatory and anti-cancer properties in various animal models of carcinogenesis. However, there is currently no information on the effects of Fx in animal models of pancreatic cancer. We investigated the chemopreventive effects of Fx in C57BL/6J mice that received allogenic and orthotopic transplantations of cancer cells (KMPC44) derived from a pancreatic cancer murine model (Ptf1aCre/+; LSL-krasG12D/+). Using microarray, immunofluorescence, western blot, and siRNA analyses, alterations in cancer-related genes and protein expression were evaluated in pancreatic tumors of Fx-administered mice. Fx administration prevented the adenocarcinoma (ADC) development of pancreatic and parietal peritoneum tissues in a pancreatic cancer murine model, but not the incidence of ADC. Gene and protein expressions showed that the suppression of chemokine (C-C motif) ligand 21 (CCL21)/chemokine receptor 7 (CCR7) axis, its downstream of Rho A, B- and T-lymphocyte attenuator (BTLA), N-cadherin, αSMA, pFAK(Tyr397), and pPaxillin(Tyr31) were significantly suppressed in the pancreatic tumors of mice treated with Fx. In addition, Ccr7 knockdown significantly attenuated the growth of KMPC44 cells. These results suggest that Fx is a promising candidate for pancreatic cancer chemoprevention that mediates the suppression of the CCL21/CCR7 axis, BTLA, tumor microenvironment, epithelial mesenchymal transition, and adhesion.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Yukino Kamakura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Serina Kawakami
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Momoka Wagatsuma
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Mami Takahashi
- Central Animal Division, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori 036-8561, Japan;
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan;
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| |
Collapse
|
40
|
Seth K, Kumar A, Rastogi RP, Meena M, Vinayak V, Harish. Bioprospecting of fucoxanthin from diatoms — Challenges and perspectives. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Yang G, Li Q, Peng J, Jin L, Zhu X, Zheng D, Zhang Y, Wang R, Song Y, Hu W, Xie X. Fucoxanthin regulates Nrf2 signaling to decrease oxidative stress and improves renal fibrosis depending on Sirt1 in HG-induced GMCs and STZ-induced diabetic rats. Eur J Pharmacol 2021; 913:174629. [PMID: 34780751 DOI: 10.1016/j.ejphar.2021.174629] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial cellular defense factor to cope with oxidative stress. Silent information regulator T1 (Sirt1) is a deacetylase with antioxidative stress activity. Fucoxanthin is a marine-derived carotenoid. This study was conducted to investigate whether fucoxanthin could alleviate oxidative stress by activating Sirt1/Nrf2 signaling to alleviate DN. In streptozotocin-induced diabetic rats, fucoxanthin treatment effectively improved renal function, alleviated glomerulosclerosis. Fucoxanthin reversed the decreased protein levels of Sirt1 and Nrf2 in the kidney of diabetic rats and glomerular mesangial cells cultured in high glucose. Conversely, EX527, a Sirt1 inhibitor, counteracted the effect of fucoxanthin on the expression of Nrf2. Furthermore, in vivo and vitro results showed that fucoxanthin treatment reversed the low expression and activity of superoxide dismutase and heme oxygenase 1, depending on Sirt1 activation. Our results suggest that fucoxanthin improves diabetic kidney function and renal fibrosis by activating Sirt1/Nrf2 signaling to reduce oxidative stress.
Collapse
Affiliation(s)
- Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Qingde Li
- Department of Pharmacy, Yuebei People's Hospital, Shantou University, Shaoguan, 512026, China
| | - Jing Peng
- Department of Pharmacy, Yuebei People's Hospital, Shantou University, Shaoguan, 512026, China
| | - Lin Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xiaoyu Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Wenting Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
42
|
Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Carpena M, Pereira A, Garcia-Oliveira P, Prieto M, Simal-Gandara J. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Terasaki M, Ono S, Hashimoto S, Kubota A, Kojima H, Ohta T, Tanaka T, Maeda H, Miyashita K, Mutoh M. Suppression of C-C chemokine receptor 1 is a key regulation for colon cancer chemoprevention in AOM/DSS mice by fucoxanthin. J Nutr Biochem 2021; 99:108871. [PMID: 34571188 DOI: 10.1016/j.jnutbio.2021.108871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/03/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023]
Abstract
Fucoxanthin (Fx) has shown potential cancer chemopreventive functions in a carcinogenic murine azoxymethane/dextran sodium sulfate (AOM/DSS) model. However, the molecular mechanisms based on transcriptome profiles in vivo remain poorly understood. We investigated Fx-dependent alterations of the transcriptome with cancer-associated proteins in colorectal mucosal tissue obtained from AOM/DSS mice with or without Fx treatment. Fx administration (50 mg/kg body weight for 14 weeks) significantly prevented the onset of colorectal adenocarcinoma in AOM/DSS mice. A transcriptome analysis revealed that 11 signals, including adhesion, cell cycle, chemokine receptor, interleukin, MAPK, PI3K/AKT, p53, RAS, STAT, TGF-β, and Wnt were remarkably altered by Fx administration. In particular, chemokine (C-C motif) receptor 1 (Ccr1), which is contained in a gene set related to cytokine-cytokine receptor interactions, was the only significantly down-regulated gene after Fx administration for both 7 and 14 weeks. CCR1, AKT, Cyclin D1, and Smad2 were found to play central roles in the 11 signals shown above. Fx administration significantly down-regulated CCR1 (0.3- and 0.5-fold in mucosal crypts and lamina propria, respectively), pAKT(Ser473) (0.2-fold in mucosal crypts), Cyclin D1 (0.4-fold in mucosal crypts), and pSmad2(Ser465/467) (0.7-fold in mucosal crypts) compared with proteins in these tissues of control mice after Fx administration for 14 weeks. Our findings suggested that Fx exerts a chemopreventive effect in AOM/DSS mice through attenuation of CCR1 expression along with 11 cancer-associated signals.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan.
| | - Shion Ono
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Saki Hashimoto
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
44
|
Yang M, Jin L, Wu Z, Xie Y, Zhang P, Wang Q, Yan S, Chen B, Liang H, Naman CB, Zhang J, He S, Yan X, Zhao L, Cui W. PLGA-PEG Nanoparticles Facilitate In Vivo Anti-Alzheimer's Effects of Fucoxanthin, a Marine Carotenoid Derived from Edible Brown Algae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9764-9777. [PMID: 34404210 DOI: 10.1021/acs.jafc.1c00569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The marine natural product fucoxanthin has been reported previously to produce anti-Alzheimer's disease (AD) neuroprotective effects in vitro and in vivo. Fucoxanthin was also demonstrated to be safe in preclinical and small population clinical studies, but the low bioavailability of fucoxanthin in the central nervous system (CNS) has limited its clinical applications. To overcome this, poly lactic-co-glycolic acid-block-polyethylene glycol loaded fucoxanthin (PLGA-PEG-Fuc) nanoparticles with diameter at around 200 nm and negative charge were synthesized and suggested to penetrate into the CNS. Loaded fucoxanthin could be liberated from PLGA-PEG nanoparticles by sustained released in the physiological environment. PLGA-PEG-Fuc nanoparticles were shown to significantly inhibit the formation of Aβ fibrils and oligomers. Moreover, these nanoparticles were taken up by both neurons and microglia, leading to the reduction of Aβ oligomers-induced neurotoxicity in vitro. Most importantly, intravenous injection of PLGA-PEG-Fuc nanoparticles prevented cognitive impairments in Aβ oligomers-induced AD mice with greater efficacy than free fucoxanthin, possibly via acting on Nrf2 and NF-κB signaling pathways. These results altogether suggest that PLGA-PEG nanoparticles can enhance the bioavailability of fucoxanthin and potentiate its efficacy for the treatment of AD, thus potentially enabling its future use for AD therapy.
Collapse
Affiliation(s)
- Mengxiang Yang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Lingli Jin
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Zhuoying Wu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Yanfei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Panpan Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Bojun Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Hongze Liang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Jinrong Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Lingling Zhao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
45
|
Begum R, Howlader S, Mamun-Or-Rashid ANM, Rafiquzzaman SM, Ashraf GM, Albadrani GM, Sayed AA, Peluso I, Abdel-Daim MM, Uddin MS. Antioxidant and Signal-Modulating Effects of Brown Seaweed-Derived Compounds against Oxidative Stress-Associated Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9974890. [PMID: 34336128 PMCID: PMC8289617 DOI: 10.1155/2021/9974890] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
The biological and therapeutic properties of seaweeds have already been well known. Several studies showed that among the various natural marine sources of antioxidants, seaweeds have become a potential source of antioxidants because of their bioactive compounds. Most of the metabolic diseases are caused by oxidative stress. It is very well known that antioxidants have a pivotal role in the treatment of those diseases. Recent researches have revealed the potential activity of seaweeds as complementary medicine, which have therapeutic properties for health and disease management. Among the seaweeds, brown seaweeds (Phaeophyta) and their derived bioactive substances showed excellent antioxidant properties than other seaweeds. This review focuses on brown seaweeds and their derived major bioactive compounds such as sulfated polysaccharide, polyphenol, carotenoid, and sterol antioxidant effects and molecular mechanisms in the case of the oxidative stress-originated disease. Antioxidants have a potential role in the modification of stress-induced signaling pathways along with the activation of the oxidative defensive pathways. This review would help to provide the basis for further studies to researchers on the potential antioxidant role in the field of medical health care and future drug development.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, Republic of Korea
| | - Saurav Howlader
- Department of Pharmacology and Pharmaco Genomics Research Centre (PGRC), Inje University College of Medicine, Busan, Republic of Korea
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center and Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - S. M. Rafiquzzaman
- Department of Fisheries Biology & Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur 1706, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
46
|
Terasaki M, Uehara O, Ogasa S, Sano T, Kubota A, Kojima H, Tanaka T, Maeda H, Miyashita K, Mutoh M. Alteration of fecal microbiota by fucoxanthin results in prevention of colorectal cancer in AOM/DSS mice. Carcinogenesis 2021; 42:210-219. [PMID: 32940665 DOI: 10.1093/carcin/bgaa100] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Fucoxanthin (Fx), a marine carotenoid found in edible brown algae, is well known for having anticancer properties. The gut microbiota has been demonstrated as a hallmark for colorectal cancer progression in both humans and rodents. However, it remains unclear whether the gut microbiota is associated with the anticancer effect of Fx. We investigated the chemopreventive potency of Fx and its effect on gut microbiota in a mouse model of inflammation-associated colorectal cancer (by azoxymethane/dextran sulfate sodium treatment). Fx administration (30 mg/kg bw) during a 14 week period significantly inhibited the multiplicity of colorectal adenocarcinoma in mice. The number of apoptosis-like cleaved caspase-3high cells increased significantly in both colonic adenocarcinoma and mucosal crypts. Fx administration significantly suppressed Bacteroidlales (f_uc; g_uc) (0.3-fold) and Rikenellaceae (g_uc) (0.6-fold) and increased Lachnospiraceae (g_uc) (2.2-fold), compared with those of control mice. Oral administration of a fecal suspension obtained from Fx-treated mice, aimed to enhance Lachnospiraceae, suppress the number of colorectal adenocarcinomas in azoxymethane/dextran sulfate sodium-treated mice with a successful increase in Lachnospiraceae in the gut. Our findings suggested that an alteration in gut microbiota by dietary Fx might be an essential factor in the cancer chemopreventive effect of Fx in azoxymethane/dextran sulfate sodium-treated mice.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Osamu Uehara
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Shinya Ogasa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Taishi Sano
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Kazuo Miyashita
- Center for Regional Collaboration in Research and Education, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
47
|
Yang M, Xuan Z, Wang Q, Yan S, Zhou D, Naman CB, Zhang J, He S, Yan X, Cui W. Fucoxanthin has potential for therapeutic efficacy in neurodegenerative disorders by acting on multiple targets. Nutr Neurosci 2021; 25:2167-2180. [PMID: 33993853 DOI: 10.1080/1028415x.2021.1926140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fucoxanthin, one of the most abundant carotenoids from edible brown seaweeds, for years has been used as a bioactive dietary supplement and functional food ingredient. Recently, fucoxanthin was reported to penetrate the blood-brain barrier, and was superior to other carotenoids to exert anti-neurodegenerative disorder effects via acting on multiple targets, including amyloid protein aggregation, oxidative stress, neuroinflammation, neuronal loss, neurotransmission dysregulation and gut microbiota disorder. However, the concentration of fucoxanthin required for in vivo neuroprotective effects is somewhat high, and the poor bioavailability of this molecule might prevent its clinical use. As such, new strategies have been introduced to overcome these obstacles, and may help to develop fucoxanthin as a novel lead for neurodegenerative disorders. Moreover, it has been shown that some metabolites of fucoxanthin may produce potent in vivo neuroprotective effects. Altogether, these studies suggest the possibility for future development of fucoxanthin as a one-compound-multiple-target or pro-drug type pharmaceutical or nutraceutical treatment for neurodegenerative disorders.Trial registration: ClinicalTrials.gov identifier: NCT03625284.Trial registration: ClinicalTrials.gov identifier: NCT02875392.Trial registration: ClinicalTrials.gov identifier: NCT03613740.Trial registration: ClinicalTrials.gov identifier: NCT04761406.
Collapse
Affiliation(s)
- Mengxiang Yang
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Zhenquan Xuan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, People's Republic of China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Jinrong Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China.,Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
48
|
Fucoxanthin and Colorectal Cancer Prevention. Cancers (Basel) 2021; 13:cancers13102379. [PMID: 34069132 PMCID: PMC8156579 DOI: 10.3390/cancers13102379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is suggested to be preventable by certain food intakes. Fucoxanthin (Fx) is an anticancer agent contained abundantly in edible brown algae. However, epidemiological studies, in vivo and in vitro experiments for CRC, using Fx and Fx-rich foods, have not been fully outlined. To date, it has been reported that Fx, its metabolite of fucoxanthinol (FxOH) and Fx-rich algal extracts exerted anticancer potentials in human CRC cell lines, their cancer stem-cells-like spheroids and CRC animal models through a number of molecular mechanisms. Moreover, many in vivo experiments and interventional human trials have demonstrated that Fx, Fx-rich algal extracts and brown alga itself may improve CRC and/or certain risks, such as obesity, diabetes, metabolic syndrome, inflammation, oxidation, tumor microenvironment and/or gut microbiota. This review is the first report that summarizes the improving effects by Fx, FxOH and its rich brown algae for CRC and the risk factors. Abstract Colorectal cancer (CRC), which ranks among the top 10 most prevalent cancers, can obtain a good outcome with appropriate surgery and/or chemotherapy. However, the global numbers of both new cancer cases and death from CRC are expected to increase up to 2030. Diet-induced lifestyle modification is suggested to be effective in reducing the risk of human CRC; therefore, interventional studies using diets or diet-derived compounds have been conducted to explore the prevention of CRC. Fucoxanthin (Fx), a dietary carotenoid, is predominantly contained in edible brown algae, such as Undaria pinnatifida (wakame) and Himanthalia elongata (Sea spaghetti), which are consumed particularly frequently in Asian countries but also in some Western countries. Fx is responsible for a majority of the anticancer effects exerted by the lipophilic bioactive compounds in those algae. Interventional human trials have shown that Fx and brown algae mitigate certain risk factors for CRC; however, the direct mechanisms underlying the anti-CRC properties of Fx remain elusive. Fx and its deacetylated type “fucoxanthinol” (FxOH) have been reported to exert potential anticancer effects in preclinical cancer models through the suppression of many cancer-related signal pathways and the tumor microenvironment or alteration of the gut microbiota. We herein review the most recent studies on Fx as a potential candidate drug for CRC prevention.
Collapse
|
49
|
Zhiyin L, Jinliang C, Qiunan C, Yunfei Y, Qian X. Fucoxanthin rescues dexamethasone induced C2C12 myotubes atrophy. Biomed Pharmacother 2021; 139:111590. [PMID: 33865017 DOI: 10.1016/j.biopha.2021.111590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Muscle atrophy and weakness are the adverse effects of long-term or high dose usage of glucocorticoids. In the present study, we explored the effects of fucoxanthin (10 μM) on dexamethasone (10 μM)-induced atrophy in C2C12 myotubes and investigated its underlying mechanisms. The diameter of myotubes was observed under a light microscope, and the expression of myosin heavy chain (MyHC), proteolysis-related, autophagy-related, apoptosis-related, and mitochondria-related proteins was analyzed by western blots or immunoprecipitation. Fucoxanthin alleviates dexamethasone-induced muscle atrophy in C2C12 myotubes, indicated by increased myotubes diameter and expression of MyHC, decreased expression of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1). Through activating SIRT1, fucoxanthin inhibits forkhead box O (FoxO) transcriptional activity to reduce protein degradation, induces autophagy to enhance degraded protein clearance, promotes mitochondrial function and diminishes apoptosis. In conclusion, we identified fucoxanthin ameliorates dexamethasone induced C2C12 myotubes atrophy through SIRT1 activation.
Collapse
Affiliation(s)
- Liao Zhiyin
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| | - Chen Jinliang
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| | - Chen Qiunan
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| | - Yang Yunfei
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| | - Xiao Qian
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
50
|
Health-Promoting Functions of the Marine Carotenoid Fucoxanthin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33783750 DOI: 10.1007/978-981-15-7360-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Fucoxanthin (Fx) is a marine carotenoid found in brown seaweeds and several marine microalgae. Recent studies have reported that dietary Fx exhibits many health-promoting functions such as anti-obesity and anti-diabetic effects in animal experiments. A human clinical trial of Fx showed high potential on reduction of body weight and fat content. The anti-obesity effect of Fx is due to several mechanisms, which include the suppression of adipocyte differentiation, anti-inflammation, and uncouple protein 1 induction in white adipose tissue. Furthermore, Fx reduced blood glucose level and improved insulin resistance through the regulation of adipokine mRNA expressions. In this chapter, we reviewed health beneficial effects and safety of Fx and discussed their molecular mechanisms.
Collapse
|