1
|
Hasegawa T, Eiki JI, Chiba M. Interindividual variations in metabolism and pharmacokinetics of 3-(6-methylpyridine-3-yl-sulfanyl)-6-(4H-[1,2,4]triazole-3-yl-sulfanyl)-N-(1,3-thiazole-2-yl)-2-pyridine carboxamide, a glucokinase activator, in rats caused by the genetic polymorphism of CYP2D1. Drug Metab Dispos 2014; 42:1548-55. [PMID: 24924387 DOI: 10.1124/dmd.114.058081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
3-(6-Methylpyridine-3-yl-sulfanyl)-6-(4H-[1,2,4]triazole-3-yl-sulfanyl)-N-(1,3-thiazole-2-yl)-2-pyridine carboxamide (Cpd-D) is a novel glucokinase activator that is being developed for the treatment of type 2 diabetes. Large interindividual variations were observed in the pharmacokinetics of Cpd-D in male Sprague-Dawley (SD) rats, which were subsequently divided into two phenotypes; >6-fold longer terminal-phase half-life and ∼10-fold larger AUC0-∞ values were observed in slow metabolizers (SM) than in fast metabolizers (FM) after the oral administration of Cpd-D. The thiohydantoic acid analog (M2) was the predominant metabolite detected in the urine, bile, and plasma after the oral administration of [(14)C]Cpd-D to the FM phenotypes of bile-duct cannulated SD rats. The liver microsomes prepared from FM phenotyped rats extensively formed M2 with the highest affinity (Km = 0.09 μM) and largest Vmax/Km value in primary metabolism, whereas those from SM phenotypes had little capacity to form M2. Of the rat cytochrome P450 isoforms tested, the formation of M2 was only catalyzed by recombinant CYP2D1. Sequence substitutions (418A/421C and 418G/421T) were detected in the CYP2D1 gene and were designated F and S alleles, respectively. The genotype-phenotype correlation analysis indicated that two S alleles were homozygous (S/S) in the SM phenotypes, whereas the FM phenotypes were either homozygous for the F-alleles (F/F) or heterozygous (F/S). These results indicated that the CYP2D1 polymorphism caused by nucleotide substitutions (418A/421C versus 418G/421T) was responsible for interindividual variations leading to the polymorphism in the major metabolism and pharmacokinetics of Cpd-D in male SD rats.
Collapse
Affiliation(s)
- Takuro Hasegawa
- Banyu Tsukuba Research Institute, MSD K.K., Tsukuba, Ibaraki, Japan
| | - Jun-ichi Eiki
- Banyu Tsukuba Research Institute, MSD K.K., Tsukuba, Ibaraki, Japan
| | - Masato Chiba
- Banyu Tsukuba Research Institute, MSD K.K., Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Abstract
The cytochrome P-450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences.
Collapse
Affiliation(s)
- Michael H Court
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
3
|
Martinez MN, Antonovic L, Court M, Dacasto M, Fink-Gremmels J, Kukanich B, Locuson C, Mealey K, Myers MJ, Trepanier L. Challenges in exploring the cytochrome P450 system as a source of variation in canine drug pharmacokinetics. Drug Metab Rev 2013; 45:218-30. [PMID: 23432217 DOI: 10.3109/03602532.2013.765445] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Kuo YC, Lin PI, Wang CC. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. Nanomedicine (Lond) 2011; 6:1011-26. [DOI: 10.2217/nnm.11.25] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aims: Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were grafted with transferrin (Tf) to enhance the transport of nevirapine (NVP) across human brain microvascular endothelial cells (HBMECs). Methods: NVP-loaded PLGA NPs with surface-grafting Tf (Tf/NVP–PLGA NPs) were incubated with HBMECs and immunochemical staining characterized Tf receptors (TfRs). Results: The polydispersity index of Tf/NVP–PLGA NPs was lower than 0.008. The entrapment efficiency of NVP and loading efficiency of Tf was 20–75% and 15–80%, respectively. Tf slightly retarded the release of NVP from PLGA. Dioctadecyldimethylammonium bromide (DODAB)-stabilized Tf/NVP–PLGA NPs reduced the viability of HBMECs to 70–75%. The secretion of TNF-α was inhibited by Tf and stimulated by DODAB. The permeability of NVP across HBMECs reached maxima at 67% DODAB and 0.1–0.2% Tf. An increase in the concentration of Tf enhanced the uptake of Tf/NVP–PLGA NPs via a TfR-mediated mechanism. Conclusion: Tf/NVP–PLGA NPs are efficacious carriers in targeting delivery across HBMECs for viral therapy.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Pei-I Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Cheng-Chin Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
5
|
Scherr MC, Lourenço GJ, Albuquerque DM, Lima CSP. Polymorphism of cytochrome P450 A2 (CYP1A2) in pure and mixed breed dogs. J Vet Pharmacol Ther 2010; 34:184-6. [PMID: 21395610 DOI: 10.1111/j.1365-2885.2010.01243.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- M C Scherr
- Clinical Oncology Service, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
6
|
Tenmizu D, Endo Y, Noguchi K, Kamimura H. Identification of the novel canine CYP1A2 1117 C>T SNP causing protein deletion. Xenobiotica 2008; 34:835-46. [PMID: 15742977 DOI: 10.1080/00498250412331285436] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The pharmacokinetics of YM-64227 (4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]-pyrimidine-2-(1H)-one), a novel and selective phosphodiesterase type 4 inhibitor, was characterized in beagle dogs. Based on the plasma parent drug to major hydroxylated metabolite ratio, 21 dogs were phenotyped as 16 extensive metabolizers (EM) and five poor metabolizers (PM). Nucleotide sequences of CYPs 1A2, 2B11, 2C21, 2D15, 2E1 and 3A12 were investigated in the EM and PM dogs. A CYP1A2 1117 C>T single nucleotide polymorphism was found, which resulted in an amino acid change from an Arg codon to a stop codon at position 373. All dogs phenotyped as PM were T/T homozygous, whereas EMs were C/C homozygous and C/T heterozygous. In Western blotting of liver microsomes, CYP1A protein expression was detected in the C/C and C/T types, but not in the T/T type. Of 65 dogs genotyped using genome DNA, the frequencies of the C and T alleles were 0.61 and 0.39, respectively, suggesting approximately 15% of the dogs would not express the CYP1A2 protein. The findings provide a coherent explanation for the inter-individual variability in the pharmacokinetics of CYP1A2 substrate drugs in dogs.
Collapse
Affiliation(s)
- D Tenmizu
- Drug Metabolism Laboratories, Yamanouchi Pharmaceutical Co. Ltd, 1-8, Azusawa 1-Chome, Itabashi-ku, Tokyo 174-8511, Japan.
| | | | | | | |
Collapse
|
7
|
Tenmizu D, Noguchi K, Kamimura H, Ohtani H, Sawada Y. The canine CYP1A2 deficiency polymorphism dramatically affects the pharmacokinetics of 4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-D]-pyrimidine-2-(1H)-one (YM-64227), a phosphodiesterase type 4 inhibitor. Drug Metab Dispos 2006; 34:800-6. [PMID: 16473917 DOI: 10.1124/dmd.105.008722] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a previous study, it was shown that the novel canine single nucleotide polymorphism (SNP) CYP1A2 1117C>T yields an inactive enzyme. In this study, the effect that this SNP has on the pharmacokinetics of 4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]pyrimidine-2-(1H)-one (YM-64227) was investigated. Plasma concentrations of the unchanged drug and five of its metabolites (MM-1 to MM-5) were determined after either intravenous or oral administration of YM-64227 to genotyped dogs (C/C, C/T, and T/T groups). Liver microsomes were prepared from these dogs to determine the in vitro metabolic clearance of YM-64227. After a single oral administration, the maximum plasma concentration and absolute bioavailability of YM-64227 in the T/T group were 17.1 times and 27.2 times higher than those in the C/C group, respectively, whereas the pharmacokinetics of YM-64227 after intravenous administration were not affected by genotype. The metabolic profiles in the T/T group were quite distinct from the others; i.e., the main metabolite was MM-2 in the C/C group, whereas MM-1 and MM-5 were the main metabolites in the T/T group. The formation clearances of MM-2 and MM-3 in the microsomes derived from T/T type dogs were significantly lower, whereas those of MM-1, MM-4, and MM-5 were not affected. A statistically significant correlation was observed between the in vivo and in vitro metabolic intrinsic clearances (r = 0.82, p < 0.001). The canine CYP1A2 1117C>T SNP proved to be responsible for a substantial portion of the interindividual variability in the pharmacokinetics of YM-64227.
Collapse
Affiliation(s)
- Daisuke Tenmizu
- Drug Metabolism Research Laboratories, Astellas Pharma Inc., 1-8, Azusawa 1-Chome, Tokyo 174-8511, Japan.
| | | | | | | | | |
Collapse
|
8
|
Kamimura H. Genetic polymorphism of cytochrome P450s in beagles: possible influence of CYP1A2 deficiency on toxicological evaluations. Arch Toxicol 2006; 80:732-8. [PMID: 16639591 DOI: 10.1007/s00204-006-0100-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 03/22/2006] [Indexed: 01/22/2023]
Abstract
A number of human cytochrome P450 (CYP) isozymes have been shown to be genetically polymorphic, and extensive pharmaceutical studies have been conducted to characterize the clinical relevance of the polymorphism. Although the beagle is extensively used in the safety assessment studies of new drug candidates and agricultural chemicals, only a limited number of studies have been reported on the significance of the CYP isozyme polymorphism in dogs. Recently, a single nucleotide polymorphism that results in a deficiency of canine CYP1A2 was discovered. This deficiency was shown to significantly alter the pharmacokinetic behavior of two drugs, and can be associated with a large inter-individual difference in the kinetic behavior of a third. In this article, the five genetically polymorphic canine CYP isozymes that have been reported so far are reviewed, and the altered pharmacokinetics of the drugs concerned are described. Although little information on toxicological relevance has been reported, it is possible that the modified pharmacokinetics may also cause altered toxic responses as well. This phenomenon may occur only with the types of chemicals that are eliminated mainly through polymorphic-enzyme mediated metabolism. However, it is recommended that genetically pure beagles are used for the toxicity studies and safety assessment of new chemical entities in order to reduce the potential inter-individual differences.
Collapse
Affiliation(s)
- H Kamimura
- Drug Metabolism Research Laboratories, Astellas Pharma Inc., Azusawa 1-1-8, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Mise M, Yadera S, Matsuda M, Hashizume T, Matsumoto S, Terauchi Y, Fujii T. Polymorphic expression of CYP1A2 leading to interindividual variability in metabolism of a novel benzodiazepine receptor partial inverse agonist in dogs. Drug Metab Dispos 2004; 32:240-5. [PMID: 14744947 DOI: 10.1124/dmd.32.2.240] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-2-oxo-1,2-dihydro-1,6-naphthyridine (AC-3933) is a novel cognitive enhancer with central benzodiazepine receptor partial inverse agonistic activity. AC-3933 is predominantly metabolized to hydroxylated metabolite [SX-5745; 3-(5-hydroxymethyl-1,2,4-oxadiazol-3-yl)-5-(3-methoxyphenyl)-2-oxo-1,2-dihydro-1,6-naphthyridine] in dog. Initially, we found that there is considerable interindividual variability in AC-3933 hydroxylation in dogs and that dogs could be phenotyped as extensive metabolizer (EM) and poor metabolizer (PM). Then, to clarify the cause of AC-3933 polymorphic hydroxylation in dogs, in vitro studies were carried out using liver microsomes from EM and PM dogs. Our results show that AC-3933 hydroxylation clearance in PM dogs was much lower than that in EM dogs (0.2 versus 10.8-20.5 microl/min/mg, respectively). In addition, AC-3933 hydroxylation was significantly inhibited by alpha-naphthoflavone, a CYP1A inhibitor, and by anti-CYP1A2 antibodies, indicating that CYP1A2 was responsible for the polymorphic hydroxylation of AC-3933 in dogs. Furthermore, immunoblotting results have shown that although CYP1A2 protein was not detected in PM dogs (<0.86 pmol/mg), CYP1A2 content in EM dogs was prominent (6.1-13.0 pmol/mg). These results indicate that AC-3933 polymorphic hydroxylation arises from the polymorphic expression of CYP1A2 in dogs, which might involve genetic polymorphism of the CYP1A2 gene.
Collapse
Affiliation(s)
- Masashi Mise
- Pharmacokinetics and Physico-Chemical Property Research Laboratories, Dainippon Pharmaceutical Co, Ltd, Osaka 564-0053, Japan.
| | | | | | | | | | | | | |
Collapse
|