1
|
Drennan PG, Karponis D, Richards D, Coles M, Fullerton JN. In vivo human keyhole limpet hemocyanin challenge in early phase drug development: A systematic review. Clin Transl Sci 2023; 16:357-382. [PMID: 36420645 PMCID: PMC10014697 DOI: 10.1111/cts.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental exposure of healthy volunteers to the T-cell dependent neoantigen keyhole limpet hemocyanin (KLH) permits the evaluation of immunomodulatory investigational medicinal product (IMP) pharmacology prior to the recruitment of patient populations. Despite widespread use, no standardized approach to the design and conduct of such studies has been agreed. The objective of this systematic review was to survey the published literature where KLH was used as a challenge agent, describing methodology, therapeutic targets addressed, and pharmacodynamic outcome measures. We searched MEDLINE, EMBASE, clinicaltrials.gov, and Cochrane CENTRAL for studies using KLH challenge in humans between January 1, 1994, and April 1, 2022. We described key study features, including KLH formulation, dose, use of adjuvants, route of administration, co-administered IMPs, and end points. Of 2421 titles and abstracts screened, 46 met the inclusion criteria, including 14 (31%) early phase trials of IMP, of which 10 (71%) targeted T-cell co-stimulation. IMPs with diverse mechanisms demonstrated modulation of the humoral response to KLH, suggesting limited specificity of this end point. Two early phase IMP studies (14%) described the response to intradermal re-challenge (delayed type hypersensitivity). Challenge regimens for IMP assessment were often incompletely described, and exhibited marked heterogeneity, including primary KLH dose (25-fold variation: 100-2500 mcg), KLH formulation, and co-administration with adjuvants. Methodological heterogeneity and failure to exploit the access to tissue-level mechanism-relevant end points afforded by KLH challenge has impaired the translational utility of this paradigm to date. Future standardization, characterization, and methodological development is required to permit tailored, appropriately powered, mechanism-dependent study design to optimize drug development decisions.
Collapse
Affiliation(s)
- Philip G Drennan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Medicine, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Duncan Richards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Medicine, University of Oxford, Oxford, UK
| | - Mark Coles
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Medicine, University of Oxford, Oxford, UK
| | - James N Fullerton
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Zhong W, Chang P, Gan L, Zhong L, Yang Z. A T-cell-dependent antibody response (TDAR) method in BALB/c mice based on a cytometric bead array. J Immunotoxicol 2022; 19:34-40. [PMID: 35477374 DOI: 10.1080/1547691x.2022.2067273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Most current methods to assess T-cell-dependent antibody responses (TDAR) are semi-quantitative and based on measures of antibody titer generated against a standard antigen like keyhole limpet hemocyanin (KLH). The precision, sensitivity, and convenience of TDAR assays might be improved by applying rapid, sensitive, specific cytometric bead assays (CBA). In the study here, KLH antigen was covalently coupled onto the surface of cytometric beads using immune microsphere technology, and IgM antibody capture spheres were prepared for use in pretreatment processing of samples. The working parameters associated with this novel TDAR-CBA system were optimized in orthogonal experiments. The optimal concentration of the KLH coating solution in this system was 160 μg/ml, that of the anti-KLH IgG capture spheres 6.0 × 105/ml, and the optimal dilution of fluorescein isothiocyanate (FITC)-conjugated Affini-Pure Goat Anti-Mouse IgG (H + L) was 60 μg/ml. Repeated tests indicated that this approach yielded good linearity (r2 = 0.9937) method, with a within-run precision of 3.1-4.9%, and a between-run precision of 4.4-4.9%. This new approach had a limit of detection of 113.43 ng/ml (linear range = 390.63-50 000), and an interference rate of just 0.04-3.51%. Based on these findings, it seems that a new mouse TDAR assay based on CBA can be developed that would appear to be more sensitive, accurate, and precise than the current TDAR assay approaches based on traditional ELISA.
Collapse
Affiliation(s)
- Wenhua Zhong
- Hainan Medical University, Research Center for Drug Safety Evaluation of Hainan Province, Haikou, China
| | - Penghuan Chang
- Haikou Municipal People's Hospital and Xiangya Medical College Affiliated Hospital, Nursing Department, Haikou, China
| | - Lianfang Gan
- Hainan Medical University, Research Center for Drug Safety Evaluation of Hainan Province, Haikou, China
| | - Lifan Zhong
- Hainan Medical University, Research Center for Drug Safety Evaluation of Hainan Province, Haikou, China
| | - Zhaoxin Yang
- Hainan Medical University, Research Center for Drug Safety Evaluation of Hainan Province, Haikou, China
| |
Collapse
|
3
|
Morris EM, Kitts-Morgan SE, Spangler DM, McLeod KR, Suckow MA, Harmon DL. Feeding treats containing cannabidiol (CBD) did not alter canine immune response to immunization with a novel antigen. Res Vet Sci 2021; 143:13-19. [PMID: 34953408 DOI: 10.1016/j.rvsc.2021.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Due to the potential risk for cannabidiol (CBD) to negatively impact the immune system, the objective of the current study was to evaluate the effect of CBD on the canine immune response to immunization with a novel antigen, keyhole limpet hemocyanin (KLH). Thirty-two dogs (22.4 ± 6.3 kg BW) were utilized in a completely randomized design with treatments consisting of 5 mg CBD/kg BW/d and a control administered orally via treats. After a 7-d acclimation to treatments, dogs were immunized with 10 mg/dog of KLH via intramuscular injection into the semimembranosus muscle region, which was repeated in 14 d. Blood samples were collected at baseline and weekly for 28 d after initial KLH immunization for analysis of hematology, serum chemistry, and immunoglobulins. Data were analyzed using the MIXED procedure in SAS including the fixed effects of treatment, day, and the treatment by day interaction. Both primary and secondary KLH immunization produced robust immune responses. Most hematological and serum chemistry variables remained within normal reference ranges for dogs across both treatments throughout the study. Alkaline phosphatase, while within normal reference range and similar between treatments at baseline and on d 7 (P = 0.994 and 0.183, respectively), was elevated for CBD-treated dogs versus control on d 14, 21, and 28 (P = 0.006, 0.027, and 0.014, respectively). Both total and KLH-specific IgG and IgM were similar between treatments throughout the study (P > 0.05), although total IgM peaked earlier in control dogs compared to those receiving CBD. Despite the minor shift in the timing of the total IgM peak, CBD did not appear to exhibit humoral immunosuppressive effects when supplemented at 5 mg/kg BW/d. However, this work does highlight the potential for CBD to alter liver function and the need for further safety evaluations of CBD use in dogs utilizing longer-term studies and multiple CBD doses.
Collapse
Affiliation(s)
- Elizabeth M Morris
- Department of Animal and Food Sciences, University of Kentucky, 325 Cooper Dr., Lexington, KY 40546, United States
| | - Susanna E Kitts-Morgan
- College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, United States
| | - Dawn M Spangler
- College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, United States
| | - Kyle R McLeod
- Department of Animal and Food Sciences, University of Kentucky, 325 Cooper Dr., Lexington, KY 40546, United States
| | - Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky, 351 Ralph G. Anderson Building, Lexington, KY 40506, United States
| | - David L Harmon
- Department of Animal and Food Sciences, University of Kentucky, 325 Cooper Dr., Lexington, KY 40546, United States.
| |
Collapse
|
4
|
Xie C, Wang Z, Li Y, Wu F, Lu Y, Xia H, Tang J, Jian J, Kwok KW. Conservation of structural and interactional features of CD226 and Necl5 molecules from Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 116:74-83. [PMID: 34033910 DOI: 10.1016/j.fsi.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
CD226 interacts with its ligand Necl5 as a costimulatory signal. In this study, we cloned a CD226 from Nile tilapia (Oreochromis niloticus, named OnCD226) and a Necl5 (named OnNecl5). The open reading frame of OnCD226 was 1071 bp, encoding a protein of 356 amino acids. Sequence alignment analysis indicated that OnCD226 contained two Ig-like domains in ectodomain. The open reading frame of OnNecl5 was 1155 bp, encoding a protein of 384 amino acids, and there are three lg-like domains in the extracellular domain. In healthy tilapia, OnCD226 was distributed in all tested tissues and relatively higher in the brain, while OnNecl5 was relatively higher in the skin. After Streptococcus agalactiae infection, OnCD226 has the same up-regulated expression pattern as OnNecl5 in different tissues. After HKLs stimulation with S. agalactiae and Poly I:C, respectively. OnCD226 was significantly up-regulated (0.01 < p < 0.05) at 12 h and extremely significant up-regulation was observed (p < 0.01) at 48 h and 96 h, the peak was observed at 96 h after stimulation by S. agalactiae. After stimulation by Poly I:C, OnCD226 expression was extremely significant (p < 0.01) at 72 h and 96 h, the peak was observed at 96 h. After stimulation by Keyhole limpet hemocyanin (KLH), a classical T cell-dependent antigen, the expression of OnCD226 was significantly up-regulated in blood, head kidney, spleen, and thymus. Moreover, when compared with the first challenge, the gene expression of OnCD226 which response to the second challenge was up-regulated earlier. Subcellular co-localization studies showed that OnCD226 and OnNecl5 were distributed mainly in the cytomembrane. Yeast two-hybrid results, indicated a strong interaction between OnCD226 and OnNecl5. These results suggested that OnCD226 plays an important role during pathogens infection, and the interaction between CD226 and Necl5 is conserved in Nile tilapia.
Collapse
Affiliation(s)
- Caixia Xie
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China
| | - Zhiwen Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China
| | - Yuan Li
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China
| | - Fan Wu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China.
| | - Hongli Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 51820, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Kevin Wh Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
5
|
Li Y, Li B, Zhou E, Fu S, Wang Y, Wu L, Lei Y, Guo Z, Ye J. CD38 play roles in T cell-dependent response and B cell differentiation in nile tilapia (Oreochromis niloticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103515. [PMID: 31605715 DOI: 10.1016/j.dci.2019.103515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
CD38 is a multifunctional cell surface molecule that plays a crucial role in B cell activation, differentiation, and maturation in mammals with an increased expression in B cell maturation. In this study, a CD38-like molecule (OnCD38) was cloned and identified from Nile tilapia (Oreochromis niloticus), and its functional characterization was investigated. The open reading frame of OnCD38 is 828 bp of the nucleotide sequence, encoding a polypeptide of 275 amino acids. The deduced amino acid sequence of OnCD38 is highly homologous to other teleost fish and similar to mammals, containing extracellular, intracellular and transmembrane regions. Subcellular localization studies revealed that OnCD38 molecules were presented on the surface of B cells. Three healthy tilapia were used in each experimental group and control group. Following keyhole limpet hemocyanin (KLH) challenge in vivo, the mRNA expression of OnCD38 was significantly up-regulated in peripheral blood, spleen, and head kidney, with an earlier up-regulation in the second challenge than the first one. The up-regulation of OnCD38 expression was also detected in head kidney leukocytes after stimulation with LPS, recombinant HomoIL-10 ((r)HomoIL-10), (r)OnIL-10, and LPS plus (r)OnIL-10 in vitro. Furthermore, the OnCD38 expression increased with the differentiation of B cells, reaching a high level (10.1 fold higher than resting mature B cells) at the plasma-like B cells. Taken together, in this study, these results indicate that the OnCD38 is likely involved in the T cell-dependent response and plays roles in B cell differentiation in Nile tilapia.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Enxu Zhou
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Yuhong Wang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Yang Lei
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
6
|
Ogawa B, Nakanishi Y, Koyama T, Arima K, Sasaki M. Strain differences in histopathological features of lymphoid tissues of SD and F344 rats in a T cell-dependent antibody response assay of cyclophosphamide. J Toxicol Pathol 2019; 32:143-154. [PMID: 31404373 PMCID: PMC6682558 DOI: 10.1293/tox.2018-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
When conducting histopathological evaluation of lymphoid tissues, it is necessary to
know the variability and strain differences in histological features of different sites of
lymphoid tissues. To investigate in detail the variability of lymphoid tissues and strain
differences of control rats as well as those of immune reactivity and sensitivity to
immunosuppression, we performed a histopathological analysis of various lymphoid tissues
in conjunction with the evaluation of immune function in a T cell-dependent antibody
response (TDAR) assay with cyclophosphamide (CP) in Sprague Dawley (SD) and F344 rats.
Six-week-old male SD and F344 rats were orally treated with CP at 0 (control) or 4
mg/kg/day for 28 days; keyhole limpet hemocyanin (KLH) was introduced intravenously on
Days 14 and 23, and the serum concentrations of anti-KLH antibodies were measured. HE
staining and immunohistochemistry for T-cell (CD3) and B-cell (CD45RA) markers were
performed using tissues from the spleen, thymus, and various lymph nodes. In CP-treated
rats of both strains, decreased concentrations of anti-KLH antibodies were observed.
Histopathological analysis revealed decreased lymphocytes mainly in the B-cell area, and
these changes induced by CP treatment were more prominent in the F344 rats than in the SD
rats. The present study also demonstrated that some of the lymphoid tissues of the control
F344 rats were less developed than those of the control SD rats, suggesting that F344 rats
might be easily affected by CP-induced immunosuppression. This information concerning rat
strain differences in lymphoid tissues will be useful in histopathological evaluation for
drug-induced immunotoxicity.
Collapse
Affiliation(s)
- Bunichiro Ogawa
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Yutaka Nakanishi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Tomoko Koyama
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Kazunori Arima
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Minoru Sasaki
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| |
Collapse
|
7
|
Abstract
Assessment of the potential for a test article to have adverse effects on immune function can be difficult in clinical trials due to a relative lack of useful endpoints. It is therefore common to use a weight of evidence approach with nonclinical studies to indicate if there is a cause for concern that the test article has immunotoxic potential. The most commonly used follow-up assay for immunosuppression is the T-dependent antibody response (TDAR). However, final selection of an assay (or assays) to evaluate potential human immunotoxicity depends on the type of findings in nonclinical studies. For example, signs of unintended immunostimulation or immunomodulation may be assessed using specialized assays using human cells. Other factors should also be considered, such as pharmacology of the test article, potential structural similarities with known immunomodulatory agents, and/or pharmacokinetic/drug disposition findings consistent with accumulation of test article/metabolite in immune system tissues. Although evaluation of the potential for a test article to have adverse effects on immune function can be a complex task, established nonclinical models and some clinical endpoints can be useful to determine the safety of products intended for use as human therapeutics.
Collapse
|