1
|
Hu X, Wang P, Zeng D, Hu GX. The effect of gene polymorphism on ticagrelor metabolism: an in vitro study of 22 CYP3A4 variants in Chinese Han population. PeerJ 2024; 12:e18109. [PMID: 39346054 PMCID: PMC11430164 DOI: 10.7717/peerj.18109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Background Ticagrelor is a novel oral antiplatelet agent which can selectively inhibit P2Y12 receptor. Bleeding and dyspnea are common adverse reactions of ticagrelor in clinic. The side effects of ticagrelor are correlated with the plasma concentration of ticagrelor. Objective This study aimed to evaluate the catalytic characteristics of 22 CYP3A4 alleles identified in the Chinese Han population on the metabolism of ticagrelor in vitro, focusing on the effect of CYP3A4 polymorphism on ticagrelor metabolism. Methods In this study, insect cells were used to express 22 CYP3A4 variants, which were then incubated with 1-50 µM ticagrelor at 37 °C for 30 minutes to obtain the metabolite (AR-C124910XX). AR-C124910XX was detected by UHPLC-MS/MS to calculate the kinetic parameters, including Km, Vmax and CLint. Results Compared to the wild-type, most CYP3A4 alleles exhibited significant differences in intrinsic clearance. The intrinsic clearance of CYP3A4*11, *18 and *33 was much higher than that of wild-type; four variants exhibited similar intrinsic clearance values as the wild-type enzyme; The remaining 14 variants showed significantly reduced intrinsic clearance values, ranging from 1.48% to 75.11% of the wild-type; CYP3A4*30 displayed weak or no activity. Conclusion This study conducted a comprehensive assessment of the effect of CYP3A4 variants on ticagrelor's metabolism. The results suggested that there is allele-specific activity towards ticagrelor in vitro. These findings can provide some insights and predictions for treatment strategies and risk assessments associated with ticagrelor in clinical practice.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, China
| | - Peng Wang
- Department of Pharmacy, Jinhua People’s Hospital, Jinhua, China
| | - Dali Zeng
- Department of Pharmacy, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Guo-xin Hu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Hu Y, Ye Z, Wu H, Chen X, Xia H, Cai JP, Hu GX, Xu RA. Functional assessment of CYP3A4 and CYP2C19 genetic polymorphisms on the metabolism of clothianidin invitro. Chem Biol Interact 2024; 399:111154. [PMID: 39025286 DOI: 10.1016/j.cbi.2024.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Clothianidin, classified as a second-generation neonicotinoid, has achieved extensive application due to its high efficacy against insect pests. This broad-spectrum usage has resulted in its frequent detection in environmental surveys. CYP2C19 and CYP3A4 are crucial for converting clothianidin to desmethyl-clothianidin (dm-clothianidin). The expression of these CYP450s can be significantly influenced by genetic polymorphisms. The objective of our research was to examine the catalytic effects of 27 CYP3A4 variants and 31 CYP2C19 variants on the metabolism of clothianidin within recombinant insect microsomes. These variants were assessed through a well-established incubation procedure. In addition, the concentration of its metabolite dm-clothianidin was quantified by employing an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Lastly, the kinetic parameters of these CYP3A4 and CYP2C19 variants were calculated by applying Michaelis-Menten kinetic analysis to fit the data. The observed changes in enzyme activity were related to the metabolic transformation of clothianidin to dm-clothianidin. In the CYP2C19 metabolic pathway, one variant (CYP2C19.23) showed no notable change in intrinsic clearance (CLint), four variants (CYP2C19.29, .30, .31 and L16F) demonstrated a marked increase in CLint (110.86-183.46 %), and the remaining 25 variants exhibited a considerable decrease in CLint (26.38-89.79 %), with a maximum decrease of 73.62 % (CYP2C19.6). In the CYP3A4 metabolic pathway, 26 variants demonstrated significantly reduced CLint (10.54-52.52 %), with a maximum decrease of 89.46 % (CYP3A4.20). Our results suggested that most variants of CYP3A4 and CYP2C19 significantly altered the enzymatic activities associated with clothianidin metabolism to various degrees. This study provides new insights into assessing the metabolic behavior of pesticides and delivers crucial data that can guide clinical detoxification strategies.
Collapse
Affiliation(s)
- Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhize Ye
- Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Hualu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Kojima M, Machida K, Cho S, Watanabe D, Seki H, Shimoji M, Imaoka A, Yamazaki H, Guengerich FP, Nakamura K, Yamamoto K, Akiyoshi T, Ohtani H. The influence of temperature on the metabolic activity of CYP2C9, CYP2C19, and CYP3A4 genetic variants in vitro. Xenobiotica 2023; 53:357-365. [PMID: 37584614 PMCID: PMC11549676 DOI: 10.1080/00498254.2023.2248498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
1. Temperature is considered to affect the activity of drug-metabolizing enzymes; however, no previous studies have compared temperature dependency among cytochrome P450 genetic variants. This study aimed to analyse warfarin 7-hydroxylation by CYP2C9 variants; omeprazole 5-hydroxylation by CYP2C19 variants; and midazolam 1-hydroxylation by CYP3A4 variants at 34 °C, 37 °C, and 40 °C.2. Compared with that seen at 37 °C, the intrinsic clearance rates (Vmax/Km) of CYP2C9.1 and .2 were decreased (76 ∼ 82%), while that of CYP2C9.3 was unchanged at 34 °C. At 40 °C, CYP2C9.1, .2, and .3 exhibited increased (121%), unchanged and decreased (87%) intrinsic clearance rates, respectively. At 34 °C, the clearance rates of CYP2C19.1A and .10 were decreased (71 ∼ 86%), that of CYP2C19.1B was unchanged, and those of CYP2C19.8 and .23 were increased (130 ∼ 134%). At 40 °C, the clearance rates of CYP2C19.1A, .1B, .10, and .23 remained unaffected, while that of CYP2C19.8 was decreased (74%). At 34 °C, the clearance rates of CYP3A4.1 and .16 were decreased (79 ∼ 84%), those of CYP3A4.2 and .7 were unchanged, and that of CYP3A4.18 was slightly increased (112%). At 40 °C, the clearance rate of CYP3A4.1 remained unaffected, while those of CYP3A4.2, .7, .16, and .18 were decreased (58 ∼ 82%).3. These findings may be clinically useful for dose optimisation in patients with hypothermia or hyperthermia.
Collapse
Affiliation(s)
- Michiaki Kojima
- Division of Clinical Pharmacokinetics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Kanami Machida
- Division of Clinical Pharmacokinetics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Sumie Cho
- Division of Clinical Pharmacokinetics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Daichi Watanabe
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Hiroyuki Seki
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Miyuki Shimoji
- Department of Pharmacy, University of the Ryukyus Hospital, Okinawa, Japan
| | - Ayuko Imaoka
- Division of Clinical Pharmacokinetics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Machida, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, USA
| | - Katsunori Nakamura
- Department of Pharmacy, University of the Ryukyus Hospital, Okinawa, Japan
| | | | - Takeshi Akiyoshi
- Division of Clinical Pharmacokinetics, Faculty of Pharmacy, Keio University, Tokyo, Japan
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Division of Clinical Pharmacokinetics, School of Medicine, Keio University, Tokyo, Shinjuku, Japan
| | - Hisakazu Ohtani
- Division of Clinical Pharmacokinetics, Faculty of Pharmacy, Keio University, Tokyo, Japan
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Division of Clinical Pharmacokinetics, School of Medicine, Keio University, Tokyo, Shinjuku, Japan
- Department of Pharmacy, Keio University Hospital, Tokyo, Shinjuku, Japan
| |
Collapse
|
4
|
Uno Y, Jikuya S, Noda Y, Oguchi A, Murayama N, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H. Newly identified cytochrome P450 3A genes of tree shrews and pigs are expressed and encode functional enzymes. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109579. [PMID: 36822299 DOI: 10.1016/j.cbpc.2023.109579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Novel cytochrome P450 3A5 (CYP3A5) cDNA in tree shrews (which are non-rodent primate-like species) and pig CYP3A227 cDNA were identified, along with known pig CYP3A22, CYP3A29, and CYP3A46 cDNAs. All five cDNAs contained open reading frames encoding a polypeptide of 503 amino acids that shared high sequence identity (72-78 %) with human CYP3A4 and were more closely related to human CYP3As than rat CYP3As by phylogenetic analysis. CYP3A5 was the only CYP3A in the tree shrew genome, but pig CYP3A genes formed a CYP3A gene cluster in the genomic region corresponding to that of human CYP3A genes. Tree shrew CYP3A5 mRNA was predominantly expressed in liver and small intestine, among the tissues analyzed, whereas pig CYP3A227 mRNA was most abundantly expressed in jejunum, followed by liver. Metabolic assays established that tree shrew CYP3A5 and pig CYP3A proteins heterologously expressed in Escherichia coli metabolized typical human CYP3A4 substrates nifedipine and midazolam. These results suggest that novel tree shrew CYP3A5 and pig CYP3A227 were functional enzymes able to metabolize human CYP3A4 substrates in liver and small intestine, similar to human CYP3A4, although pig CYP3A227 mRNA was minimally expressed in all tissues analyzed.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Shiori Jikuya
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Yutaro Noda
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Asuka Oguchi
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroaki Kawaguchi
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kyoko Tsukiyama-Kohara
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan; Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
5
|
Nouh RA, Kamal A, Abdelnaser A. Cannabinoids and Multiple Sclerosis: A Critical Analysis of Therapeutic Potentials and Safety Concerns. Pharmaceutics 2023; 15:1151. [PMID: 37111637 PMCID: PMC10146800 DOI: 10.3390/pharmaceutics15041151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Multiple sclerosis (MS) is a complicated condition in which the immune system attacks myelinated axons in the central nervous system (CNS), destroying both myelin and axons to varying degrees. Several environmental, genetic, and epigenetic factors influence the risk of developing the disease and how well it responds to treatment. Cannabinoids have recently sparked renewed interest in their therapeutic applications, with growing evidence for their role in symptom control in MS. Cannabinoids exert their roles through the endogenous cannabinoid (ECB) system, with some reports shedding light on the molecular biology of this system and lending credence to some anecdotal medical claims. The double nature of cannabinoids, which cause both positive and negative effects, comes from their actions on the same receptor. Several mechanisms have been adopted to evade this effect. However, there are still numerous limitations to using cannabinoids to treat MS patients. In this review, we will explore and discuss the molecular effect of cannabinoids on the ECB system, the various factors that affect the response to cannabinoids in the body, including the role of gene polymorphism and its relation to dosage, assessing the positive over the adverse effects of cannabinoids in MS, and finally, exploring the possible functional mechanism of cannabinoids in MS and the current and future progress of cannabinoid therapeutics.
Collapse
Affiliation(s)
- Roua A. Nouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Kamal
- Biochemistry Department, Faculty of Science, Suez University, P.O. Box 43518, Suez 43533, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
6
|
Uno Y, Jikuya S, Noda Y, Murayama N, Yamazaki H. A Comprehensive Investigation of Dog Cytochrome P450 3A (CYP3A) Reveals a Functional Role of Newly Identified CYP3A98 in Small Intestine. Drug Metab Dispos 2023; 51:38-45. [PMID: 35772769 DOI: 10.1124/dmd.121.000749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Dogs are frequently used in drug metabolism studies, and their important drug-metabolizing enzymes, including cytochromes P450 (P450), have been analyzed. In humans, CYP3A4 is an especially important P450 due to its abundance and major roles in liver and intestine. In the present study, dog CYP3A98 and CYP3A99 were identified and characterized, along with previously identified CYP3A12 and CYP3A26. The dog CYP3A cDNAs contained open reading frames of 503 amino acids and shared high sequence identity (78%-80%) with human CYP3As. Among the dog CYP3A mRNAs, CYP3A98 mRNA was expressed most abundantly in small intestine. In contrast, dog CYP3A12 and CYP3A26 mRNAs were expressed in liver, where CYP3A12 mRNA was the most abundant. The four CYP3A genes had similar gene structures and formed a gene cluster in the dog and human genomes. Metabolic assays of dog CYP3A proteins heterologously expressed in Escherichia coli indicated that the dog CYP3As tested were functional enzymes with respect to typical human CYP3A4 substrates. Dog CYP3A98 efficiently catalyzed oxidations of nifedipine, alprazolam, and midazolam, indicating major roles of CYP3A98 in the small intestine. Dog CYP3A12 and CYP3A26 metabolizing nifedipine and/or midazolam would play roles in these reactions in the liver. In contrast, dog CYP3A99 showed minimal mRNA expression and minimal metabolic activity, and its contribution to overall drug metabolism is, therefore, negligible. These results indicated that newly identified dog CYP3A98, a testosterone 6 β - and estradiol 16 α -hydroxylase, was abundantly expressed in the small intestine and is likely the major CYP3A in the small intestine in combination with liver-specific CYP3A12. SIGNIFICANCE STATEMENT: Novel dog cytochromes P450 3A98 (CYP3A98) and CYP3A99 were identified and characterized to be functional and highly identical to human CYP3A4. Known CYP3A12 and new CYP3A98 efficiently catalyzed estradiol 16α-hydroxylation and midazolam 1'-hydroxylation. CYP3A98 mRNA was expressed in small intestine, whereas CYP3A12 mRNA was predominant in liver. Dog hepatic CYP3A12 and intestinal CYP3A98 are the enzymes likely responsible for the metabolic clearances of orally administered drugs, unlike human CYP3A4/5, which are in both the liver and intestine.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Shiori Jikuya
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Yutaro Noda
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., S.J.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan (Y.N., N.M., H.Y.)
| |
Collapse
|
7
|
Zschiesche A, Chundela Z, Thieme D, Keiler AM. HepG2 as promising cell-based model for biosynthesis of long-term metabolites: Exemplified for metandienone. Drug Test Anal 2021; 14:298-306. [PMID: 34705329 DOI: 10.1002/dta.3184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022]
Abstract
In order to detect the abuse of substances in sports, the knowledge of their metabolism is of undisputable importance. As in vivo administration of compounds faces ethical problems and might even not be applicable for nonapproved compounds, cell-based models might be a versatile tool for biotransformation studies. We coincubated HepG2 cells with metandienone and D3 -epitestosterone for 14 days. Phase I and II metabolites were analyzed by high-performance liquid chromatography (HPLC)-tandem mass spectrometry and confirmed by gas chromatography-mass spectrometry (GC-MS). The metandienone metabolites formed by HepG2 cells were comparable with those renally excreted by humans. HepG2 cells also generated the two long-term metabolites 17β-hydroxymethyl-17α-methyl-18-nor-androst-1,4,13-trien-3-one and 17α-hydroxymethyl-17β-methyl-18-nor-androst-1,4,13-trien-3-one used in doping analyses, though in an inverse ratio compared with that observed in human urine. In conclusion, we showed that HepG2 cells are suitable as model for the investigation of biotransformation of androgens, especially for the anabolic androgenic steroid metandienone. They further proved to cover phase I and II metabolic pathways, which combined with a prolonged incubation time with metandienone resulted in the generation of its respective long-term metabolites known from in vivo metabolism. Moreover, we showed the usability of D3 -epitestosterone as internal standard for the incubation. The method used herein appears to be suitable and advantageous compared with other models for the investigation of doping-relevant compounds, probably enabling the discovery of candidate metabolites for doping analyses.
Collapse
Affiliation(s)
- Annette Zschiesche
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Zdenek Chundela
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Annekathrin M Keiler
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany.,Faculty of Biology, Environmental Monitoring & Endocrinology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Savill R, Baues H, Voigt E, Zierau O, Thieme D, Keiler AM. Cell culture as a toolbox to generate phase I metabolites for antidoping screening. Drug Test Anal 2021; 13:1169-1177. [PMID: 33527655 DOI: 10.1002/dta.3009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
The knowledge of the biotransformation of compounds prohibited by the World Anti Doping Agency is of high concern as doping analyses are mostly based on the detection of metabolites instead of the parent compounds abused by athletes. While the self-administration of doping-relevant compounds is from an ethical point of view a rather problematic method to investigate metabolism, the usage of cell culture systems allows for studies on biotransformation in vitro. Five cell culture models with different tissue origin (liver, ovary, skin, kidney, and testis) were comparatively incubated with testosterone and epitestosterone as well as with the synthetic testosterone derivatives 17α-methyltestosterone and 4-chlorotestosterone to investigate the impact of synthetic modifications on phase I metabolic pathways. Cell culture supernatants were analyzed by high-performance liquid chromatography-tandem mass spectrometry. All cell lines possessed the default steroid phase I biotransformation reactions. The highest conversion rate was observed in ovarian (BG-1) and liver cells (HepG2). For BG-1 and skin cells (HaCaT), the 5α-reductase products 5α-dihydrotestosterone (for both) and 5α-androstane-3α/β,17β-diol (for BG-1 solely) were found to be prevailing after testosterone incubation. In kidney (COS-1) and HepG2 cells, the 17β-hydroxysteroid dehydrogenase activity was predominant as supported by the observation that the 17α-OH (epitestosterone) and the methyl group (17α-methyltestosterone) impeded the conversion rate in these cell lines. In conclusion, future work should extend the characterization of the BG-1 and HepG2 cells on phase II metabolic pathways to examine whether they are suitable models for the generation of metabolite reference collections comparable to those obtained by human excretion studies.
Collapse
Affiliation(s)
- Ryan Savill
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Helge Baues
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Emmely Voigt
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Annekathrin Martina Keiler
- Molecular Cell Physiology and Endocrinology, Institute of Zoology, Technical University Dresden, Dresden, Germany.,Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| |
Collapse
|
9
|
Yamaguchi Y, Akiyoshi T, Kawamura G, Imaoka A, Miyazaki M, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H. Comparison of the inhibitory effects of azole antifungals on cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet 2021; 38:100384. [PMID: 33826998 DOI: 10.1016/j.dmpk.2021.100384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 01/27/2023]
Abstract
Cytochrome P450 (CYP) 3A4 is one of the major drug-metabolizing enzymes. Genetic variants of CYP3A4 with altered activity are one of the factors responsible for interindividual differences in drug metabolism. Azole antifungals inhibit CYP3A4 to cause clinically significant drug-drug interactions. In the present quantitative study, we investigated the inhibitory effects of three azole antifungals (ketoconazole, voriconazole, and fluconazole) on testosterone metabolism by recombinant CYP3A4 genetic variants (CYP3A4.1 (WT), CYP3A4.2, CYP3A4.7, CYP3A4.16, and CYP3A4.18) and compared them with those previously reported for itraconazole. The inhibition constants (Ki) of ketoconazole, voriconazole, and fluconazole for rCYP3A4.1 were 3.6 nM, 3.2 μM, and 16.1 μM, respectively. The Ki values of these azoles for rCYP3A4.16 were 13.9-, 13.6-, and 6.2-fold higher than those for rCYP3A4.1, respectively, whereas the Ki value of itraconazole for rCYP3A4.16 was 0.54-fold of that for rCYP3A4.1. The other genetic variants had similar effects on the Ki values of the three azoles, whereas a very different pattern was seen for itraconazole. In conclusion, itraconazole has unique characteristics that are distinct from those shared by the other azole anti-fungal drugs ketoconazole, voriconazole, and fluconazole with regard to the influence of genetic variations on the inhibition of CYP3A4.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Division of Clinical Pharmacokinetics, Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacokinetics, Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Go Kawamura
- Division of Clinical Pharmacokinetics, Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Ayuko Imaoka
- Division of Clinical Pharmacokinetics, Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Mitsue Miyazaki
- Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi-shi, Gunma, 371-8511, Japan
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 2200 Pierce Avenue, Nashville, USA
| | - Katsunori Nakamura
- Ryukyus University School of Medicine, 207 Azauehara, Nishiharacho, Okinawa, 903-0215, Japan
| | - Koujirou Yamamoto
- Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi-shi, Gunma, 371-8511, Japan
| | - Hisakazu Ohtani
- Division of Clinical Pharmacokinetics, Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
10
|
Cai Y, Lin Q, Jin Z, Xia F, Ye Y, Xia Y, Papadimos TJ, Wang Q, Hu G, Cai J, Chen L. Evaluation of Recombinant CYP3A4 Variants on the Metabolism of Oxycodone In Vitro. Chem Res Toxicol 2021; 34:103-109. [PMID: 33393779 DOI: 10.1021/acs.chemrestox.0c00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 3A4 is a highly polymorphic enzyme and metabolizes approximately 40%-60% of therapeutic drugs. Its genetic polymorphism may significantly affect the expression and function of CYP3A4 resulting in alterations of the pharmacokinetics and pharmacodynamics of the CYP3A4-mediated drugs. The purpose of this study was to evaluate the catalytic activities of 30 CYP3A4 nonsynonymous variants and wild type toward oxycodone in vitro. CYP3A4 proteins were incubated with oxycodone for 30 min at 37 °C and the reaction was terminated by cooling to -80 °C immediately. Ultraperformance liquid chromatography tandem mass-spectrometry was used to analyze noroxycodone, and kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of noroxycodone were also determined. Compared with CYP3A4.1, 24 CYP3A4 variants (CYP3A4.2-.5, -.7-.16, -.18 and -.19, -.23 and -.24, -.28 and -.29, and -.31-.34) exhibited significantly decreased relative clearance values (from 4.82% ± 0.31% to 80.98% ± 5.08%), whereas CYP3A4.6, -.17, -.20, -.21, -.26, and -.30 displayed no detectable enzyme activity. As the first study of these alleles for oxycodone metabolism in vitro, results of this study may provide insight into establishing the genotype-phenotype relationship for oxycodone and serve as a reference for clinical administrators and advance the provision of personalized precision medicine.
Collapse
Affiliation(s)
- Yaoyao Cai
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianmeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha 410008, China
| | - Zhousheng Jin
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fangfang Xia
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yingchao Ye
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Xia
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Thomas J Papadimos
- Critical Care Section and Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States
| | - Quanguang Wang
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guoxin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Limei Chen
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
11
|
Kumondai M, Gutiérrez Rico EM, Hishinuma E, Ueda A, Saito S, Saigusa D, Tadaka S, Kinoshita K, Nakayoshi T, Oda A, Abe A, Maekawa M, Mano N, Hirasawa N, Hiratsuka M. Functional Characterization of 40 CYP3A4 Variants by Assessing Midazolam 1'-Hydroxylation and Testosterone 6 β-Hydroxylation. Drug Metab Dispos 2020; 49:212-220. [PMID: 33384383 DOI: 10.1124/dmd.120.000261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
CYP3A4 is among the most abundant liver and intestinal drug-metabolizing cytochrome P450 enzymes, contributing to the metabolism of more than 30% of clinically used drugs. Therefore, interindividual variability in CYP3A4 activity is a frequent cause of reduced drug efficacy and adverse effects. In this study, we characterized wild-type CYP3A4 and 40 CYP3A4 variants, including 11 new variants, detected among 4773 Japanese individuals by assessing CYP3A4 enzymatic activities for two representative substrates (midazolam and testosterone). The reduced carbon monoxide-difference spectra of wild-type CYP3A4 and 31 CYP3A4 variants produced with our established mammalian cell expression system were determined by measuring the increase in maximum absorption at 450 nm after carbon monoxide treatment. The kinetic parameters of midazolam and testosterone hydroxylation by wild-type CYP3A4 and 29 CYP3A4 variants (K m , k cat , and catalytic efficiency) were determined, and the causes of their kinetic differences were evaluated by three-dimensional structural modeling. Our findings offer insight into the mechanism underlying interindividual differences in CYP3A4-dependent drug metabolism. Moreover, our results provide guidance for improving drug administration protocols by considering the information on CYP3A4 genetic polymorphisms. SIGNIFICANCE STATEMENT: CYP3A4 metabolizes more than 30% of clinically used drugs. Interindividual differences in drug efficacy and adverse-effect rates have been linked to ethnicity-specific differences in CYP3A4 gene variants in Asian populations, including Japanese individuals, indicating the presence of CYP3A4 polymorphisms resulting in the increased expression of loss-of-function variants. This study detected alterations in CYP3A4 activity due to amino acid substitutions by assessing the enzymatic activities of coding variants for two representative CYP3A4 substrates.
Collapse
Affiliation(s)
- Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Eiji Hishinuma
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Akiko Ueda
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Sakae Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Daisuke Saigusa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Shu Tadaka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Kengo Kinoshita
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Tomoki Nakayoshi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Akifumi Oda
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Ai Abe
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Masamitsu Maekawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Nariyasu Mano
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences (M.K., E.M.G.R., N.H., M.H.), Tohoku Medical Megabank Organization (E.H., S.S., D.S., S.T., K.K., M.H.), Advanced Research Center for Innovations in Next-Generation Medicine (E.H., A.U., N.H., M.H.), and Laboratory of Clinical Pharmacy, Faculty of Pharmaceutical Sciences (A.A., M.M., N.M.), Tohoku University, Sendai, Japan; Faculty of Pharmacy, Meijo University, Nagoya, Japan (T.N., A.O.); and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., N.M., N.H., M.H.)
| |
Collapse
|
12
|
Singh A, Zai C, Mohiuddin AG, Kennedy JL. The pharmacogenetics of opioid treatment for pain management. J Psychopharmacol 2020; 34:1200-1209. [PMID: 32715846 DOI: 10.1177/0269881120944162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Opioids are widely used as an analgesic for the treatment of moderate to severe pain. However, there are interindividual variabilities in opioid response. Current evidence suggests that these variabilities can be attributed to single nucleotide polymorphisms in genes involved in opioid pharmacodynamics and pharmacokinetics. Knowledge of these genetic factors through pharamacogenetic (PGx) testing can help clinicians to more consistently prescribe opioids that can provide patients with maximal clinical benefit and minimal risk of adverse effects. AIM The research outlined in this literature review identifies variants involved in opioid PGx, which may be an important tool to achieving the goal of personalized pain management. RESULTS Cytochrome P450 (CYP) 2D6, CYP3A4, CYP3A5, catechol-o-methyltransferase (COMT), adenosine triphosphate binding cassette transporter B1 (ABCB1), opioid receptor mu 1 (OPRM1), and opioid receptor delta 1 (OPRD1) are all important genes involved in opioid drug response, side effect profile and risk of dependence; these are important genetic factors that should be included in potential opioid PGx tests for pain management. CONCLUSIONS Employing a PGx-guided strategy for prescribing opioids can improve response rate, reduce side effects and increase adherence to treatment plans for pain; more research is needed to explore opioid-related PGx factors for the development and validation of an opioid genetic panel. Optimal prescriptions could also provide healthcare payers with beneficial savings, while reducing the risk of propagating the current opioid crisis.
Collapse
Affiliation(s)
- Ashley Singh
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Clement Zai
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ayeshah G Mohiuddin
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Li YH, Lu XR, Lin QM, Huang HL, Liang XL, Cai JP, Cui J, Hu GX. Functional characterization of 27 CYP3A4 variants on macitentan metabolism in vitro. J Pharm Pharmacol 2019; 71:1677-1683. [PMID: 31441067 DOI: 10.1111/jphp.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/20/2019] [Indexed: 12/17/2022]
Abstract
Abstract
Objective
Macitentan is a new choice for pulmonary hypertension treatment which is converted to active metabolite ACT132577 by human cytochrome P450 3A4. Human cytochrome P450 3A4 often occurred gene mutations. Gene polymorphism might cause a variety of changes of protein expression and thus give rise to metabolic difference. The aim of this study was to investigate the catalytic characteristics of 27 CYP3A4 protein variants on the metabolism of macitentan in vitro.
Method
The incubation mixtures (final volume of 200 μl in 1 m PBS) consisted of 1 pmol wild-type CYP3A4.1 or other CYP3A4 protein variants, 2.38 pmol CYP b5 and macitentan (10–600 μm) with 1 mm NADPH. All specimens were processed using same approach with acetonitrile precipitation. The metabolite of macitentan was analysed by ultra performance liquid chromatography–tandem mass spectrometry.
Key finding
Most CYP3A4 protein variants (CYP3A4.9, .11, .12, .13, .17, .20, .23, .24, .28, .29, .33, .34) exhibited a sharp decrease, meanwhile nearly one in five variants (CYP3A4.3, .4, .5, .10, .15, .16) showed a significant rise in intrinsic clearance. The relative clearance of CYP3A4 protein variants was ranged from 5.53 to 501.00%.
Conclusion
Twenty-seven CYP3A4 protein variants displayed different catalytic characteristics towards macitentan in vitro, especially CYP3A4.5, .17, .20, .23. It is important to pay more attention to the dosage of macitentan in order to get better treatment for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ying-hui Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang-ran Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian-meng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huan-le Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-long Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-ping Cai
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Guo-xin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Zhou XY, Hu XX, Wang CC, Lu XR, Chen Z, Liu Q, Hu GX, Cai JP. Enzymatic Activities of CYP3A4 Allelic Variants on Quinine 3-Hydroxylation In Vitro. Front Pharmacol 2019; 10:591. [PMID: 31214030 PMCID: PMC6555127 DOI: 10.3389/fphar.2019.00591] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/08/2019] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) enzyme activity is known to show considerable ethnic heterogeneity and inter-individual differences, affecting the outcome of drug treatment. CYP3A4 genetic polymorphisms are believed to be one of the important causes, leading to inter-individual variability in drug metabolism. Quinine is an antipyretic drug with antimalarial properties that is metabolized primarily by CYP3A4. Quinine 3-hydroxylation has been proven as a biomarker reaction for evaluating CYP3A4 ability. Quinine has frequent adverse effects and there are distinct inter-individual differences in quinine sensitivity. The open reading frame for 30 CYP3A4 allelic variants were constructed from wild-type CYP3A4*1A by an overlap extension polymerase chain reaction. Recombinant CYP3A4 variants were expressed using baculovirus-insect cell expression system, and their catalytic activities towards quinine hydroxylation were determined and evaluated. Of the 30 CYP3A4 allelic variants, 23 variants exhibited significantly reduced intrinsic clearance towards quinine, 2 variants showed increased intrinsic clearance for quinine, 2 variants possessed no significant differences towards quinine, compared with CYP3A4*1A, and 3 variants had no detected expression and enzyme activity. Our assessment on the enzymatic activities of CYP3A4 variants towards quinine may contribute to laying an experimental foundation for further clinical studies so as to accelerate the process of determining the associations between genetic variations and clinical phenotypes.
Collapse
Affiliation(s)
- Xiao-Yang Zhou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xiao-Xia Hu
- Department of Pharmacy, Jinhua Central Hospital, Jinhua, China
| | - Chen-Chen Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiang-Ran Lu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Zhe Chen
- Department of Pharmacy, Wenzhou People's Hospital, Wenzhou, China
| | - Qian Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Guo-Xin Hu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Jian-Ping Cai
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
15
|
Guttman Y, Nudel A, Kerem Z. Polymorphism in Cytochrome P450 3A4 Is Ethnicity Related. Front Genet 2019; 10:224. [PMID: 30941162 PMCID: PMC6433705 DOI: 10.3389/fgene.2019.00224] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/28/2019] [Indexed: 11/25/2022] Open
Abstract
Can mutations in Cytochrome P450 3A4 (CYP3A4), the major food- and drug-metabolizing enzyme, serve as biomarkers for personalized precise medicine? Classical genetic studies provide only limited data regarding the frequencies of CYP3A4 mutations and their role in food–drug interactions. Here, in an analysis of one large database of 141,456 individuals, we found 856 SNPs (single nucleotide polymorphism), of which 312 are missense mutations, far more than the previously reported dozens. Analyzing the data further, it is demonstrated that the frequency of mutations differs among ethnic groups. Hierarchical clustering divided the mutations to seven groups, each corresponding to a specific ethnicity. To the best of our knowledge this is the first comprehensive analysis of CYP3A4 allele frequencies in distinct ethnic groups. We suggest ethnicity based classification of CYP3A4 SNPs as the first step toward precise diet and medicine. Understanding which and when polymorphism might have clinical significance is a tremendously complex task. Using modeling approach, we could predict changes in the binding poses of ligands in the active site of single variants. These changes might imply clinical effects of the overlooked protein-altering CYP3A4 mutations, by modifying drug metabolism and FDI. It may be concluded that dietary habits, and hence FDI, are matters of ethnicity. Consequently, ethnic-related polymorphism in CYP3A4 and diet may be one underlying mechanism of response to medical regimes. The approaches presented here have the power to highlight mutations of clinical relevance in any gene of interest, thus to complement the arsenal of classic genetic screening tools.
Collapse
Affiliation(s)
- Yelena Guttman
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Nudel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zohar Kerem
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
16
|
Mancio-Silva L, Fleming HE, Miller AB, Milstein S, Liebow A, Haslett P, Sepp-Lorenzino L, Bhatia SN. Improving Drug Discovery by Nucleic Acid Delivery in Engineered Human Microlivers. Cell Metab 2019; 29:727-735.e3. [PMID: 30840913 PMCID: PMC6408324 DOI: 10.1016/j.cmet.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
The liver plays a central role in metabolism; however, xenobiotic metabolism variations between human hepatocytes and those in model organisms create challenges in establishing functional test beds to detect the potential drug toxicity and efficacy of candidate small molecules. In the emerging areas of RNA interference, viral gene therapy, and genome editing, more robust, long-lasting, and predictive human liver models may accelerate progress. Here, we apply a new modality to a previously established, functionally stable, multi-well bioengineered microliver-fabricated from primary human hepatocytes and supportive stromal cells-in order to advance both small molecule and nucleic acid therapeutic pipelines. Specifically, we achieve robust and durable gene silencing in vitro to tune the human metabolism of small molecules, and demonstrate its capacity to query the potential efficacy and/or toxicity of candidate therapeutics. Additionally, we apply this engineered platform to test siRNAs designed to target hepatocytes and impact human liver genetic and infectious diseases.
Collapse
Affiliation(s)
- Liliana Mancio-Silva
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Heather E Fleming
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alex B Miller
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Stuart Milstein
- Alnylam Pharmaceuticals, 300 3rd Street, Cambridge, MA 02142, USA
| | - Abigail Liebow
- Alnylam Pharmaceuticals, 300 3rd Street, Cambridge, MA 02142, USA
| | - Patrick Haslett
- Alnylam Pharmaceuticals, 300 3rd Street, Cambridge, MA 02142, USA
| | | | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
17
|
A comprehensive overview of common polymorphic variants that cause missense mutations in human CYPs and UGTs. Biomed Pharmacother 2019; 111:983-992. [DOI: 10.1016/j.biopha.2019.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/06/2019] [Accepted: 01/06/2019] [Indexed: 01/07/2023] Open
|
18
|
Karaca RO, Kalkisim S, Altinbas A, Kilincalp S, Yuksel I, Goktas MT, Yasar U, Bozkurt A, Babaoglu MO. Effects of Genetic Polymorphisms of Cytochrome P450 Enzymes and MDR1 Transporter on Pantoprazole Metabolism and Helicobacter pylori Eradication. Basic Clin Pharmacol Toxicol 2017; 120:199-206. [PMID: 27611887 DOI: 10.1111/bcpt.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/28/2016] [Indexed: 02/05/2023]
Abstract
Pantoprazole is a proton pump inhibitor that is commonly used in the treatment of peptic ulcer disease (PUD) and metabolized by cytochrome P450 (CYP) enzymes CYP2C19 and CYP3A4. Pantoprazole is a substrate for multi-drug resistance protein 1 (MDR1). Single nucleotide polymorphisms (SNPs) in CYP2C19, CYP3A4 and MDR1 affect enzyme activity or gene expression of proteins and may alter plasma pantoprazole concentrations and treatment success in PUD. In this study, we aimed to investigate the association between genetic polymorphisms in CYP2C19, CYP3A4 and MDR1 and pharmacokinetics of pantoprazole and therapeutic outcome in patients with either Helicobacter pylori-associated [H.P.(+)]-PUD or [H.P.(+)]-gastritis. The plasma pantoprazole concentrations were determined by using an HPLC method at the third hour after a 40-mg tablet of pantoprazole administration in 194 newly diagnosed patients with either [H.P.(+)]-PUD or [H.P.(+)]-gastritis. Genotyping was performed by using PCR-RFLP and DNA sequencing. Among patients appearing for follow-up examination (n = 105), the eradication rate for H. pylori was 82.8% (n = 87). The median pantoprazole plasma concentrations in poor metabolizers (PM), rapid metabolizers (RM) and ultrarapid metabolizers (URM) were 2.07, 1.69 and 1.28 μg/ml, respectively (p = 0.04). CYP3A4*1G and *22 polymorphisms did not affect plasma pantoprazole concentrations and H. pylori eradication rate. The MDR1 genetic polymorphisms did not affect plasma pantoprazole concentrations. MDR1 3435CC-2677GG-1236CC haplotype carriers had lower H. pylori eradication rate (60%) than the remaining subjects (84.9%) while the difference was not statistically significant (p = 0.07). In conclusion, while CYP2C19 genetic polymorphisms significantly affected plasma pantoprazole concentrations, polymorphisms of CYP2C19, CYP3A4 and MDR1 did not affect H. pylori eradication rates.
Collapse
Affiliation(s)
- R Ozgur Karaca
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Said Kalkisim
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Akif Altinbas
- Gastroenterology Unit, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Serta Kilincalp
- Gastroenterology Unit, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Ilhami Yuksel
- Gastroenterology Unit, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Mustafa T Goktas
- Department of Pharmacology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Umit Yasar
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Atilla Bozkurt
- Department of Pharmacology, Faculty of Medicine, BAU International University, Batumi, Georgia
| | - Melih O Babaoglu
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
19
|
Ouyang DS, Huang WH, Chen D, Zhang W, Tan ZR, Peng JB, Wang YC, Guo Y, Hu DL, Xiao J, Chen Y. Kinetics of cytochrome P450 enzymes for metabolism of sodium tanshinone IIA sulfonate in vitro. Chin Med 2016; 11:11. [PMID: 27006687 PMCID: PMC4802617 DOI: 10.1186/s13020-016-0083-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Background Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA for treating cardiovascular disorders. The roles of cytochrome P450 enzymes (CYPs) in the metabolism of STS have remained unclear. This study aims to screen the main CYPs for metabolism of STS and study their interactions in vitro. Methods Seven major CYPs were screened for metabolism of STS by human liver microsomes (HLMs) or recombinant CYP isoforms. Phenacetin (CYP1A2), coumarin (CYP2A6), tolbutamide (CYP2C9), metoprolol (CYP2D6), chlorzoxazone (CYP2E1), S-mephenytoin (CYP2C19), and midazolam (CYP3A4) were used as probe substrates to determine the potential of STS in affecting CYP-mediated phase I metabolism in humans. Enzyme kinetic studies were performed to investigate the modes of inhibition of the enzyme–substrate interactions by GraphPad Prism Enzyme Kinetic 5 Demo software. Results Sodium tanshinone IIA sulfonate inhibited the activity of CYP3A4 in a dose–dependent manner by the HLMs and CYP3A4 isoform. The Km and Vmax values of STS were 54.8 ± 14.6 µM and 0.9 ± 0.1 nmol/mg protein/min, respectively, for the HLMs and 7.5 ± 1.4 µM and 6.8 ± 0.3 nmol/nmol P450/min, respectively, for CYP3A4. CYP1A2, CYP2A6, CYP2C9, CYP2D6, CYP2E1, and CYP2C19 showed minimal or no effects on the metabolism of STS. Conclusion This in vitro study showed that STS mainly inhibited the activities of CYP3A4. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0083-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Sheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China ; Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Dan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Jing-Bo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Yi-Cheng Wang
- Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Ying Guo
- Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Dong-Li Hu
- Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China ; Institute of Clinical Pharmacology, Central South University, 110 Xiangya Road, Changsha, 410078 Hunan China
| |
Collapse
|
20
|
Chen D, Lin XX, Huang WH, Zhang W, Tan ZR, Peng JB, Wang YC, Guo Y, Hu DL, Chen Y. Sodium tanshinone IIA sulfonate and its interactions with human CYP450s. Xenobiotica 2016; 46:1085-1092. [PMID: 26932161 DOI: 10.3109/00498254.2016.1152417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- D. Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China and
| | - X.-X. Lin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China and
| | - W.-H. Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China and
| | - W. Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China and
| | - Z.-R. Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China and
| | - J.-B. Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China and
| | - Y.-C. Wang
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Y. Guo
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - D.-L. Hu
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Y. Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China and
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Abstract
CYP3A ranks among the most abundant cytochrome P450 enzymes in the liver, playing a dominant role in metabolic elimination of clinically used drugs. A main member in CYP3A family, CYP3A4 expression and activity vary considerably among individuals, attributable to genetic and non-genetic factors, affecting drug dosage and efficacy. However, the extent of genetic influence has remained unclear. This review assesses current knowledge on the genetic factors influencing CYP3A4 activity. Coding region CYP3A4 polymorphisms are rare and account for only a small portion of inter-person variability in CYP3A metabolism. Except for the promoter allele CYP3A4*1B with ambiguous effect on expression, common CYP3A4 regulatory polymorphisms were thought to be lacking. Recent studies have identified a relatively common regulatory polymorphism, designated CYP3A4*22 with robust effects on hepatic CYP3A4 expression. Combining CYP3A4*22 with CYP3A5 alleles *1, *3 and *7 has promise as a biomarker predicting overall CYP3A activity. Also contributing to variable expression, the role of polymorphisms in transcription factors and microRNAs is discussed.
Collapse
Affiliation(s)
- Danxin Wang
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-7336; Fax: +1-614-292-7232
| | | |
Collapse
|
22
|
Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther 2014; 96:340-8. [PMID: 24926778 DOI: 10.1038/clpt.2014.129] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/09/2014] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of more drugs in clinical use than any other foreign compound-metabolizing enzyme in humans. Recently, increasing evidence has been found showing that variants in the CYP3A4 gene have functional significance and--in rare cases--lead to loss of activity, implying tremendous consequences for patients. This review article highlights the functional consequences of all CYP3A4 variants recognized by the Human Cytochrome P450 (CYP) Allele Nomenclature Database.
Collapse
Affiliation(s)
- A N Werk
- Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - I Cascorbi
- Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
23
|
Altar CA, Hornberger J, Shewade A, Cruz V, Garrison J, Mrazek D. Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatry 2013; 25:509-33. [PMID: 24151799 DOI: 10.3109/09540261.2013.825579] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adverse events, response failures and medication non-compliance are common in patients receiving medications for the treatment of mental illnesses. A systematic literature review assessed whether pharmacokinetic (PK) or pharmacodynamic (PD) responses to 26 commonly prescribed antipsychotic and antidepressant medications, including efficacy or side effects, are associated with nucleotide polymorphisms in eight commonly studied genes in psychiatric pharmacotherapy: CYP2D6, CYP2C19, CYP2C9, CYP1A2, CYP3A4, HTR2C, HTR2A, and SLC6A4. Of the 294 publications included in this review, 168 (57%) showed significant associations between gene variants and PK or PD outcomes. Other studies that showed no association often had insufficient control for confounding variables, such as co-medication use, or analysis of medications not substrates of the target gene. The strongest gene-outcome associations were for the PK profiles of CYP2C19 and CYP2D6 (93% and 90%, respectively), for the PD associations between HTR2C and weight gain (57%), and for SLC6A4 and clinical response (54%), with stronger SLC6A4 response associations for specific drug classes (60-83%). The preponderance of evidence supports the validity of analyzing nucleotide polymorphisms in CYP and pharmacodynamic genes to predict the metabolism, safety, or therapeutic efficacy of psychotropic medications commonly used for the treatment of depression, schizophrenia, and bipolar illness.
Collapse
|
24
|
Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RHN. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013; 14:47-62. [PMID: 23252948 DOI: 10.2217/pgs.12.187] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies have attempted to explain the interindividual variability observed in drug metabolism by assessing the impact of SNPs in genes implicated in drug absorption, distribution, metabolism and excretion pathways. Particular attention has been paid to the CYP450s. CYP3A4 is the main CYP isoform in human liver and intestine and is involved in the metabolism of many drugs. Its activity, however, is characterized by widespread variation in the general population, which is thought to have a genetic basis. A new CYP3A4 allele (CYP3A4*22; rs35599367 C>T in intron 6) with a frequency of 5-7% in the Caucasian population was recently discovered through its association with low hepatic CYP3A4 expression and CYP3A4 activity, and showing effects on statin, tacrolimus and cyclosporine metabolism. This review will summarize the current literature on phenotypes linked to this new promising CYP3A4 genetic marker SNP and discusses the potential clinical relevance.
Collapse
Affiliation(s)
- Laure Elens
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Akiyoshi T, Ito M, Murase S, Miyazaki M, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H. Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet 2013; 28:411-5. [PMID: 23514827 DOI: 10.2133/dmpk.dmpk-12-rg-134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inhibition of cytochrome P450 (CYP) 3A4 is the major cause of drug-drug interactions (DDI). We have previously reported that the genetic variation of CYP3A4 significantly affected the inhibitory profiles of typical competitive inhibitors. In addition to competitive inhibition, some clinically significant DDI are attributable to mechanism-based inhibition (MBI). However, the differences in the MBI kinetics among CYP3A4 genetic variants remain to be characterized. In this study, we quantitatively investigated the inhibition kinetics of MBI inhibitors, erythromycin and clarithromycin, on the CYP3A4 variants CYP3A4.1, 4.2, 4.7, 4.16, and 4.18. The activity of CYP3A4 was assessed using testosterone 6β-hydroxylation with recombinant CYP3A4. Both erythromycin and clarithromycin decreased the activity of CYP3A4 in a time-dependent manner. The maximum inactivation rate constants, k(inact,max), of erythromycin for CYP3A4.2 and CYP3A4.7 were 0.5-fold that for CYP3A4.1, while that for CYP3A4.16 and CYP3A4.18 were similar to that for CYP3A4.1. The K(I) values of erythromycin for CYP3A4.2, 4.7, 4.16, and 4.18 were 1.2-, 0.4-, 2.2- and 0.72-fold those of CYP3A4.1, respectively. Similar results were obtained for clarithromycin. In conclusion, the inhibitory profiles of MBI inhibitors, as well as competitive inhibitors, may possibly differ among CYP3A4 variants. This difference may contribute to interindividual differences in the extent of DDI based on MBI.
Collapse
|
26
|
Engineering of Human CYP3A Enzymes by Combination of Activating Polymorphic Variants. Appl Biochem Biotechnol 2012; 168:785-96. [DOI: 10.1007/s12010-012-9819-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/01/2012] [Indexed: 01/20/2023]
|
27
|
Lee IS, Kim D. Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch Pharm Res 2011; 34:1799-816. [PMID: 22139682 DOI: 10.1007/s12272-011-1103-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 10/14/2022]
Abstract
The study of cytochrome P450 pharmacogenomics is of particular interest because of its promise in the development of rational means to optimize drug therapy with respect to patient's genotype to ensure maximum efficacy with minimal adverse effects. Drug metabolizing P450 enzymes are polymorphic and are the main phase I enzymes responsible for the metabolism of clinical drugs. Therefore, polymorphisms in the P450s have the most impact on the fate of clinical drugs in phase I metabolism since almost 80% of drugs in use today are metabolized by these enzymes. Predictive genotyping for P450 enzymes for a more effective therapy will be routine for specific drugs in the future. In this review, we discuss the current knowledge of polymorphic metabolism by functional alterations in nonsynonymous SNPs of P450 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 3A4 enzymes.
Collapse
Affiliation(s)
- Im-Soon Lee
- Department of Biological Sciences and Center for Biotechnology Research in UBITA, Konkuk University, Seoul 143-701, Korea
| | | |
Collapse
|
28
|
Nuclear receptor-mediated induction of CYP450 by antiretrovirals: functional consequences of NR1I2 (PXR) polymorphisms and differential prevalence in whites and sub-Saharan Africans. J Acquir Immune Defic Syndr 2011; 55:536-49. [PMID: 20861742 DOI: 10.1097/qai.0b013e3181f52f0c] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Antiretroviral therapy including HIV protease inhibitors and nonnucleoside reverse transcriptase inhibitors can both inhibit and induce expression of cytochrome P450s, potentially leading to drug interactions. However, information is lacking on the impact of genetic polymorphism on this interaction. METHODS This study examines the prevalence of 33 polymorphisms in NR1I2 (pregnane X receptor [PXR]), CYP3A4, and CYP2B6 in 1013 white and sub-Saharan African patients with HIV; explores the inductive ability of 16 antiretrovirals on CYP3A4 and CYP2B6 promoter activity through nuclear receptors PXR and constitutive androstane receptor (CAR); and evaluates the influence of naturally occurring PXR genetic variants on antiretroviral activation. RESULTS Seventeen polymorphisms were present at different frequencies between the two ethnicities. Darunavir, fosamprenavir, lopinavir, nelfinavir, tipranavir, efavirenz, and abacavir increased CYP3A4 and/or CYP2B6 promoter activity, some through constitutive androstane receptor but mainly through PXR. Addition of low-dose ritonavir enhanced levels of CYP promoter activity for several protease inhibitors. Some PXR variants displayed lower fosamprenavir- and lopinavir-induced CYP3A4 promoter activity than the PXR reference sequence, whereas efavirenz and nelfinavir induction was unchanged. CONCLUSIONS The presence of NR1I2 polymorphisms can alter the induction of CYP3A4 and CYP2B6 promoter activity, potentially adding to the unpredictable nature of antiretroviral drug interactions. These polymorphisms differ in prevalence between whites and sub-Saharan Africans.
Collapse
|
29
|
Phan VH, Tan C, Rittau A, Xu H, McLachlan AJ, Clarke SJ. An update on ethnic differences in drug metabolism and toxicity from anti-cancer drugs. Expert Opin Drug Metab Toxicol 2011; 7:1395-410. [PMID: 21950349 DOI: 10.1517/17425255.2011.624513] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Based on recent emerging evidence of inter-ethnic differences in drug response and toxicity, ethnic diversity in pharmacokinetics, pharmacogenomics and clinical outcomes are being increasingly investigated. Ultimately, this will promote improved understanding of inter-individual differences in the pharmacokinetics and tolerance of cytotoxic drugs. AREAS COVERED This article reviews potential explanations for the observed ethnic differences in treatment outcomes and provides clinical data to support this concept. A literature search was implemented on PubMed and PharmGKB to investigate the areas of ethnic differences in pharmacogenomics, pharmacogenetics and clinical outcomes of cancer therapies. EXPERT OPINION There has been a relative paucity of clinical evidence linking genetic polymorphisms of genes encoding drug-metabolizing enzymes to the pharmacokinetics, pharmacodynamics and tolerance of anti-cancer drugs. Future research should focus on studies using large sample sizes, in the hope that they will provide results of high clinical significance. Due to the potential for ethnic differences to impact on both toxicities and benefits of systemic cancer therapies, the development of new therapeutic agents should include patients from diverse geographical ancestries in each phase of drug development.
Collapse
Affiliation(s)
- Viet Hong Phan
- The University of Sydney, Concord Repatriation General Hospital, Sydney Cancer Centre, Concord, NSW, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Genetically Polymorphic Cytochrome P450s and Transporters and Personalized Antimicrobial Chemotherapy. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Sai K, Saito Y. Ethnic differences in the metabolism, toxicology and efficacy of three anticancer drugs. Expert Opin Drug Metab Toxicol 2011; 7:967-88. [PMID: 21585235 DOI: 10.1517/17425255.2011.585969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Large inter-individual and inter-ethnic differences are observed in efficacies and toxicities of medical drugs. To improve the predictability of these differences, pharmacogenetic information has been applied to clinical situations. Expanding pharmacogenetic information would be a valuable tool to the medical community as well as the patient to fulfill the promise of personalized anticancer drug therapy. AREAS COVERED This review highlights genetic polymorphisms and ethnic differences of genes, UGT1As, CYP3A4, CES1As, ABCB1, ABCC2, ABCG2, SLCO1B1, CDA and CYP2D6, involved in metabolism and disposition of three anticancer drugs: irinotecan, gemcitabine and tamoxifen. EXPERT OPINION Recent pharmacogenetic studies have successfully identified distinct ethnic differences in genetic polymorphisms that are potentially involved in efficacies and toxicities of anticancer drugs. This achievement has led to personalized irinotecan therapy, reflecting ethnic differences in UGT1A1 genotypes, and possible benefits of genetic testing have also been suggested for gemcitabine and tamoxifen therapy, which still requires further validation. The ultimate goal for patients is a high rate or even perfect prediction of efficacies and toxicities of anticancer drugs in each ethnic population. For this challenge, more clinical studies combined with comprehensive omics approaches are necessary to further advance the field.
Collapse
Affiliation(s)
- Kimie Sai
- National Institute of Health Sciences , Division of Medicinal Safety Science, Kamiyoga, Setagaya-ku, Tokyo, Japan
| | | |
Collapse
|
32
|
Akiyoshi T, Saito T, Murase S, Miyazaki M, Murayama N, Yamazaki H, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H. Comparison of the inhibitory profiles of itraconazole and cimetidine in cytochrome P450 3A4 genetic variants. Drug Metab Dispos 2011; 39:724-8. [PMID: 21212239 DOI: 10.1124/dmd.110.036780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP3A4, an important drug-metabolizing enzyme, is known to have genetic variants. We have previously reported that CYP3A4 variants such as CYP3A4.2, 7, 16, and 18 show different enzymatic kinetics from CYP3A4.1 (wild type). In this study, we quantitatively investigated the inhibition kinetics of two typical inhibitors, itraconazole (ITCZ) and cimetidine (CMD), on CYP3A4 variants and evaluated whether the genetic variation leads to interindividual differences in the extent of CYP3A4-mediated drug interactions. The inhibitory profiles of ITCZ and CMD on the metabolism of testosterone (TST) were analyzed by using recombinant CYP3A4 variants. The genetic variation of CYP3A4 significantly affected the inhibition profiles of the two inhibitors. In CYP3A4.7, the K(i) value for ITCZ was 2.4-fold higher than that for the wild-type enzyme, whereas the K(i) value for CMD was 0.64-fold lower. In CYP3A4.16, the K(i) value for ITCZ was 0.54-fold lower than that for wild-type CYP3A4, whereas the K(i) value for CMD was 3.2-fold higher. The influence of other genetic variations also differed between the two inhibitors. Docking simulations could explain the changes in the K(i) values, based on the accessibility of TST and inhibitors to the heme moiety of the CYP3A4 molecule. In conclusion, the inhibitory effects of an inhibitor differ among CYP3A4 variants, suggesting that the genetic variation of CYP3A4 may contribute, at least in part, to interindividual differences in drug interactions mediated by CYP3A4 inhibition, and the pattern of the influences of genetic variation differs among inhibitors as well as substrates.
Collapse
|
33
|
Seripa D, Pilotto A, Panza F, Matera MG, Pilotto A. Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev 2010; 9:457-74. [PMID: 20601196 DOI: 10.1016/j.arr.2010.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022]
Abstract
The genetics of cytochrome P450 (CYP) is a very active area of multidisciplinary research, overlapping the interest of medicine, biology and pharmacology, being the CYP enzyme system responsible for the metabolism of more than 80% of the commercially available drugs. Variations in CYP encoding genes are responsible for inter-individual differences in CYP production or function, with severe clinical consequences as therapeutic failures (TFs) and adverse drug reactions (ADRs), being ADRs worldwide primary causes of morbidity and mortality in elderly people. In fact, the prevalence of both TFs and ADRs strongly increased in the presence of multiple pharmacological treatments, a common status in subjects aging 65 years and over. The present article explored some basic concepts of human genetics that have important implications in the genetics of CYP. An attempted to transfer these basic concepts to the genetic data reported by the Home Page of The Human Cytochrome P450 (CYP) Allele Nomenclature Committee was also made, focusing on the current knowledge of CYP genetics. The status of what we know and what we need to know is the base for the clinical applications of pharmacogenetics, in which personalized drug treatments constituted the main aim, in particular in patients attending a geriatric ward.
Collapse
Affiliation(s)
- Davide Seripa
- Geriatric Unit & Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo (FG), Italy.
| | | | | | | | | |
Collapse
|
34
|
Maekawa K, Harakawa N, Yoshimura T, Kim SR, Fujimura Y, Aohara F, Sai K, Katori N, Tohkin M, Naito M, Hasegawa R, Okuda H, Sawada JI, Niwa T, Saito Y. CYP3A4*16 and CYP3A4*18 Alleles Found in East Asians Exhibit Differential Catalytic Activities for Seven CYP3A4 Substrate Drugs. Drug Metab Dispos 2010; 38:2100-4. [DOI: 10.1124/dmd.110.034140] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Liu D, Gao Y, Wang H, Zi J, Huang H, Ji J, Zhou R, Nan Y, Wang S, Zheng X, Zhu J, Cui Y, Chen C. Evaluation of the Effects of Cytochrome P450 Nonsynonymous Single-Nucleotide Polymorphisms on Tanshinol Borneol Ester Metabolism and Inhibition Potential. Drug Metab Dispos 2010; 38:2259-65. [DOI: 10.1124/dmd.110.034439] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Grover S, Gourie-Devi M, Baghel R, Sharma S, Bala K, Gupta M, Narayanasamy K, Varma B, Gupta M, Kaur K, Talwar P, Kaur H, Giddaluru S, Sharma A, Brahmachari SK, Consortium IGV, Kukreti R. Genetic profile of patients with epilepsy on first-line antiepileptic drugs and potential directions for personalized treatment. Pharmacogenomics 2010; 11:927-41. [PMID: 20602612 DOI: 10.2217/pgs.10.62] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The first-line antiepileptic drugs, although affordable and effective in the control of seizures, are associated with adverse drug effects, and there is large interindividual variability in the appropriate dose at which patients respond favorably. This variability may partly be explained by functional consequences of genetic polymorphisms in the drug-metabolizing enzymes, such as the CYP450 family, microsomal epoxide hydrolase and UDP-glucuronosyltransferases, drug transporters, mainly ATP-binding cassette transporters, and drug targets, including sodium channels. The purpose of this study was to determine the allele and genotype frequencies of such genetic variants in patients with epilepsy from North India administered first-line antiepileptic drugs, such as phenobarbitone, phenytoin, carbamazepine and valproic acid, and compare them with worldwide epilepsy populations. Materials & methods: SNP screening of 19 functional variants from 12 genes in 392 patients with epilepsy was carried out, and the patients were classified with respect to the metabolizing rate of their drug-metabolizing enzymes, efflux rate of drug transporters and sensitivity of drug targets. Results: A total of 16 SNPs were found to be polymorphic, and the allelic frequencies for these SNPs were in conformance with Hardy–Weinberg equilibrium. Among all the polymorphisms studied, functional variants from genes encoding CYP2C19, EPHX1, ABCB1 and SCN1A were highly polymorphic in North Indian epilepsy patients, and might account for differential drug response to first-line antiepileptic drugs. Conclusion: Interethnic differences were elucidated for several polymorphisms that might be responsible for differential serum drug levels and optimal dose requirement for efficacious treatment.
Collapse
Affiliation(s)
- Sandeep Grover
- Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), India
| | | | - Ruchi Baghel
- Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), India
| | - Sangeeta Sharma
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Kiran Bala
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | - Meena Gupta
- Institute of Human Behavior & Allied Sciences (IHBAS), Delhi, India
| | | | - Binuja Varma
- The Centre for Genomic Application (TCGA), New Delhi, India
| | - Meenal Gupta
- Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), India
| | - Kavita Kaur
- Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), India
| | - Puneet Talwar
- Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), India
| | - Harpreet Kaur
- Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), India
| | - Sudheer Giddaluru
- Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), India
| | - Abhay Sharma
- Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), India
| | - Samir K Brahmachari
- Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), India
| | | | | |
Collapse
|
37
|
Fujiwara Y, Minami H. An overview of the recent progress in irinotecan pharmacogenetics. Pharmacogenomics 2010; 11:391-406. [PMID: 20235794 DOI: 10.2217/pgs.10.19] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent developments in a number of molecular profiling technologies, including genomic/genetic testing, proteomic profiling and metabolomic analysis have allowed the development of 'personalized medicine'. Irinotecan is one of the models for personalized medicine based on pharmacogenetics, and a number of clinical studies have revealed significant associations between UGT1A1*28 and irinotecan toxicity. Based on this cumulative evidence, the US FDA and pharmaceutical companies revised the irinotecan label in June 2005. However, a recommended strategy for irinotecan-dose adjustments based on individual genetic factors has not yet been fully established. This article provides an overview of recent progress in irinotecan pharmacogenetics and discusses the clinical significance of the UGT1A1 genotype/haplotype with regard to severe irinotecan toxicity.
Collapse
Affiliation(s)
- Yutaka Fujiwara
- Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital & Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | |
Collapse
|
38
|
Lakhman SS, Ma Q, Morse GD. Pharmacogenomics of CYP3A: considerations for HIV treatment. Pharmacogenomics 2010; 10:1323-39. [PMID: 19663676 DOI: 10.2217/pgs.09.53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The understanding of the cytochrome P450 3A SNP in antiretroviral therapy is important, because it is highly inducible, extremely polymorphic and metabolizes many of the drugs that are key components of highly active antiretroviral therapy regimens. This enzyme is prolific and promiscuous towards drug and xenobiotic substrate selection and it is also unpredictable among individuals, having a 5- to 20-fold variability in its ability to contribute to drug clearance. The importance of human CYP3A pharmacogenetics is also gaining attention in other established areas of pharmacotherapy as it may contribute to the goal of predicting efficacy and/or toxicity, specifically with the discovery of null allele CYP3A4*20. This review summarizes the current understanding, implications of genetic variation in the CYP3A enzymes, the central role of CYP3A in linking human genetics, the pharmacokinetics and resulting pharmacodynamic responses to certain antiretroviral drugs, and their eventual place in applied clinical pharmacotherapy.
Collapse
Affiliation(s)
- Sukhwinder S Lakhman
- Department of Pharmaceutical Sciences, DYC School of Pharmacy, Buffalo, NY 14201 USA
| | | | | |
Collapse
|
39
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
40
|
Maekawa K, Yoshimura T, Saito Y, Fujimura Y, Aohara F, Emoto C, Iwasaki K, Hanioka N, Narimatsu S, Niwa T, Sawada J. Functional characterization of CYP3A4.16: Catalytic activities toward midazolam and carbamazepine. Xenobiotica 2009; 39:140-7. [DOI: 10.1080/00498250802617746] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Miyazaki M, Nakamura K, Fujita Y, Guengerich FP, Horiuchi R, Yamamoto K. Defective Activity of Recombinant Cytochromes P450 3A4.2 and 3A4.16 in Oxidation of Midazolam, Nifedipine, and Testosterone. Drug Metab Dispos 2008; 36:2287-91. [DOI: 10.1124/dmd.108.021816] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
42
|
Sai K, Saito Y, Fukushima-Uesaka H, Kurose K, Kaniwa N, Kamatani N, Shirao K, Yamamoto N, Hamaguchi T, Kunitoh H, Ohe Y, Tamura T, Yamada Y, Minami H, Ohtsu A, Yoshida T, Saijo N, Sawada JI. Impact of CYP3A4 haplotypes on irinotecan pharmacokinetics in Japanese cancer patients. Cancer Chemother Pharmacol 2007; 62:529-37. [PMID: 17992531 DOI: 10.1007/s00280-007-0634-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 10/22/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Cytochrome P450 3A4 (CYP3A4) converts an anticancer prodrug, irinotecan, to inactive metabolites such as APC. However, the contribution of CYP3A4 genetic polymorphisms to irinotecan pharmacokinetics (PK) and pharmacodynamics (PD) is not fully elucidated. In paclitaxel-administered cancer patients, an association of CYP3A4*16B harboring the low activity allele *16 [554C > G (Thr185Ser)] has been shown with altered metabolite/paclitaxel area under the plasma concentration-time curve (AUC) ratios, suggesting a possible impact of *16B on the PK of other drugs. In this study, the effects of CYP3A4 haplotypes including *16B on irinotecan PK/PD were investigated in irinotecan-administered patients. METHODS The CYP3A4 genotypes for 177 Japanese cancer patients who received irinotecan were defined in terms of 4 major haplotypes, i.e., *1A (wild type), *1G (IVS10 + 12G > A), *16B [554C > G (Thr185Ser) and IVS10 + 12G > A], and *18B [878T > C (Leu293Pro) and IVS10 + 12G > A]. Associations of CYP3A4 genotypes with irinotecan PK and severe toxicities (grade 3 diarrhea and grade 3 or 4 neutropenia) were investigated. RESULTS Area under the concentration-time curve ratios of APC/irinotecan, an in vivo parameter for CYP3A4 activity, were significantly higher in females than in males. The male patients with *16B showed significantly decreased AUC ratios (APC/irinotecan) with 50% of the median value of the non-*16B male patients (no *16B-bearing female patients in this study), whereas no significant alteration in the AUC ratios was observed in the patients with *18B. A slight trend toward increasing AUC ratios (20%) was detected in both male and female patients bearing *1G. Multivariate analysis confirmed contributions of CYP3A4*16B (coefficient +/- SE = -0.18 +/- 0.077, P = 0.021) and *1G (0.047 +/- 0.021, P = 0.029) to the AUC ratio. However, no significant association was observed between the CYP3A4 genotypes and total clearance of irinotecan or toxicities (severe diarrhea and neutropenia). CONCLUSION This study suggested that CYP3A4*16B was associated with decreased metabolism of irinotecan to APC. However, the clinical impact of CYP3A4 genotypes on total clearance and irinotecan toxicities was not significant.
Collapse
Affiliation(s)
- Kimie Sai
- Division of Biosignaling, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee SJ, Lee SS, Jeong HE, Shon JH, Ryu JY, Sunwoo YE, Liu KH, Kang W, Park YJ, Shin CM, Shin JG. The CYP3A4*18 allele, the most frequent coding variant in asian populations, does not significantly affect the midazolam disposition in heterozygous individuals. Drug Metab Dispos 2007; 35:2095-101. [PMID: 17724065 DOI: 10.1124/dmd.107.016733] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to identify CYP3A4 variants in Koreans and to characterize their functional consequences in vitro and in vivo. Four single nucleotide polymorphisms were identified in 50 Koreans by direct DNA sequencing. In an additional genotyping using 248 subjects, CYP3A4(*)18 was confirmed as the most frequent coding variant in Koreans at 1.7%, and its frequency was similar to that of Asians, suggesting that CYP3A4(*)18 would be the highest coding variant in Asians. The recombinant CYP3A4.18 protein prepared in baculovirus expression system showed 67.4% lower Vmax and 1.8-fold higher K(m) for midazolam 1'-hydroxylation compared with the wild type. The mean values of Cmax and area under the concentration curve (AUC) in the CYP3A4(*)1/(*)18 and CYP3A5(*)1/(*)3 subjects (n = 8) were 63% and 32% higher than in CYP3A4(*)1/(*)1 and CYP3A5(*)1/(*)3 carriers (n = 8), respectively. Although the in vitro assay exhibited a significant reduction of the enzyme activity for midazolam, the in vivo differences associated with the CYP3A4(*)1/(*)18 tend to be low (P < 0.07 in Cmax and P < 0.09 in AUC). In summary, the heterozygous CYP3A4(*)1/(*)18 does not appear to cause a significant change of midazolam disposition in vivo; however, the clinical relevance of CYP3A4(*)18/(*)18 remains to be evaluated.
Collapse
Affiliation(s)
- Su-Jun Lee
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University Busan Paik Hospital, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nakajima M, Komagata S, Fujiki Y, Kanada Y, Ebi H, Itoh K, Mukai H, Yokoi T, Minami H. Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics 2007; 17:431-45. [PMID: 17502835 DOI: 10.1097/fpc.0b013e328045c4fb] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the effects of genetic polymorphisms of drug metabolizing enzymes on the pharmacokinetics of cyclophosphamide and its active metabolite, 4-hydroxycyclophosphamide, and on the pharmacodynamics. EXPERIMENTAL DESIGN One hundred and three Japanese patients with malignant lymphoma or breast cancer treated with cyclophosphamide (500-750 mg/m) participated in this study. The plasma concentrations of cyclophosphamide and 4-hydroxycyclophosphamide were determined by high-performance liquid chromatography, and pharmacokinetic parameters were calculated. The genotypes of CYP2B6, CYP2C19, CYP3A4, CYP3A5, ALDH1A1, GST genes were determined by allele-specific polymerase chain reaction or polymerase chain reaction-restriction-fragment length polymorphism. RESULTS A large interindividual difference (54-fold) was observed in the area under the curve ratio of 4-hydroxycyclophosphamide/cyclophosphamide calculated as the metabolic index. We first proved that leukocytopenia and neutropenia were significantly (P<0.01) related to the area under the curve of 4-hydroxycyclophosphamide. We found that the homozygotes of CYP2B6*6 (Q172H and K262R) showed significantly (P<0.05) higher clearance and shorter half-life of cyclophosphamide than heterozygotes and homozygotes of CYP2B6*1. The small sample size, however, limited the impact. On the other hand, it was clearly demonstrated that the patients possessing the single nucleotide polymorphisms of the CYP2B6 gene, g.-2320T>C, g.-750T>C (5'-flanking region), g.15582C>T (intron 3), or g.18492T>C (intron 5), had significantly lower area under the curve ratios of 4-hydroxycyclophosphamide/cyclophosphamide, indicating a decreased cyclophosphamide 4-hydroxylation. Of particular importance was the finding that leukocytopenia was significantly related to the single nucleotide polymorphisms g.-2320T>C, g.-750T>C, and g.18492T>C in CYP2B6 gene, which are highly linked. No relationship was observed between the pharmacokinetics of cyclophosphamide or 4-hydroxycyclophosphamide and genetic polymorphisms of the other enzymes. CONCLUSIONS We clarified that the single nucleotide polymorphisms in the promoter region or introns in the CYP2B6 affect the potency of cyclophosphamide activation to 4-hydroxycyclophosphamide. This information would be valuable for predicting adverse reactions and the clinical efficacy of cyclophosphamide.
Collapse
Affiliation(s)
- Miki Nakajima
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nakajima M, Fujiki Y, Kyo S, Kanaya T, Nakamura M, Maida Y, Tanaka M, Inoue M, Yokoi T. Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1. J Clin Pharmacol 2006; 45:674-82. [PMID: 15901749 DOI: 10.1177/0091270005276204] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interindividual differences in the pharmacokinetics of paclitaxel and its metabolites in Japanese ovarian cancer patients were investigated in relation to genetic polymorphisms of the CYP2C8, CYP3A4, and MDR1 genes. The area under the concentration-time curve (AUC) ratios of paclitaxel/6alpha-hydroxypaclitaxel and paclitaxel/3 -p-hydroxypaclitaxel calculated as the metabolic index of CYP2C8 and CYP3A4 showed 13- and 12-fold interindividual variations, respectively. No patient had any CYP2C8 variants, while 2 patients were heterozygotes of CYP3A4*16. For the MDR1 gene, the frequencies of -129C, 1236C, 2677T, 2677A, and 3435T alleles were 2.2%, 8.7%, 56.5%, 4.4%, and 52.2%, respectively. Subjects possessing the 3435T allele had a significantly (P < .05) higher AUC of 3'- p-hydroxypaclitaxel compared to those possessing the 3435C allele. Leukocytopenia was significantly (P < .05) related to the AUC of paclitaxel. Genotyping of the CYP2C8, CYP3A4, and MDR1 genes might not be essential to predict adverse effects of paclitaxel in Japanese patients, although an allelic variant of MDR1 may functionally affect the pharmacokinetics of its metabolite.
Collapse
Affiliation(s)
- Miki Nakajima
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ozawa S, Soyama A, Saeki M, Fukushima-Uesaka H, Itoda M, Koyano S, Sai K, Ohno Y, Saito Y, Sawada JI. Ethnic Differences in Genetic Polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metab Pharmacokinet 2004; 19:83-95. [PMID: 15499174 DOI: 10.2133/dmpk.19.83] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic capacities for debrisoquin, sparteine, mephenytoin, nifedipine, and midazolam, which are substrates of polymorphic CYP2D6, CYP2C19, and CYP3A, have been reported to exhibit, in many cases, remarkable interindividual and ethnic differences. These ethnic differences are partly associated with genetic differences. In the case of the drug transporter ABCB1/MDR1, interindividual differences in its transporter activities toward various clinical drugs are also attributed to several ABCB1/MDR1 genetic polymorphisms. In this review, the existence and frequency of various low-activity alleles of drug metabolizing enzymes as well as populational drug metabolic capacities are compared among several different races or ethnicities. Distribution of nonsynonymous ABCB1/MDR1 SNPs and haplotype frequency in various races are summarized, with the association of nonsynonymous SNPs with large functional alterations as a rare event.
Collapse
Affiliation(s)
- Shogo Ozawa
- Division of Pharmacology, National Institute of Health Sciences, Tokyo.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Murayama N, Soyama A, Saito Y, Nakajima Y, Komamura K, Ueno K, Kamakura S, Kitakaze M, Kimura H, Goto YI, Saitoh O, Katoh M, Ohnuma T, Kawai M, Sugai K, Ohtsuki T, Suzuki C, Minami N, Ozawa S, Sawada JI. Six Novel NonsynonymousCYP1A2Gene Polymorphisms: Catalytic Activities of the Naturally Occurring Variant Enzymes. J Pharmacol Exp Ther 2003; 308:300-6. [PMID: 14563787 DOI: 10.1124/jpet.103.055798] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Six novel nonsynonymous nucleotide alterations were found in the cytochrome P450 1A2 gene in a Japanese population, which resulted in the following amino acid substitutions: T83M, E168Q, F186L, S212C, G299A, and T438I. These individuals were heterozygous for the amino acid substitutions. The potential functional alterations caused by the amino acid substitutions were characterized by a cDNA-mediated expression system using Chinese hamster V79 cells. Among the six CYP1A2 variants, F186L showed the most profound and statistically significant reduction in O-deethylation of phenacetin and 7-ethoxyresorufin. Kinetic analyses performed for the ethoxyresorufin O-deethylation revealed that the Vmax of the F186L variant was approximately 5% of that of the CYP1A2 wild type, despite a 5-fold lower Km value of the variant, the consequence of which was reduced enzymatic activity toward the substrate. Thus, for the first time, phenylalanine at residue 186 is suggested to be a critical amino acid for catalytic activity.
Collapse
Affiliation(s)
- Norie Murayama
- Project Team for Pharmacogenetics, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yamamoto T, Nagafuchi N, Ozeki T, Kubota T, Ishikawa H, Ogawa S, Yamada Y, Hirai H, Iga T. CYP3A4*18: It is not Rare Allele in Japanese Population. Drug Metab Pharmacokinet 2003; 18:267-8. [PMID: 15618745 DOI: 10.2133/dmpk.18.267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We sequenced all 13 exons of the CYP3A4 gene derived from 48 Japanese subjects. One subject possess the 20070 T>C mutation in the exon 10 (result in leu293Pro substitution, namely CYP3A4(*)18), as heterozygote. Thus, we investigated the frequency of CYP3A4(*)18 in 118 Japanese population using polymerase chain reaction-restriction fragment length polymorphism with Msp I and determined that the frequency of the CYP3A4(*)18 allele was 1.3%.
Collapse
|