1
|
Zhu L, Li L, Wu J. FcRn inhibitors: Transformative advances and significant impacts on IgG-mediated autoimmune diseases. Autoimmun Rev 2024; 24:103719. [PMID: 39672251 DOI: 10.1016/j.autrev.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Pathogenic IgG autoantibodies play a crucial role in the pathogenesis of autoimmune diseases, and removal of pathogenic IgG autoantibodies is an important therapeutic approach and tool for such diseases. The neonatal Fc receptor (FcRn) interacts with IgG and protects it from lysosomal degradation. FcRn inhibitors accelerate the clearance of IgG antibodies, including pathogenic IgG autoantibodies, by targeting and blocking the binding of FcRn to IgG. Theoretically, FcRn inhibitors can be applied for the treatment of IgG-mediated autoimmune diseases. With successful completion of multiple relevant clinical trials, key evidence-based data have been provided for FcRn inhibitors in the treatment of IgG-mediated autoimmune diseases, and several FcRn inhibitors have been approved for these indications. Additional trials are being planned or conducted. This review examines all available high-quality clinical trials of FcRn inhibitors assessing IgG-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Lina Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China..
| |
Collapse
|
2
|
Fonseca EG, Araújo-Ferreira AP, Berger M, Castro Coimbra-Campos LM, Silva Filha R, de Souza Cordeiro LM, Campos MR, Oliveira LBF, Caliari MV, Leite Diniz LR, Alves F, Martins AS, Peruchetti DB, Ribeiro Vieira MA. Preconditioning by Moderate-Intensity Exercise Prevents Gentamicin-Induced Acute Kidney Injury. Int J Sports Med 2024; 45:884-896. [PMID: 39029513 DOI: 10.1055/a-2342-2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
A strict correlation among proximal tubule epithelial cell dysfunction, proteinuria, and modulation of the Renin-Angiotensin System and Kalikrein-Kinin System are crucial factors in the pathogenesis of Acute Kidney Injury (AKI). In this study, we investigated the potential protective effect of preconditioning by moderate-intensity aerobic exercise on gentamicin-induced AKI. Male Wistar rats were submitted to a moderate-intensity treadmill exercise protocol for 8 weeks, and then injected with 80 mg/kg/day s.c. gentamicin for 5 consecutive days. Four groups were generated: 1) NT+SAL (control); 2) NT+AKI (non-trained with AKI); 3) T+SAL (trained); and 4) T+AKI (trained with AKI). The NT+AKI group presented: 1) impairment in glomerular function parameters; 2) increased fractional excretion of Na + , K + , and water; 4) proteinuria and increased urinary γ-glutamyl transferase activity (a marker of tubular injury) accompanied by acute tubular necrosis; 5) an increased renal angiotensin-converting enzyme and bradykinin B1 receptor mRNA expression. Interestingly, the preconditioning by moderate-intensity aerobic exercise attenuated all alterations observed in gentamicin-induced AKI (T+AKI group). Taken together, our results show that the preconditioning by moderate-intensity aerobic exercise ameliorates the development of gentamicin-induced AKI. Our findings help to expand the current knowledge regarding the effect of physical exercise on kidneys during physiological and pathological conditions.
Collapse
Affiliation(s)
- Esdras Guedes Fonseca
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Markus Berger
- Hospital das Clinicas, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Roberta Silva Filha
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Mariana Rodrigues Campos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Fabiana Alves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Almir Souza Martins
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Diogo Barros Peruchetti
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
- INCT-NanoBiofar, Belo Horizonte, Brazil
| | | |
Collapse
|
3
|
Kryvenko V, Alberro-Brage A, Fysikopoulos A, Wessendorf M, Tello K, Morty RE, Herold S, Seeger W, Samakovlis C, Vadász I. Clathrin-Mediated Albumin Clearance in Alveolar Epithelial Cells of Murine Precision-Cut Lung Slices. Int J Mol Sci 2023; 24:ijms24032644. [PMID: 36768968 PMCID: PMC9916738 DOI: 10.3390/ijms24032644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Andrés Alberro-Brage
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| | - Athanasios Fysikopoulos
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
| | - Miriam Wessendorf
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Rory E. Morty
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Translational Pulmonology, and Translational Lung Research Center (TLRC), 69120 Heidelberg, Germany
| | - Susanne Herold
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Christos Samakovlis
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), 35392 Giessen, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-985-42354; Fax: +49-641-985-42359
| |
Collapse
|
4
|
Wimalawansa SJ. Rapidly Increasing Serum 25(OH)D Boosts the Immune System, against Infections-Sepsis and COVID-19. Nutrients 2022; 14:2997. [PMID: 35889955 PMCID: PMC9319502 DOI: 10.3390/nu14142997] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D deficiency is a global public health problem, a pandemic that commonly affects the elderly and those with comorbidities such as obesity, diabetes, hypertension, respiratory disorders, recurrent infections, immune deficiency, and malignancies, as well as ethnic minorities living in temperate countries. The same groups were worst affected by COVID-19. Since vitamin D deficiency weakens the immune system, it increases the risk of infections, complications, and deaths, such as from sepsis and COVID-19. Deficiency can be remedied cost-effectively through targeted food fortification, supplementation, and/or daily safe sun exposure. Its endocrine functions are limited to mineral metabolism, musculoskeletal systems, specific cell membrane interactions, and parathyroid gland functions. Except for the rapid, endocrine, and cell membrane-based non-genomic functions, all other biological and physiological activities of vitamin D depend on the adequate intracellular synthesis of 1,25(OH)2D (calcitriol) in peripheral target cells via the genome. Calcitriol mediates autocrine (intracrine) and paracrine signalling in immune cells, which provides broader, protective immune functions crucial to overcoming infections. The synthesis of 1,25(OH)2D (calcitriol) in peripheral target cells is dependent on diffusion and endocytosis of D3 and 25(OH)D from the circulation into them, which requires maintenance of serum 25(OH)D concentration above 50 ng/mL. Therefore, in acute infections such as sepsis and respiratory infections like COVID-19, it is necessary to rapidly provide its precursors, D3 and 25(OH)D, through the circulation to generate adequate intracellular calcitriol. Immune defence is one of the crucial non-hormonal functions of vitamin D. A single oral (bolus) dose or divided upfront loading doses between 100,000 and 500,000 IU, using 50,000 IU vitamin D3 increase the serum 25(OH)D concentrations to a therapeutic level of above 50 ng/mL that lasts between two to three months. This takes three to five days to raise serum 25(OH)D. In contrast, a single oral dose of calcifediol (0.014 mg/kg body weight) can generate the needed 25(OH)D concentration within four hours. Considering both D3 and 25(OH)D enter immune cells for generating calcitriol, using the combination of D3 (medium-term) and calcifediol (immediate) is cost-effective and leads to the best clinical outcome. To maximise protection against infections, particularly to reduce COVID-19-associated complications and deaths, healthcare workers should advise patients on safe sun exposure, adequate vitamin D supplementation and balanced diets containing zinc, magnesium, and other micronutrients to support the immune system. Meanwhile, governments, the World Health Organisation, the Centers for Disease Control, and governments should consider similar recommendations to physicians and the public, change the outdated vitamin D and other micronutrient recommendations directed to their population, and organise targetted food fortification programs for the vulnerable groups. This article discusses a rational approach to maintaining a sustained serum 25(OH)D concentration above 50 ng/mL, necessary to attain a robust immune system for overcoming infections. Such would cost-effectively improve the population’s health and reduce healthcare costs. It also describes three cost-effective, straightforward protocols for achieving and sustaining therapeutic serum 25(OH)D concentrations above 50 ng/mL (>125 nmol/L) to keep the population healthy, reduce absenteeism, improve productivity, and lower healthcare costs.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Endocrinology & Nutrition, Department of Medicine, Cardiometabolic & Endocrine Institute, North Brunswick, NJ 08873, USA
| |
Collapse
|
5
|
Edwards A, Long KR, Baty CJ, Shipman KE, Weisz OA. Modeling normal and nephrotic axial uptake of albumin and other filtered proteins along the proximal tubule. J Physiol 2022; 600:1933-1952. [PMID: 35178707 PMCID: PMC9012691 DOI: 10.1113/jp282885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We used new and published data to develop a mathematical model that predicts the profile of albumin uptake in the mouse proximal tubule (PT) in normal and nephrotic states, and partially accounts for competitive inhibition of uptake by normally filtered and pathologic ligands. Three pathways, consisting of high-affinity uptake by cubilin receptors, low-affinity uptake by megalin receptors, and fluid phase uptake, contribute to the overall retrieval of filtered proteins. The axial profile and efficiency of protein uptake depend on the initial filtrate composition and the individual protein affinities for megalin and cubilin. Under normal conditions, the majority of albumin is retrieved in S1 but shifts to S2 under nephrotic conditions. Other proteins exhibit different uptake profiles. Our model explains how tubular proteinuria can occur despite a large excess in potential PT uptake capacity. ABSTRACT Recent studies indicate that filtered albumin is retrieved in the proximal tubule (PT) via three pathways: receptor-mediated endocytosis via cubilin (high affinity) and megalin (low affinity), and fluid-phase uptake. Expression of megalin is required to maintain all three pathways, making it challenging to determine their respective contributions. Moreover, uptake of filtered molecules varies between the sub-segments (S1, S2, and S3) that make up the PT. Here we used new and published data to develop a mathematical model that predicts the rates of albumin uptake in mouse PT sub-segments in normal and nephrotic states, and partially accounts for competition by β2-microglobulin (β2m) and Immunoglobulin G (IgG). Our simulations indicate that receptor-mediated, rather than fluid-phase uptake, accounts for the vast majority of ligand recovery. Our model predicts that ∼75% of normally filtered albumin is reabsorbed via cubilin; however, megalin-mediated uptake predominates under nephrotic conditions. Our results also suggest that ∼80% of albumin is normally recovered in S1, whereas nephrotic conditions or knockout of cubilin shifts the bulk of albumin uptake to S2. The model predicts β2m and IgG axial recovery profiles qualitatively similar to those of albumin under normal conditions. In contrast with albumin however, the bulk of IgG and β2m uptake still occurs in S1 under nephrotic conditions. Overall, our model provides a kinetic rationale for why tubular proteinuria can occur even though a large excess in potential PT uptake capacity exists, and suggests testable predictions to expand our understanding of the recovery profile of filtered proteins along the PT. Abstract figure legend. Data from mouse models and from cultured proximal tubule (PT) cells were used to create a mathematical model that predicts the uptake profile of albumin and other filtered ligands along the mouse PT in normal and nephrotic states. The distinct contributions of cubilin receptors (magenta), megalin receptors (green), and fluid phase uptake (blue) to total albumin retrieval (black) in S1, S2, and S3 subsegments of the PT are delineated. Under normal conditions, albumin is primarily recovered in the S1 segment by cubilin, whereas the majority is retrieved in S2 under nephrotic conditions. Other proteins exhibit strikingly different uptake profiles. Our model explains how the distribution and capacity of high-affinity and low-affinity uptake pathways enable uptake of albumin over a broad range of filtered concentrations, and how tubular proteinuria can occur despite a large excess in potential PT uptake capacity. Created with BioRender.com. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
6
|
Conner KP, Pastuskovas CV, Soto M, Thomas VA, Wagner M, Rock DA. Preclinical characterization of the ADME properties of a surrogate anti-IL-36R monoclonal antibody antagonist in mouse serum and tissues. MAbs 2021; 12:1746520. [PMID: 32310023 PMCID: PMC7188401 DOI: 10.1080/19420862.2020.1746520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The decision to pursue a monoclonal antibody (mAb) as a therapeutic for disease intervention requires the assessment of many factors, such as target-biology, including the total target burden and its accessibility at the intended site of action, as well as mAb-specific properties like binding affinity and the pharmacokinetics in serum and tissue. Interleukin-36 receptor (IL-36 R) is a member of the IL-1 family cytokine receptors and an attractive target to treat numerous epithelial-mediated inflammatory conditions, including psoriatic and rheumatoid arthritis, asthma, and chronic obstructive pulmonary disease. However, information concerning the expression profile of IL-36 R at the protein level is minimal, so the feasibility of developing a therapeutic mAb against this target is uncertain. Here, we present a characterization of the properties associated with absorption, distribution, metabolism, and excretion of a high-affinity IL-36 R-targeted surrogate rat (IgG2a) mAb antagonist in preclinical mouse models. The presence of IL-36 R in the periphery was confirmed unequivocally as the driver of non-linear pharmacokinetics in blood/serum, although a predominant site of tissue accumulation was not observed based upon the kinetics of radiotracer. Additionally, the contribution of IL-36 R-mediated catabolism of mAb in kidney was tested in a 5/6 nephrectomized mouse model where minimal effects on serum pharmacokinetics were observed, although analysis of functional mAb in urine suggests that target can influence the amount of mAb excreted. Our data highlight an interesting case of target-mediated drug disposition (TMDD) where low, yet broadly expressed levels of membrane-bound target result in a cumulative effect to drive TMDD behavior typical of a large, saturable target sink. The potential differences between our mouse model and IL-36 R target profile in humans are also presented.
Collapse
Affiliation(s)
- Kip P Conner
- Department Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA, USA
| | - Cinthia V Pastuskovas
- Department Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA, USA
| | - Marcus Soto
- Department Pharmacokinetics and Drug Metabolism, Amgen, Thousand Oaks, CA, USA
| | - Veena A Thomas
- Department Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA, USA
| | - Mylo Wagner
- Department Pharmacokinetics and Drug Metabolism, Amgen, Thousand Oaks, CA, USA
| | - Dan A Rock
- Department Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA, USA
| |
Collapse
|
7
|
Tashima T. Delivery of Orally Administered Digestible Antibodies Using Nanoparticles. Int J Mol Sci 2021; 22:ijms22073349. [PMID: 33805888 PMCID: PMC8036930 DOI: 10.3390/ijms22073349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Oral administration of medications is highly preferred in healthcare owing to its simplicity and convenience; however, problems of drug membrane permeability can arise with any administration method in drug discovery and development. In particular, commonly used monoclonal antibody (mAb) drugs are directly injected through intravenous or subcutaneous routes across physical barriers such as the cell membrane, including the epithelium and endothelium. However, intravenous administration has disadvantages such as pain, discomfort, and stress. Oral administration is an ideal route for mAbs. Nonetheless, proteolysis and denaturation, in addition to membrane impermeability, pose serious challenges in delivering peroral mAbs to the systemic circulation, biologically, through enzymatic and acidic blocks and, physically, through the small intestinal epithelium barrier. A number of clinical trials have been performed using oral mAbs for the local treatment of gastrointestinal diseases, some of which have adopted capsules or tablets as formulations. Surprisingly, no oral mAbs have been approved clinically. An enteric nanodelivery system can protect cargos from proteolysis and denaturation. Moreover, mAb cargos released in the small intestine may be delivered to the systemic circulation across the intestinal epithelium through receptor-mediated transcytosis. Oral Abs in milk are transported by neonatal Fc receptors to the systemic circulation in neonates. Thus, well-designed approaches can establish oral mAb delivery. In this review, I will introduce the implementation and possibility of delivering orally administered mAbs with or without nanoparticles not only to the local gastrointestinal tract but also to the systemic circulation.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama, Kanagawa 222-0035, Japan
| |
Collapse
|
8
|
Bryniarski MA, Zhao B, Chaves LD, Mikkelsen JH, Yee BM, Yacoub R, Shen S, Madsen M, Morris ME. Immunoglobulin G Is a Novel Substrate for the Endocytic Protein Megalin. AAPS JOURNAL 2021; 23:40. [PMID: 33677748 DOI: 10.1208/s12248-021-00557-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
Therapeutic immunoglobulin G (IgG) antibodies comprise the largest class of protein therapeutics. Several factors that influence their overall disposition have been well-characterized, including target-mediated mechanics and convective flow. What remains poorly defined is the potential for non-targeted entry into various tissues or cell types by means of uptake via cell surface receptors at those sites. Megalin and cubilin are large endocytic receptors whose cooperative function plays important physiological roles at the tissues in which they are expressed. One such example is the kidney, where loss of either results in significant declines in proximal tubule protein reabsorption. Due to their diverse ligand profile and broad tissue expression, megalin and cubilin represent potential candidates for receptor-mediated uptake of IgG into various epithelia. Therefore, the objective of the current work was to determine if IgG was a novel ligand of megalin and/or cubilin. Direct binding was measured for human IgG with both megalin and the cubilin/amnionless complex. Additional work focusing on the megalin-IgG interaction was then conducted to build upon these findings. Cell uptake studies using megalin ligands for competitive inhibition or proximal tubule cells stably transduced with megalin-targeted shRNA constructs supported a role for megalin in the endocytosis of human IgG. Furthermore, a pharmacokinetic study using transgenic mice with a kidney-specific mosaic knockout of megalin demonstrated increased urinary excretion of human IgG in megalin knockout mice when compared to wild-type controls. These findings indicate that megalin is capable of binding and internalizing IgG via a high affinity interaction.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Lee D Chaves
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.,Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Benjamin M Yee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Mette Madsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C., Denmark
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
9
|
Zhao J, Lei T, Zhang XJ, Yin TY, Wang XW, Liu SS. A vector whitefly endocytic receptor facilitates the entry of begomoviruses into its midgut cells via binding to virion capsid proteins. PLoS Pathog 2020; 16:e1009053. [PMID: 33270808 PMCID: PMC7714154 DOI: 10.1371/journal.ppat.1009053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Many circulative plant viruses transmitted by insect vectors are devastating to agriculture worldwide. The midgut wall of vector insects represents a major barrier and at the same time the key gate a circulative plant virus must cross for productive transmission. However, how these viruses enter insect midgut cells remains poorly understood. Here, we identified an endocytic receptor complex for begomoviruses in the midgut cells of their whitefly vector. Our results show that two whitefly proteins, BtCUBN and BtAMN, compose a receptor complex BtCubam, for which BtCUBN contributes a viral-binding region and BtAMN contributes to membrane anchorage. Begomoviruses appear to be internalized together with BtCubam via its interaction with the 12–19 CUB domains of BtCUBN via clathrin-dependent endocytosis. Functional analysis indicates that interruption of BtCUBN and BtAMN lead to reduction of virus acquisition and transmission by whitefly. In contrast, CUBN-begomovirus interaction was not observed in two non-competent whitefly-begomovirus combinations. These observations suggest a major role of the specific endocytic receptor in facilitating viral entry into vector midgut cells. Many viruses depend on insect vectors for transmission and spread. Following ingestion by insect vectors, many viruses need to circulate in the vector via a sequential path of stylet-midgut-haemolymph-salivary glands and are finally inoculated into plants with saliva secretion. To complete this journey, virions have to cross many physical/physiological barriers, of which the insect midgut wall represents the first and one of the major challenges. While this route of virus circulation has been known for a long time, the physiological and molecular mechanisms underlying the crossing of these barriers by viruses are poorly understood. Working with begomoviruses, a group of plant viruses of economic significance worldwide, and their insect vectors, the whiteflies of the Bemisia tabaci complex, we found that upon virus infection, two vector proteins, cubilin (CUBN) and amnionless (AMN), form a virus receptor complex to uptake the virions and assist them to move through the apical membrane of whitefly midgut cells via clathrin-dependent endocytosis. These novel findings contribute to a better understanding on the molecular mechanisms of insect transmission of circulative viruses.
Collapse
Affiliation(s)
- Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Teng Lei
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Jia Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Tian-Yan Yin
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
10
|
Urae S, Harita Y, Udagawa T, Ode KL, Nagahama M, Kajiho Y, Kanda S, Saito A, Ueda HR, Nangaku M, Oka A. A cellular model of albumin endocytosis uncovers a link between membrane and nuclear proteins. J Cell Sci 2020; 133:jcs242859. [PMID: 32482797 DOI: 10.1242/jcs.242859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cubilin (CUBN) and amnionless (AMN), expressed in kidney and intestine, form a multiligand receptor complex called CUBAM that plays a crucial role in albumin absorption. To date, the mechanism of albumin endocytosis mediated by CUBAM remains to be elucidated. Here, we describe a quantitative assay to evaluate albumin uptake by CUBAM using cells expressing full-length CUBN and elucidate the crucial roles of the C-terminal part of CUBN and the endocytosis signal motifs of AMN in albumin endocytosis. We also demonstrate that nuclear valosin-containing protein-like 2 (NVL2), an interacting protein of AMN, is involved in this process. Although NVL2 was mainly localized in the nucleolus in cells without AMN expression, it was translocated to the extranuclear compartment when coexpressed with AMN. NVL2 knockdown significantly impaired internalization of the CUBN-albumin complex in cultured cells, demonstrating an involvement of NVL2 in endocytic regulation. These findings uncover a link between membrane and nucleolar proteins that is involved in endocytic processes.
Collapse
Affiliation(s)
- Seiya Urae
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohiro Udagawa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Yuko Kajiho
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shoichiro Kanda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata-shi, Niigata 951-8510, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Wako-shi, Saitama 351-0198, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
11
|
Chernyavsky A, Patel KG, Grando SA. Mechanisms of synergy of autoantibodies to M3 muscarinic acetylcholine receptor and secretory pathway Ca 2+/Mn 2+-ATPase isoform 1 in patients with non-desmoglein pemphigus vulgaris. Int Immunopharmacol 2020; 80:106149. [PMID: 31958740 DOI: 10.1016/j.intimp.2019.106149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023]
Abstract
Pemphigus vulgaris (PV) is a potentially lethal mucocutaneous blistering disease characterized by IgG autoantibodies (AuAbs) binding to epidermal keratinocytes and inducing a devastating blistering disease affecting oral and/or esophageal surfaces and, sometimes, also the skin. Anti-keratinocyte AuAbs developed by the desmoglein (Dsg) 1/3 AuAb-negative acute PV patients are pathogenic, as they induced acantholysis and epidermal split in the experimental models of PV in vitro and in vivo. These PV patients have various combinations of AuAbs to keratinocyte muscarinic acetylcholine receptor subtype M3 (M3AR), the secretory pathway Ca2+/Mn2+-ATPase isoform 1 (SPCA1), and desmocollin 3 whose relative concentrations correlate with the disease activity. In this study, we identified new molecular mechanisms of the synergistic cooperation of AuAbs to M3AR and SPCA1 in inducing acantholysis in the anti-Dsg 1/3 AuAb-negative PV patients. Anti-M3AR AuAb was found to play an important role in determining the level of intraepidermal split just above the basal cells, caspase to mediate early pro-apoptotic events triggered by anti-SPCA1 AuAb, and the neonatal Fc receptor (FcRn) to contribute to the pathobiological actions of both anti-M3AR and anti-SPCA1 AuAbs. Altogether, these novel results support our original hypothesis that pemphigus acantholysis is a complex disease process (also known as apoptolysis) initiated by AuAbs directed against different keratinocyte proteins that play important roles in supporting cell viability and regulating vital cell functions.
Collapse
Affiliation(s)
- Alex Chernyavsky
- Department of Dermatology, University of California Irvine, CA, USA
| | - Krupa G Patel
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Sergei A Grando
- Department of Dermatology, University of California Irvine, CA, USA; Department of Biological Chemistry, University of California Irvine, CA, USA; Institute for Immunology, University of California Irvine, CA, USA.
| |
Collapse
|
12
|
Glund S, Gan G, Moschetti V, Reilly P, Honickel M, Grottke O, Van Ryn J. The Renal Elimination Pathways of the Dabigatran Reversal Agent Idarucizumab and its Impact on Dabigatran Elimination. Clin Appl Thromb Hemost 2018. [PMID: 29534609 PMCID: PMC6714879 DOI: 10.1177/1076029618755947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Idarucizumab, a humanized monoclonal antibody fragment (Fab), provides rapid and sustained reversal of dabigatran-mediated anticoagulation. Idarucizumab and dabigatran are mainly eliminated via the kidneys. This analysis aimed to characterize the renal elimination of idarucizumab and investigate the influence of idarucizumab on the pharmacokinetics (PK) of dabigatran and vice versa. Studies were conducted in 5/6 nephrectomized rats, in human volunteers with and without renal impairment, and in a porcine liver trauma model. In both rats and humans, renal impairment increased idarucizumab exposure and initial half-life but did not affect its terminal half-life. Urinary excretion of unchanged idarucizumab increased with increasing idarucizumab dose, suggesting saturation of renal tubular reuptake processes at higher doses. The PK of idarucizumab was unaffected by dabigatran. In contrast, idarucizumab administration resulted in redistribution of dabigatran to the plasma, where it was bound and inactivated by idarucizumab. Urinary excretion of dabigatran after administration of idarucizumab was delayed, but total dabigatran excreted in urine was unaffected. Idarucizumab and dabigatran were eliminated together via renal pathways.
Collapse
Affiliation(s)
- Stephan Glund
- 1 Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany
| | - Guanfa Gan
- 2 Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | | | - Paul Reilly
- 2 Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Markus Honickel
- 4 Department of Anaesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Oliver Grottke
- 4 Department of Anaesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Joanne Van Ryn
- 1 Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany
| |
Collapse
|
13
|
Ahmed AR, Carrozzo M, Caux F, Cirillo N, Dmochowski M, Alonso AE, Gniadecki R, Hertl M, López-Zabalza MJ, Lotti R, Pincelli C, Pittelkow M, Schmidt E, Sinha AA, Sprecher E, Grando SA. Monopathogenic vs multipathogenic explanations of pemphigus pathophysiology. Exp Dermatol 2018; 25:839-846. [PMID: 27305362 DOI: 10.1111/exd.13106] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 01/31/2023]
Abstract
This viewpoint highlights major, partly controversial concepts about the pathogenesis of pemphigus. The monopathogenic theory explains intra-epidermal blistering through the "desmoglein (Dsg) compensation" hypothesis, according to which an antibody-dependent disabling of Dsg 1- and/or Dsg 3-mediated cell-cell attachments of keratinocytes (KCs) is sufficient to disrupt epidermal integrity and cause blistering. The multipathogenic theory explains intra-epidermal blistering through the "multiple hit" hypothesis stating that a simultaneous and synchronized inactivation of the physiological mechanisms regulating and/or mediating intercellular adhesion of KCs is necessary to disrupt epidermal integrity. The major premise for a multipathogenic theory is that a single type of autoantibody induces only reversible changes, so that affected KCs can recover due to a self-repair. The damage, however, becomes irreversible when the salvage pathway and/or other cell functions are altered by a partnering autoantibody and/or other pathogenic factors. Future studies are needed to (i) corroborate these findings, (ii) characterize in detail patient populations with non-Dsg-specific autoantibodies, and (iii) determine the extent of the contribution of non-Dsg antibodies in disease pathophysiology.
Collapse
Affiliation(s)
- A Razzaque Ahmed
- Department of Dermatology of Tufts University and Center for Blistering Diseases, Boston, MA, USA
| | - Marco Carrozzo
- School of Dental Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Frédéric Caux
- Department of Dermatology, University Paris 13, Avicenne Hospital, APHP, Bobigny, France
| | - Nicola Cirillo
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Melbourne, Vic., Australia
| | - Marian Dmochowski
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agustín España Alonso
- Department of Dermatology, School of Medicine, University Clinic of Navarra, University of Navarra, Navarra, Spain
| | - Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | | | - Roberta Lotti
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Pincelli
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Mark Pittelkow
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Sergei A Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
14
|
Zeng B, Chen GL, Garcia-Vaz E, Bhandari S, Daskoulidou N, Berglund LM, Jiang H, Hallett T, Zhou LP, Huang L, Xu ZH, Nair V, Nelson RG, Ju W, Kretzler M, Atkin SL, Gomez MF, Xu SZ. ORAI channels are critical for receptor-mediated endocytosis of albumin. Nat Commun 2017; 8:1920. [PMID: 29203863 PMCID: PMC5714946 DOI: 10.1038/s41467-017-02094-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 11/06/2017] [Indexed: 01/15/2023] Open
Abstract
Impaired albumin reabsorption by proximal tubular epithelial cells (PTECs) has been highlighted in diabetic nephropathy (DN), but little is known about the underlying molecular mechanisms. Here we find that ORAI1-3, are preferentially expressed in PTECs and downregulated in patients with DN. Hyperglycemia or blockade of insulin signaling reduces the expression of ORAI1-3. Inhibition of ORAI channels by BTP2 and diethylstilbestrol or silencing of ORAI expression impairs albumin uptake. Transgenic mice expressing a dominant-negative Orai1 mutant (E108Q) increases albuminuria, and in vivo injection of BTP2 exacerbates albuminuria in streptozotocin-induced and Akita diabetic mice. The albumin endocytosis is Ca2+-dependent and accompanied by ORAI1 internalization. Amnionless (AMN) associates with ORAIs and forms STIM/ORAI/AMN complexes after Ca2+ store depletion. STIM1/ORAI1 colocalizes with clathrin, but not with caveolin, at the apical membrane of PTECs, which determines clathrin-mediated endocytosis. These findings provide insights into the mechanisms of protein reabsorption and potential targets for treating diabetic proteinuria. Patients with diabetic nephropathy suffer from impaired albumin reabsorption by proximal tubular epithelial cells. Here authors use diabetic and transgenic mouse models and in vitro models to show the cause for this lies in the down regulation and internalization of the ion channels, ORAI1-3.
Collapse
Affiliation(s)
- Bo Zeng
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK. .,Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Gui-Lan Chen
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.,Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Eliana Garcia-Vaz
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, 214 28 Malmö, Sweden
| | - Sunil Bhandari
- Department of Renal Medicine and Hull York Medical School, Hull Royal Infirmary, Hull and East Yorkshire Hospitals NHS Trust, Hull, HU3 2JZ, UK
| | - Nikoleta Daskoulidou
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Lisa M Berglund
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, 214 28 Malmö, Sweden
| | - Hongni Jiang
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Thomas Hallett
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Lu-Ping Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Li Huang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Zi-Hao Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Viji Nair
- Department of Internal Medicine & Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, 85014, USA
| | - Wenjun Ju
- Department of Internal Medicine & Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthias Kretzler
- Department of Internal Medicine & Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen L Atkin
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.,Weill Cornell Medical College Qatar, PO Box, 24144, Doha, Qatar
| | - Maria F Gomez
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, 214 28 Malmö, Sweden
| | - Shang-Zhong Xu
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| |
Collapse
|
15
|
Castrop H, Schießl IM. Novel routes of albumin passage across the glomerular filtration barrier. Acta Physiol (Oxf) 2017; 219:544-553. [PMID: 27452481 DOI: 10.1111/apha.12760] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Abstract
Albuminuria is a hallmark of kidney diseases of various aetiologies and an unambiguous symptom of the compromised integrity of the glomerular filtration barrier. Furthermore, there is increasing evidence that albuminuria per se aggravates the development and progression of chronic kidney disease. This review covers new aspects of the movement of large plasma proteins across the glomerular filtration barrier in health and disease. Specifically, this review focuses on the role of endocytosis and transcytosis of albumin by podocytes, which constitutes a new pathway of plasma proteins across the filtration barrier. Thus, we summarize what is known about the mechanisms of albumin endocytosis by podocytes and address the fate of the endocytosed albumin, which is directed to lysosomal degradation or transcellular movement with subsequent vesicular release into the urinary space. We also address the functional consequences of overt albumin endocytosis by podocytes, such as the formation of pro-inflammatory cytokines, which might eventually result in a deterioration of podocyte function. Finally, we consider the diagnostic potential of podocyte-derived albumin-containing vesicles in the urine as an early marker of a compromised glomerular barrier function. In terms of new technical approaches, the review covers how our knowledge of the movement of albumin across the glomerular filtration barrier has expanded by the use of new intravital imaging techniques.
Collapse
Affiliation(s)
- H. Castrop
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - I. M. Schießl
- Institute of Physiology; University of Regensburg; Regensburg Germany
| |
Collapse
|
16
|
Caetano-Pinto P, Janssen MJ, Gijzen L, Verscheijden L, Wilmer MJ, Masereeuw R. Fluorescence-Based Transport Assays Revisited in a Human Renal Proximal Tubule Cell Line. Mol Pharm 2016; 13:933-44. [DOI: 10.1021/acs.molpharmaceut.5b00821] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pedro Caetano-Pinto
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3508 TB Utrecht, The Netherlands
| | - Manoe J. Janssen
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3508 TB Utrecht, The Netherlands
| | - Linda Gijzen
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Laurens Verscheijden
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Martijn J.G. Wilmer
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
17
|
Chen Y, Chernyavsky A, Webber RJ, Grando SA, Wang PH. Critical Role of the Neonatal Fc Receptor (FcRn) in the Pathogenic Action of Antimitochondrial Autoantibodies Synergizing with Anti-desmoglein Autoantibodies in Pemphigus Vulgaris. J Biol Chem 2015; 290:23826-37. [PMID: 26260795 DOI: 10.1074/jbc.m115.668061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 01/23/2023] Open
Abstract
Pemphigus vulgaris (PV) is a life-long, potentially fatal IgG autoantibody-mediated blistering disease targeting mucocutaneous keratinocytes (KCs). PV patients develop pathogenic anti-desmoglein (Dsg) 3 ± 1 and antimitochondrial antibodies (AMA), but it remained unknown whether and how AMA enter KCs and why other cell types are not affected in PV. Therefore, we sought to elucidate mechanisms of cell entry, trafficking, and pathogenic action of AMA in PV. We found that PVIgGs associated with neonatal Fc receptor (FcRn) on the cell membrane, and the PVIgG-FcRn complexes entered KCs and reached mitochondria where they dissociated. The liberated AMA altered mitochondrial membrane potential, respiration, and ATP production and induced cytochrome c release, although the lack or inactivation of FcRn abolished the ability of PVIgG to reach and damage mitochondria and to cause detachment of KCs. The assays of mitochondrial functions and keratinocyte adhesion demonstrated that although the pathobiological effects of AMA on KCs are reversible, they become irreversible, leading to epidermal blistering (acantholysis), when AMA synergize with anti-Dsg antibodies. Thus, it appears that AMA enter a keratinocyte in a complex with FcRn, become liberated from the endosome in the cytosol, and are trafficked to the mitochondria, wherein they trigger pro-apoptotic events leading to shrinkage of basal KCs uniquely expressing FcRn in epidermis. During recovery, KCs extend their cytoplasmic aprons toward neighboring cells, but anti-Dsg antibodies prevent assembly of nascent desmosomes due to steric hindrance, thus rendering acantholysis irreversible. In conclusion, FcRn is a common acceptor protein for internalization of AMA and, perhaps, for PV autoantibodies to other intracellular antigens, and PV is a novel disease paradigm for investigating and elucidating the role of FcRn in this autoimmune disease and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Yumay Chen
- From the Irvine Diabetes Center, Department of Medicine, and
| | | | | | - Sergei A Grando
- Departments of Dermatology and Biological Chemistry, and the Institute for Immunology, University of California at Irvine, Irvine, California 92967 and
| | - Ping H Wang
- From the Irvine Diabetes Center, Department of Medicine, and Biological Chemistry, and
| |
Collapse
|
18
|
Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis. Int Immunopharmacol 2015; 29:76-80. [PMID: 25998908 DOI: 10.1016/j.intimp.2015.04.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/04/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022]
Abstract
The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity.
Collapse
|
19
|
Chadha GS, Morris ME. Effect of Type 2 Diabetes Mellitus and Diabetic Nephropathy on IgG Pharmacokinetics and Subcutaneous Bioavailability in the Rat. AAPS JOURNAL 2015; 17:965-75. [PMID: 25924888 DOI: 10.1208/s12248-015-9771-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
The objective of this research was to assess the effects of type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) on the pharmacokinetics of human IgG (hIgG), an antibody isotype, in Zucker diabetic fatty (ZDF) rats. Furthermore, the specific role of T2DM in the altered disposition of hIgG was evaluated by treating diabetic rats with pioglitazone, while the role of chronic kidney disease (CKD) was assessed using 5/6 nephrectomized Sprague Dawley rats. ZDF male (lean non-diabetic control and obese diabetic) and pioglitazone-treated ZDF rats were studied at ages 12-13 weeks (only DM was present), and at ages 29-30 weeks (progression to DN). All animals were dosed with 1 mg/kg of hIgG intravenously (IV) or subcutaneously (SC). ZDF rats had significantly higher blood glucose concentrations and urinary albumin excretion compared to control rats. Significant increases in total clearance (2.5-fold) and renal clearance (100-fold) of hIgG were observed; however the major increase in total clearance was due to increased non-renal clearance. Greater changes in urinary albumin excretion and total and renal clearances of IgG (3.5-fold and 300-fold, respectively) were observed with progression to DN. SC bioavailability of hIgG in all animal groups was similar (>84%). With pioglitazone-treatment, diabetic animals remained euglycemic and treatment was able to reverse the clearance changes, although incompletely. In the CKD group, no difference in hIgG clearance was observed when compared with controls. In conclusion, the increased clearance of hIgG in ZDF diabetic animals, reversal by pioglitazone treatment and lack of effect of CKD, demonstrate the influence of T2DM on hIgG pharmacokinetics.
Collapse
Affiliation(s)
- Gurkishan S Chadha
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, 14214-8033, USA
| | | |
Collapse
|
20
|
Farkaš R, Beňová-Liszeková D, Mentelová L, Mahmood S, Ďatková Z, Beňo M, Pečeňová L, Raška O, Šmigová J, Chase BA, Raška I, Mechler BM. Vacuole dynamics in the salivary glands ofDrosophila melanogasterduring prepupal development. Dev Growth Differ 2015; 57:74-96. [DOI: 10.1111/dgd.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/21/2014] [Accepted: 11/28/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Silvia Mahmood
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Medical Biochemistry; Jessenius Faculty of Medicine; Comenius University; Mala Hora 4 03601 Martin Slovakia
| | - Zuzana Ďatková
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Ludmila Pečeňová
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Otakar Raška
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Jana Šmigová
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Bruce A. Chase
- Department of Biology; University of Nebraska at Omaha; 6001 Dodge Street Omaha NE 68182-0040 USA
| | - Ivan Raška
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Bernard M. Mechler
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
- German Cancer Research Centre; Neuenheimer Feld 581 D-69120 Heidelberg Germany
- VIT-University; Vellore Tamil Nadu India
| |
Collapse
|
21
|
Vázquez-Carretero MD, Palomo M, García-Miranda P, Sánchez-Aguayo I, Peral MJ, Calonge ML, Ilundain AA. Dab2, megalin, cubilin and amnionless receptor complex might mediate intestinal endocytosis in the suckling rat. J Cell Biochem 2014; 115:510-22. [PMID: 24122887 DOI: 10.1002/jcb.24685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/26/2013] [Indexed: 01/12/2023]
Abstract
We previously proposed that Dab2 participates in the endocytosis of milk macromolecules in rat small intestine. Here we investigate the receptors that may mediate this endocytosis by studying the effects of age and diet on megalin, VLDLR, and ApoER2 expression, and that of age on the expression of cubilin and amnionless. Of megalin, VLDLR and ApoER2, only the megalin expression pattern resembles that of Dab2 previously reported. Thus the mRNA and protein levels of megalin and Dab2 are high in the intestine of the suckling rat, down-regulated by age and up-regulated by milk diet, mainly in the ileum. Neither age nor diet affect ApoER2 mRNA levels. The effect of age on VLDLR mRNA levels depends on the epithelial cell tested but they are down-regulated by milk diet. In the suckling rat, the intestinal expressions of both cubilin and amnionless are similar to that of megalin and megalin, cubilin, amnionless and Dab2 co-localize at the microvilli and in the apical endocytic apparatus. Co-localization of Dab2 with ApoER2 and VLDLR at the microvilli and in the apical endocytic apparatus is also observed. This is the first report showing intestinal co-localization of: megalin/cubilin/amnionless/Dab2, VLDLR/Dab2 and ApoER2/Dab2. We conclude that the megalin/cubilin/amnionless/Dab2 complex/es participate in intestinal processes, mainly during the lactation period and that Dab2 may act as an adaptor in intestinal processes mediated by ApoER2 and VLDLR.
Collapse
|
22
|
De S, Kuwahara S, Saito A. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. MEMBRANES 2014; 4:333-55. [PMID: 25019425 PMCID: PMC4194038 DOI: 10.3390/membranes4030333] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Shankhajit De
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Shoji Kuwahara
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
23
|
Dobrinskikh E, Okamura K, Kopp JB, Doctor RB, Blaine J. Human podocytes perform polarized, caveolae-dependent albumin endocytosis. Am J Physiol Renal Physiol 2014; 306:F941-51. [PMID: 24573386 PMCID: PMC4010685 DOI: 10.1152/ajprenal.00532.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/26/2014] [Indexed: 11/22/2022] Open
Abstract
The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes.
Collapse
Affiliation(s)
- Evgenia Dobrinskikh
- Div. of Renal Diseases and Hypertension, 12700 E. 19th Ave., C281, Aurora, CO 80045.
| | | | | | | | | |
Collapse
|
24
|
Cheng CW, Chang LC, Tseng TL, Wu CC, Lin YF, Chen JS. Phosphotriesterase-related protein sensed albuminuria and conferred renal tubular cell activation in membranous nephropathy. J Biomed Sci 2014; 21:32. [PMID: 24750591 PMCID: PMC4012828 DOI: 10.1186/1423-0127-21-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/11/2014] [Indexed: 11/24/2022] Open
Abstract
Background Membranous nephropathy (MN) is a common cause of nephrotic syndrome that may progress to end-stage renal disease (ESRD). The formation of MN involves the in situ formation of subepithelial immune deposits and leads to albuminuria; however, the underlying mechanism of how MN leads to ESRD remains unclear. The aim of this study was to investigate the expression and biological functions of phosphotriesterase-related protein (PTER) in MN. Results In the progression of MN, the expression of PTER increased significantly and was mainly expressed in the renal tubular cells. Both mRNA and protein expression levels of PTER were increased in a concentration- and time-dependent manner in the in vitro albuminuria tubular cell model. Silencing the expression of PTER by RNA interference diminished albuminuria-induced inflammatory and pro-fibrotic cytokines production. Conclusions Our findings reveal that PTER may sense albuminuria in the progression of MN, induce tubular cell activation and lead to ESRD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin-Shuen Chen
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, 325, Sec, 2, Cheng-Kung Rd,, Neihu 114 Taipei, Taiwan, Republic of China.
| |
Collapse
|
25
|
Aseem O, Smith BT, Cooley MA, Wilkerson BA, Argraves KM, Remaley AT, Argraves WS. Cubilin maintains blood levels of HDL and albumin. J Am Soc Nephrol 2013; 25:1028-36. [PMID: 24357674 DOI: 10.1681/asn.2013060671] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cubilin is an endocytic receptor highly expressed in renal proximal tubules, where it mediates uptake of albumin and filtered forms of apoA-I/HDL. Cubilin deficiency leads to urinary loss of albumin and apoA-I; however, the consequences of cubilin loss on the homeostasis of blood albumin and apoA-I/HDL have not been studied. Using mice heterozygous for cubilin gene deletion (cubilin HT mice), we show that cubilin haploinsufficiency leads to reduced renal proximal tubular uptake of albumin and apoA-I and significantly increased urinary loss of albumin and apoA-I. Moreover, cubilin HT mice displayed significantly decreased blood levels of albumin, apoA-I, and HDL. The levels of albumin and apoA-I protein or mRNA expressed in the liver, kidney, or intestine of cubilin HT mice did not change significantly. The clearance rate of small HDL3 particles (density>1.13 g/ml) from the blood increased significantly in cubilin HT mice. In contrast, the rate of clearance of larger HDL2 particles from the blood did not change significantly, indicating a decreased half-life for HDL particles capable of filtering through the glomerulus. On the basis of these findings, we conclude that cubilin deficiency reduces renal salvage and delivery back to the blood of albumin and apoA-I, which decreases blood levels of albumin and apoA-I/HDL. These findings raise the possibility that therapeutic increase of renal cubilin expression might reduce proteinuria and increase blood levels of albumin and HDL.
Collapse
Affiliation(s)
- Obaidullah Aseem
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Brian T Smith
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Brent A Wilkerson
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Kelley M Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Charleston, South Carolina, and
| |
Collapse
|
26
|
Nagai J, Komeda T, Yumoto R, Takano M. Effect of protamine on the accumulation of gentamicin in opossum kidney epithelial cells. J Pharm Pharmacol 2012; 65:441-6. [DOI: 10.1111/jphp.12005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/11/2012] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The purpose of this study was to examine whether or not protamine, an arginine-rich basic protein mixture, inhibits the accumulation of gentamicin, a nephrotoxic drug, in cultured opossum kidney (OK) epithelial cells.
Methods
The effect of protamine from salmon on accumulation and binding of [3H]gentamicin was investigated in OK cells.
Key findings
Protamine inhibited the binding and accumulation of [3H]gentamicin in a concentration-dependent manner. The accumulation of [14C]inulin, a marker of fluid-phase endocytosis, was not affected by protamine at concentrations up to 1 mm. l-Arginine at concentrations up to 10 mm had no significant effect on the accumulation of [3H]gentamicin. On the other hand, preincubation with 100 μm protamine for 5 min decreased the accumulation of [3H]gentamicin to almost the same extent as coincubation with 100 μm protamine for 60 min.
Conclusions
Our results indicate that protamine decreases the accumulation of gentamicin in OK cells. These findings suggest that protamine or its derivatives might be useful in preventing the nephrotoxicity of aminoglycoside antibiotics including gentamicin.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuji Komeda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|