1
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review. Cells 2024; 13:1958. [PMID: 39682707 DOI: 10.3390/cells13231958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. FINDINGS In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug-drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. CONCLUSIONS The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | | |
Collapse
|
2
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
3
|
Pandey SK, Verma S, Upreti S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Role of Cytochrome P450 3A4 in Cancer Drug Resistance: Challenges and Opportunities. Curr Drug Metab 2024; 25:235-247. [PMID: 38984579 DOI: 10.2174/0113892002312369240703102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30-40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Sona Verma
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Shobha Upreti
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Nainital, Uttrakhand, 263601, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi-110021, India
| | | |
Collapse
|
4
|
Tingskov SJ, D'Agostino M, Login FH, Tamma G, Nejsum LN, Nørregaard R. Tamoxifen Affects Aquaporin-3 Expression and Subcellular Localization in Rat and Human Renal Collecting Ducts. Cells 2023; 12:cells12081140. [PMID: 37190049 DOI: 10.3390/cells12081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Sex hormones play an important role in the regulation of water homeostasis, and we have previously shown that tamoxifen (TAM), a selective estrogen receptor modulator (SERM), affects the regulation of aquaporin (AQP)-2. In this study, we investigated the effect of TAM on the expression and localization of AQP3 in collecting ducts using various animal, tissue, and cell models. The impact of TAM on AQP3 regulation was studied in rats subjected to 7 days of unilateral ureteral obstruction (UUO), with the rats fed a lithium-containing diet to induce nephrogenic diabetes insipidus (NDI), as well as in human precision-cut kidney slices (PCKS). Moreover, intracellular trafficking of AQP3 after TAM treatment was investigated in Madin-Darby Canine Kidney (MDCK) cells stably expressing AQP3. In all models, the expression of AQP3 was evaluated by Western blotting, immunohistochemistry and qPCR. TAM administration attenuated UUO-induced downregulation of AQP3 and affected the localization of AQP3 in both the UUO model and the lithium-induced NDI model. In parallel, TAM also affected the expression profile of other basolateral proteins, including AQP4 and Na/K-ATPase. In addition, TGF-β and TGF-β+TAM treatment affected the localization of AQP3 in stably transfected MDCK cells, and TAM partly attenuated the reduced AQP3 expression in TGF-β exposed human tissue slices. These findings suggest that TAM attenuates the downregulation of AQP3 in a UUO model and a lithium-induced NDI model and affects the intracellular localization in the collecting ducts.
Collapse
Affiliation(s)
| | - Mariagrazia D'Agostino
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Grazia Tamma
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
- Department of Renal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
5
|
Ozyurt R, Ozpolat B. Molecular Mechanisms of Anti-Estrogen Therapy Resistance and Novel Targeted Therapies. Cancers (Basel) 2022; 14:5206. [PMID: 36358625 PMCID: PMC9655708 DOI: 10.3390/cancers14215206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, constituting one-third of all cancers in women, and it is the second leading cause of cancer-related deaths in the United States. Anti-estrogen therapies, such as selective estrogen receptor modulators, significantly improve survival in estrogen receptor-positive (ER+) BC patients, which represents about 70% of cases. However, about 60% of patients inevitably experience intrinsic or acquired resistance to anti-estrogen therapies, representing a major clinical problem that leads to relapse, metastasis, and patient deaths. The resistance mechanisms involve mutations of the direct targets of anti-estrogen therapies, compensatory survival pathways, as well as alterations in the expression of non-coding RNAs (e.g., microRNA) that regulate the activity of survival and signaling pathways. Although cyclin-dependent kinase 4/6 and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors have significantly improved survival, the efficacy of these therapies alone and in combination with anti-estrogen therapy for advanced ER+ BC, are not curative in advanced and metastatic disease. Therefore, understanding the molecular mechanisms causing treatment resistance is critical for developing highly effective therapies and improving patient survival. This review focuses on the key mechanisms that contribute to anti-estrogen therapy resistance and potential new treatment strategies alone and in combination with anti-estrogen drugs to improve the survival of BC patients.
Collapse
Affiliation(s)
- Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
6
|
Unten Y, Murai M, Koshitaka T, Kitao K, Shirai O, Masuya T, Miyoshi H. Comprehensive understanding of multiple actions of anticancer drug tamoxifen in isolated mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148520. [PMID: 34896079 DOI: 10.1016/j.bbabio.2021.148520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Tamoxifen has been widely used in the treatment of estrogen receptor (ER)-positive breast cancer, whereas it also exhibits ER-independent anticancer effects in various cancer cell types. As one of the convincing mechanisms underlying the ER-independent effects, induction of apoptosis through mitochondrial dysfunction has been advocated. However, the mechanism of action of tamoxifen even at the isolated mitochondrial level is not fully understood and remains controversial. Here, we attempted to comprehensively understand tamoxifen's multiple actions in isolated rat liver mitochondria through not only revisiting the actions hitherto reported but also conducting originally designed experiments. Using submitochondrial particles, we found that tamoxifen has potential as an inhibitor of both respiratory complex I and ATP synthase. However, these inhibitory effects were not elicited in intact mitochondria, likely because penetration of tamoxifen across the inner mitochondrial membrane is highly restricted owing to its localized positive charge (-N+H(CH3)2). This restricted penetration may also explain why tamoxifen is unable to function as a protonophore-type uncoupler in mitochondria. Moreover, tamoxifen suppressed opening of the mitochondrial permeability transition pore induced by Ca2+ overload through enhancing phosphate uptake into the matrix. The photoaffinity labeling experiments using a photolabile tamoxifen derivative (pTAM1) indicated that pTAM1 specifically binds to voltage-dependent anion channels (VDACs) 1 and 3, which regulate transport of various substances into mitochondria. The binding of tamoxifen to VDAC1 and/or VDAC3 could be responsible for the enhancement of phosphate uptake. Taking all the results together, we consider the principal impairment of mitochondrial functions caused by tamoxifen.
Collapse
Affiliation(s)
- Yufu Unten
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoki Koshitaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kotaro Kitao
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
Association between genetic polymorphisms in cytochrome P450 enzymes and survivals in women with breast cancer receiving adjuvant endocrine therapy: a systematic review and meta-analysis. Expert Rev Mol Med 2022; 24:e1. [PMID: 34991754 PMCID: PMC9884795 DOI: 10.1017/erm.2021.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tamoxifen is commonly prescribed for preventing recurrence in patients with breast cancer. However, the responses of the patients on tamoxifen treatment are variable. Cytochrome P450 genetic variants have been reported to have a significant impact on the clinical outcomes of tamoxifen treatment but no tangible conclusion can be made up till now. The present review attempts to provide a comprehensive review on the associative relationship between genetic polymorphisms in cytochrome P450 enzymes and survival in breast cancer patients on adjuvant tamoxifen therapy. The literature search was conducted using five databases, resulting in the inclusion of 58 studies in the review. An appraisal of the reporting quality of the included studies was conducted using the assessment tool from the Effective Public Health Practice Project (EPHPP). Meta-analyses were performed on CYP2D6 studies using Review Manager 5.3 software. For other studies, descriptive analyses were performed. The results of meta-analyses demonstrated that shorter overall survival, disease-free survival and relapse-free survival were found in the patients with decreased metabolisers when compared to normal metabolisers. The findings also showed that varying and conflicting results were reported by the included studies. The possible explanations for the variable results are discussed in this review.
Collapse
|
8
|
Chen G, Liu W, Yan B. Breast Cancer MCF-7 Cell Spheroid Culture for Drug Discovery and Development. JOURNAL OF CANCER THERAPY 2022; 13:117-130. [PMID: 36311820 PMCID: PMC9611733 DOI: 10.4236/jct.2022.133009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro 3D cancer spheroids (tumoroids) exhibit a drug resistance profile similar to that found in solid tumors. 3D spheroid culture methods recreate more physiologically relevant microenvironments for cells. Therefore, these models are more appropriate for cancer drug screening. We have recently developed a protocol for MCF-7 cell spheroid culture, and used this method to test the effects of different types of drugs on this estrogen-dependent breast cancer cell spheroid. Our results demonstrated that MCF-7 cells can grow spheroid in medium using a low attachment plate. We managed to grow one spheroid in each well, and the spheroid can grow over a month, the size of the spheroid can grow over a hundred times in volume. Our targeted drug experimental results suggest that estrogen sulfotransferase, steroid sulfatase, and G protein-coupled estrogen receptor may play critical roles in MCF-7 cell spheroid growth, while estrogen receptors α and β may not play an essential role in MCF-7 spheroid growth. Organoids are the miniatures of in vivo tissues and reiterate the in vivo microenvironment of a specific organ, best fit for the in vitro studies of diseases and drug development. Tumoroid, developed from cancer cell lines or patients’ tumor tissue, is the best in vitro model of in vivo tumors. 3D spheroid technology will be the best future method for drug development of cancers and other diseases. Our reported method can be developed clinically to develop personalized drugs when the patient’s tumor tissues are used to develop a spheroid culture for drug screening.
Collapse
Affiliation(s)
- Guangping Chen
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
- ,
| | - William Liu
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Bingfang Yan
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
- ,
| |
Collapse
|
9
|
Rajendran S, Swaroop SS, Roy J, Inemai E, Murugan S, Rayala SK, Venkatraman G. p21 activated kinase-1 and tamoxifen - A deadly nexus impacting breast cancer outcomes. Biochim Biophys Acta Rev Cancer 2021; 1877:188668. [PMID: 34896436 DOI: 10.1016/j.bbcan.2021.188668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
Tamoxifen is a commonly used drug in the treatment of ER + ve breast cancers since 1970. However, development of resistance towards tamoxifen limits its remarkable clinical success. In this review, we have attempted to provide a brief overview of multiple mechanism that may lead to tamoxifen resistance, with a special emphasis on the roles played by the oncogenic kinase- PAK1. Analysing the genomic data sets available in the cBioPortal, we found that PAK1 gene amplification significantly affects the Relapse Free Survival of the ER + ve breast cancer patients. While PAK1 is known to promote tamoxifen resistance by phosphorylating ERα at Ser305, existing literature suggests that PAK1 can fuel up tamoxifen resistance obliquely by phosphorylating other substrates. We have summarised some of the approaches in the mass spectrometry based proteomics, which would enable us to study the tamoxifen resistance specific phosphoproteomic landscape of PAK1. We also propose that elucidating the multiple mechanisms by which PAK1 promotes tamoxifen resistance might help us discover druggable targets and biomarkers.
Collapse
Affiliation(s)
- Swetha Rajendran
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Srikanth Swamy Swaroop
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Joydeep Roy
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Ezhil Inemai
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Sowmiya Murugan
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
10
|
Boonprasert K, Kosa N, Muhamad P, Cheoymang A, Na-Bangchang K. Association between ABCB1 Polymorphisms and Artesunate-Mefloquine Treatment Responses of Patients with Falciparum Malaria on the Thailand-Myanmar Border. Am J Trop Med Hyg 2021; 104:2152-2158. [PMID: 33939644 DOI: 10.4269/ajtmh.21-0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 01/29/2023] Open
Abstract
A decrease in the clinical efficacy of a 3-day artesunate-mefloquine combination treatment was reported in the areas of multidrug-resistant Plasmodium falciparum along the Thailand-Myanmar border. The current study investigated the possible contribution of genetic polymorphisms of the three major genes encoding drug efflux transporters, ABCB1, ABCG2, and ABCC1, to responses to the aforementioned treatment in 91 patients with acute uncomplicated falciparum malaria residing along the Thailand-Myanmar border. Patients carrying homozygous mutant genotype ABCB1 c.1236C>T (TT) were found to have a three-times higher chance of successful treatment with this combination compared with other genotypes (CC and CT). Furthermore, whole blood mefloquine concentrations in these patients with the TT genotype were significantly lower than those of patients carrying the CC genotype. Patients with heterozygous mutant genotype (CT), however, were three-times more likely to experience treatment failure. No significant association was found with the ABCG2 and ABCC1 gene polymorphisms. The results suggest that ABCB1 c.1236CT polymorphisms could be useful genetic markers for predicting responses to the 3-day artesunate-mefloquine treatment; however, studies using larger sample sizes in different malaria-endemic areas are necessary to confirm this finding. This study highlights the impact of pharmacogenetic factors on antimalarial treatment responses and the basis for the application of control policies in various malaria-endemic areas.
Collapse
Affiliation(s)
- Kanyarat Boonprasert
- 1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand.,2Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Nanthawat Kosa
- 1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Poonuch Muhamad
- 3Drug Discovery Center, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Anurak Cheoymang
- 1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- 1Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand.,2Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand.,3Drug Discovery Center, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| |
Collapse
|
11
|
Selective estrogen receptor modulators (SERMS): keys to understanding their function. ACTA ACUST UNITED AC 2020; 27:1171-1176. [DOI: 10.1097/gme.0000000000001585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Gusella M, Pasini F, Corso B, Bertolaso L, De Rosa G, Falci C, Modena Y, Barile C, Da Corte Z D, Fraccon A, Toso S, Cretella E, Brunello A, Modonesi C, Segati R, Oliani C, Minicuci N, Padrini R. Predicting steady-state endoxifen plasma concentrations in breast cancer patients by CYP2D6 genotyping or phenotyping. Which approach is more reliable? Pharmacol Res Perspect 2020; 8:e00646. [PMID: 32813313 PMCID: PMC7437348 DOI: 10.1002/prp2.646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
In previous studies, steady-state Z-endoxifen plasma concentrations (ENDOss) correlated with relapse-free survival in women on tamoxifen (TAM) treatment for breast cancer. ENDOss also correlated significantly with CYP2D6 genotype (activity score) and CYP2D6 phenotype (dextromethorphan test). Our aim was to ascertain which method for assessing CYP2D6 activity is more reliable in predicting ENDOss. The study concerned 203 Caucasian women on tamoxifen-adjuvant therapy (20 mg q.d.). Before starting treatment, CYP2D6 was genotyped (and activity scores computed), and the urinary log(dextromethorphan/dextrorphan) ratio [log(DM/DX)] was calculated after 15 mg of oral dextromethorphan. Plasma concentrations of TAM, N-desmethyl-tamoxifen (ND-TAM), Z-4OH-tamoxifen (4OH-TAM) and ENDO were assayed 1, 4, and 8 months after first administering TAM. Multivariable regression analysis was used to identify the clinical and laboratory variables predicting log-transformed ENDOss (log-ENDOss). Genotype-derived CYP2D6 phenotypes (PM, IM, NM, EM) and log(DM/DX) correlated independently with log-ENDOss. Genotype-phenotype concordance was almost complete only for poor metabolizers, whereas it emerged that 34% of intermediate, normal, and ultrarapid metabolizers were classified differently based on log(DM/DX). Multivariable regression analysis selected log(DM/DX) as the best predictor, with patients' age, weak inhibitor use, and CYP2D6 phenotype decreasingly important: log-ENDOss = 0.162 - log(DM/DX) × 0.170 + age × 0.0063 - weak inhibitor use × 0.250 + IM × 0.105 + (NM + UM) × 0.210; (R2 = 0.51). In conclusion, log(DM/DX) seems superior to genotype-derived CYP2D6 phenotype in predicting ENDOss.
Collapse
Affiliation(s)
| | - Felice Pasini
- Oncology UnitCasa di Cura PederzoliPeschiera del GardaItaly
| | - Barbara Corso
- National Research CouncilNeuroscience InstitutePadovaItaly
| | | | - Giovanni De Rosa
- Clinical Pharmacology Unit of the Department of Medicine (DIMED)University of PadovaPadovaItaly
| | - Cristina Falci
- Oncology Unit 2Istituto Oncologico Veneto (IOV)IRCCS PadovaPadovaItaly
| | | | | | | | | | | | | | | | | | | | | | - Nadia Minicuci
- National Research CouncilNeuroscience InstitutePadovaItaly
| | - Roberto Padrini
- Clinical Pharmacology Unit of the Department of Medicine (DIMED)University of PadovaPadovaItaly
| | | |
Collapse
|
13
|
Wei X, Sun H, Zhuang J, Weng X, Zheng B, Lin Q, Zhang G, Cai J. Cost-effectiveness Analysis of CYP2D6*10 Pharmacogenetic Testing to Guide the Adjuvant Endocrine Therapy for Postmenopausal Women with Estrogen Receptor Positive Early Breast Cancer in China. Clin Drug Investig 2020; 40:25-32. [PMID: 31559573 DOI: 10.1007/s40261-019-00842-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND A CYP2D6 gene polymorphism is related to the effect of tamoxifen treatment in patient with estrogen-receptor positive (ER) positive breast cancer and CYP2D6*10 T/T can lead to a poor prognosis in Asian patients. Although one-off pharmacogenetic testing may optimize adjuvant endocrine therapy, testing prior to tamoxifen initiation incurs additional costs. AIM We conducted a study to assess the cost-effectiveness of CYP2D6*10 pharmacogenetic testing to guide the adjuvant endocrine therapy compared with tamoxifen without CYP2D6*10 testing in China. METHODS A semi-Markov model was developed to evaluate costs and health outcomes represented as quality adjusted life year (QALY) gained. Input data were obtained from the public literature. The results were expressed as incremental cost per QALY gained. A one-way deterministic sensitivity analysis explored the impact of uncertainty in the model parameters on results, and probabilistic uncertainty was assessed through a Monte Carlo probabilistic sensitivity analysis. RESULTS In the base-case analysis, in the CYP2D6*10 testing and alternative adjuvant endocrine therapy group, the incremental total cost was US$17,966.95 and the incremental QALY was 3.582. Thus, the incremental cost-effectiveness ratio was US$5015.693 per QALY gained. Compared with a willingness-to-pay threshold of US$26,508/QALY in China, the CYP2D6*10 testing is the dominant strategy in postmenopausal women with ER-positive breast cancer in China, and the increased cost of genetic testing was completely worthwhile. The sensitivity analyses showed that the model we built was quite stable. CONCLUSION From the perspective of the Chinese healthcare system, CYP2D6*10 pharmacogenetic testing was cost effective for postmenopausal women with ER-positive early breast cancer.
Collapse
Affiliation(s)
- Xiaoxia Wei
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Hong Sun
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Jie Zhuang
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xiuhua Weng
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Bin Zheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Qiwang Lin
- Department of Pharmacy, Fujian Maternity and Children Health Hospital, Fuzhou, Fujian, 350001, China
| | - Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Jiaqin Cai
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
14
|
Cytochrome P450 2C9 polymorphism: Effect of amino acid substitutions on protein flexibility in the presence of tamoxifen. Comput Biol Chem 2020; 84:107166. [DOI: 10.1016/j.compbiolchem.2019.107166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/29/2019] [Accepted: 11/14/2019] [Indexed: 01/21/2023]
|
15
|
Dreger NM, Degener S, Roth S, Ahmad-Nejad P, Kamper L, Müller E, von Rundstedt FC, Brandt AS. Impact of CYP2D6 Polymorphisms on Tamoxifen Treatment in Patients With Retroperitoneal Fibrosis: A First Step Towards Tailored Therapy? Urology 2019; 137:84-90. [PMID: 31877313 DOI: 10.1016/j.urology.2019.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/14/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To investigate the influence of CYP2D6 polymorphisms on outcomes and health-related quality of life of patients with retroperitoneal fibrosis (RPF) receiving tamoxifen (TMX). TMX is an effective alternative to corticosteroids for patients with RPF. Conversion of TMX to more potent endoxifen is dependent on enzyme activity of CYP2D6. MATERIALS AND METHODS CYP2D6 genotyping and phenotype prediction of all patients treated with TMX between 02/2007 and 01/2018 was assessed using multiplex polymerase chain reaction (PCR). Groups were classified by phenotype: extensive (EM) vs poor and intermediate (PM + IM) vs ultrarapid metabolizer (UM). Retrospective evaluation of outcome (including magnetic resonance imaging and positron emission tomography-computed tomography) and health-related quality of life using the SF-36 was performed. RESULTS A total of 63/194 patients received TMX, 40/63 with complete follow-up were sequenced: Twenty-nine patients with EM phenotype, 8 PM + IM and 3 UM. The median therapy duration was 364.5 days with a mean follow-up of 62.9 months. Seven therapy terminations occurred due to lack of response (17.5%), including all UM patients (P <.001). Magnetic resonance imagings showed a regression of fibrosis for EM and PM + IM in 69% and 62.5% of cases and a progression for UM in 100% (P = .004). In positron emission tomography-computed tomography, glucose utilization of RPF decreased significantly for EM and PM + IM. The physical sum-score of SF-36 improved for EM and PM + IM and decreased for UM (P <.05). The removal of DJ-stents was successful for EM, PM + IM, and UM in 48.3%, 75%, and 0% of cases (P = .0581). CONCLUSION Contrary to expectations, UM showed the lowest success rate, which concludes that genotyping of RPF-patients may be useful in the sense of a tailored-therapy.
Collapse
Affiliation(s)
- Nici Markus Dreger
- Department of Urology, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany.
| | - Stephan Degener
- Department of Urology, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Stephan Roth
- Department of Urology, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Parviz Ahmad-Nejad
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Lars Kamper
- Department of Radiology, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Elisabeth Müller
- Department of Urology, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Friedrich Carl von Rundstedt
- Department of Urology, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany; Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany; Department of Radiology, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| | - Alexander Sascha Brandt
- Department of Urology, Helios University Hospital Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
| |
Collapse
|
16
|
Chao TC, Pan WC, Tsai YF, Chou YC, Liu YR, Wang SF, Chen YJ, Souček P, Ueng YF. Plasma endoxifen and 4-hydroxytamoxifen levels in CYP2D6(C100T) carrying breast cancer patients and association with serum cholesterol. Toxicol Appl Pharmacol 2019; 378:114619. [DOI: 10.1016/j.taap.2019.114619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
|
17
|
Fonseca TG, Carriço T, Fernandes E, Abessa DMS, Tavares A, Bebianno MJ. Impacts of in vivo and in vitro exposures to tamoxifen: Comparative effects on human cells and marine organisms. ENVIRONMENT INTERNATIONAL 2019; 129:256-272. [PMID: 31146160 DOI: 10.1016/j.envint.2019.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Tamoxifen (TAM) is a first generation-SERM administered for hormone receptor-positive (HER+) breast cancer in both pre- and post-menopausal patients and may undergo metabolic activation in organisms that share similar receptors and thus face comparable mechanisms of response. The present study aimed to assess whether environmental trace concentrations of TAM are bioavailable to the filter feeder M. galloprovincialis (100 ng L-1) and to the deposit feeder N. diversicolor (0.5, 10, 25 and 100 ng L-1) after 14 days of exposure. Behavioural impairment (burrowing kinetic), neurotoxicity (AChE activity), endocrine disruption by alkali-labile phosphate (ALP) content, oxidative stress (SOD, CAT, GPXs activities), biotransformation (GST activity), oxidative damage (LPO) and genotoxicity (DNA damage) were assessed. Moreover, this study also pertained to compare TAM cytotoxicity effects to mussels and targeted human (i.e. immortalized retinal pigment epithelium - RPE; and human transformed endothelial cells - HeLa) cell lines, in a range of concentrations from 0.5 ng L-1 to 50 μg L-1. In polychaetes N. diversicolor, TAM exerted remarkable oxidative stress and damage at the lowest concentration (0.5 ng L-1), whereas significant genotoxicity was reported at the highest exposure level (100 ng L-1). In mussels M. galloprovincialis, 100 ng L-1 TAM caused endocrine disruption in males, neurotoxicity, and an induction in GST activity and LPO byproducts in gills, corroborating in genotoxicity over the exposure days. Although cytotoxicity assays conducted with mussel haemocytes following in vivo exposure was not effective, in vitro exposure showed to be a feasible alternative, with comparable sensitivity to human cell line (HeLa).
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - T Carriço
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - E Fernandes
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - A Tavares
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - M J Bebianno
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
18
|
Abdel-Razeq H. Current frontline endocrine treatment options for women with hormone receptor-positive, Human Epidermal Growth Factor Receptor 2 (HER2)-negative advanced-stage breast cancer. Hematol Oncol Stem Cell Ther 2019; 12:1-9. [DOI: 10.1016/j.hemonc.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/14/2018] [Accepted: 04/27/2018] [Indexed: 01/28/2023] Open
|
19
|
Abstract
Tamoxifen is a prodrug, and most of the therapeutic effect in treating breast cancer stems from its metabolite, endoxifen. Since cytochrome P450 (CYP) 2D6 is the most important enzyme in the production of endoxifen, drugs that inhibit CYP2D6 would be expected to reduce tamoxifen efficacy. In addition to drug–drug interactions (DDI) involving CYP2D6, there is growing evidence that enzyme inducers can substantially alter the disposition of endoxifen, reducing tamoxifen efficacy. Although the clinical evidence on the impact of CYP2D6 inhibitors on tamoxifen efficacy is mixed, there were serious flaws in many of the studies. Thus, there is a reasonable chance that CYP2D6 inhibitors do in fact inhibit tamoxifen efficacy. Tamoxifen has extraordinarily complex pharmacokinetics, with more than a dozen drug-metabolizing enzymes and transporters involved in its disposition. Enzyme inducers may increase the activity of several of these pathways, including phase II enzymes, ABC transporters, and various CYP enzymes other than CYP2D6. Based on current clinical evidence, one could argue that enzyme inducers are potentially more dangerous than CYP2D6 inhibitors in patients taking tamoxifen. Moreover, early evidence suggests that the combination of CYP2D6 inhibitors plus enzyme inducers may produce catastrophic inhibition of tamoxifen efficacy. One could argue that, given the available evidence, an agnostic “wait and see” position on tamoxifen DDI is ethically untenable, and that many women with breast cancer are currently being subjected to an unnecessary risk of cancer recurrence. Specific recommendations to reduce the risk of adverse tamoxifen DDI are offered for consideration.
Collapse
Affiliation(s)
- Philip D Hansten
- Professor Emeritus, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
20
|
Chen L, Zhu L, Li M, Li N, Qi F, Wang N. Predicting the Effects of Different Triazole Antifungal Agents on the Pharmacokinetics of Tamoxifen. AAPS PharmSciTech 2019; 20:24. [PMID: 30604153 DOI: 10.1208/s12249-018-1219-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/11/2018] [Indexed: 01/12/2023] Open
Abstract
Tamoxifen is an antiestrogen drug that is widely used in the adjuvant chemotherapy of estrogen receptor-α (ERα)-positive breast cancer. Chemotherapy could suppress immune function in breast cancer patients, which may cause invasive fungal infections (IFIs). Triazoles (voriconazole, fluconazole, and itraconazole) were commonly used for IFI. The physiologically based pharmacokinetic (PBPK) models were developed to investigate the influence of different triazoles on tamoxifen pharmacokinetics in this paper. To investigate the influence of different triazoles (voriconazole, fluconazole, itraconazole) on tamoxifen pharmacokinetics. Adjusted physicochemical data and pharmacokinetic parameters of voriconazole, fluconazole, itraconazole, and tamoxifen were obtained from published literatures. PBPK models were built and verified in healthy subjects using GastroPlus™. Voriconazole, itraconazole, and tamoxifen were administered orally. Fluconazole was administered intravenously. Simulated plasma concentration-time curves of the voriconazole, fluconazole, itraconazole, and tamoxifen showed good agreement with the observed profiles, respectively. The DDI simulations showed that the pharmacokinetic parameters of tamoxifen were increased by various degrees when coadministered with different triazoles. In healthy subjects, the area under the plasma concentration-time curve from 0 to t h (AUC0-t) of tamoxifen was increased by 41%, 5%, and1% when coadministrated with voriconazole, fluconazole, and itraconazole, respectively. The PBPK models adequately characterized the pharmacokinetics of tamoxifen and triazoles. Among the three triazoles, voriconazole exhibited the greatest effect on tamoxifen pharmacokinetics. In clinical practice, an effective dosage adjustment of tamoxifen may need to be considered and TDM for tamoxifen is advisable to guide dosing and optimize therapy when coadministered with voriconazole.
Collapse
|
21
|
CYP2D6 as a treatment decision aid for ER-positive non-metastatic breast cancer patients: a systematic review with accompanying clinical practice guidelines. Breast Cancer Res Treat 2018; 173:521-532. [PMID: 30411242 DOI: 10.1007/s10549-018-5027-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Tamoxifen is one of the principal treatments for estrogen receptor (ER)-positive breast cancer. Unfortunately, between 30 and 50% of patients receiving this hormonal therapy relapse. Since CYP2D6 genetic variants have been reported to play an important role in survival outcomes after treatment with tamoxifen, this study sought to summarize and critically appraise the available scientific evidence on this topic. METHODS A systematic literature review was conducted to identify studies investigating associations between CYP2D6 genetic variation and survival outcomes after tamoxifen treatment. Critical appraisal of the retrieved scientific evidence was performed, and recommendations were developed for CYP2D6 genetic testing in the context of tamoxifen therapy. RESULTS Although conflicting literature exists, the majority of the current evidence points toward CYP2D6 genetic variation affecting survival outcomes after tamoxifen treatment. Of note, review of the CYP2D6 genotyping assays used in each of the studies revealed the importance of comprehensive genotyping strategies to accurately predict CYP2D6 metabolizer phenotypes. CONCLUSIONS AND RECOMMENDATIONS Critical appraisal of the literature provided evidence for the value of comprehensive CYP2D6 genotyping panels in guiding treatment decisions for non-metastatic ER-positive breast cancer patients. Based on this information, it is recommended that alternatives to standard tamoxifen treatments may be considered in CYP2D6 poor or intermediate metabolizers.
Collapse
|
22
|
Castrignanò S, Di Nardo G, Sadeghi SJ, Gilardi G. Influence of inter-domain dynamics and surrounding environment flexibility on the direct electrochemistry and electrocatalysis of self-sufficient cytochrome P450 3A4-BMR chimeras. J Inorg Biochem 2018; 188:9-17. [DOI: 10.1016/j.jinorgbio.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/21/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
|
23
|
Genetic polymorphisms of 3'-untranslated region of SULT1A1 and their impact on tamoxifen metabolism and efficacy. Breast Cancer Res Treat 2018; 172:401-411. [PMID: 30120701 PMCID: PMC6208901 DOI: 10.1007/s10549-018-4923-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Purpose Tamoxifen has a wide inter-variability. Recently, two SNPs in the 3′-untranslated region (UTR) of the SULT1A1 gene, rs6839 and rs1042157, have been associated with decreased SULT1A1 activity. The aim of this study is to investigate the role of the rs6839 and rs1042157 on tamoxifen metabolism and relapse-free survival (RFS) in women diagnosed with early-breast cancer receiving tamoxifen. Methods Samples from 667 patients collected in the CYPTAM study (NTR1509) were used for genotyping (CYP2D6, SULT1A1 rs6839 and rs1042157) and measurements of tamoxifen and metabolites. Patients were categorized in three groups depending on the decreased SULT1A1 activity due to rs6839 and rs1042157: low activity group (rs6839 (GG) and rs1042157 (TT)); high activity group (rs6839 (AA) and rs1042157 (CC)); and medium activity group (all the other combinations of rs6839 and rs1042157). Associations between SULT1A1 phenotypes and clinical outcome (RFS) were explored. Results In the low SULT1A1 activity group, higher endoxifen and 4-hydroxy-tamoxifen concentrations were found, compared to the medium and high activity group (endoxifen: 31.23 vs. 30.51 vs. 27.00, p value: 0.016; 4-hydroxy-tamoxifen: 5.55 vs. 5.27 vs. 4.94, p value:0.05). In terms of relapse, the low activity group had a borderline better outcome compared to the medium and high SULT1A1 activity group (adjusted Hazard ratio: 0.297; 95% CI 0.088–1.000; p value: 0.05). Conclusion Our results suggested that rs6839 and rs1042157 SNPs have a minor effect on the concentrations and metabolic ratios of tamoxifen and its metabolites, and RFS in women receiving adjuvant tamoxifen. Electronic supplementary material The online version of this article (10.1007/s10549-018-4923-7) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Sim S, Lövrot J, Lindh JD, Bergh J, Xie H. Effect of CYP2C19 and CYP2D6 genotype on tamoxifen treatment outcome indicates endogenous and exogenous interplay. Pharmacogenomics 2018; 19:1027-1037. [DOI: 10.2217/pgs-2018-0089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: We investigated the interaction of CYP2C19 and CYP2D6 genotype on clinical outcome in tamoxifen-treated breast cancer patients. Materials & methods: A cohort of 306 patients on tamoxifen treatment for a minimum of 1 year were employed to analyze the effect of genotype-predicted phenotype on relapse-free survival. Results & conclusion: We show that the group with worst outcome and highest risk of relapse is that of 2C19↑–2D6↓ (hazard ratio: 2.94), when adjusting for age, Nottingham prognostic index and adjuvant chemotherapy. Furthermore, the effect of 2C19↑–2D6↓genotype-predicted phenotype is greatly enhanced in premenopausal patients (hazard ratio: 21.08). We hypothesize that poor bioactivation of tamoxifen in patients with low CYP2D6 activity and high CYP2C19 metabolism represents a tamoxifen-treated patient group that has the worst clinical outcome.
Collapse
Affiliation(s)
- Sarah Sim
- Department of Physiology & Pharmacology, Karolinska Institutet, SE171-76 Stockholm, Sweden
| | - John Lövrot
- Department of Oncology & Pathology, Karolinska Institutet, SE171-76 Stockholm, Sweden
| | - Jonatan D Lindh
- Department of Clinical Pharmacology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology & Pathology, Karolinska Institutet, SE171-76 Stockholm, Sweden
- Department of Clinical Oncology, Karolinska University Hospital, SE171-76 Stockholm, Sweden
| | - Hanjing Xie
- Department of Oncology & Pathology, Karolinska Institutet, SE171-76 Stockholm, Sweden
- Department of Clinical Oncology, Karolinska University Hospital, SE171-76 Stockholm, Sweden
- Department of Oncology, Capio S:t Görans Hospital, SE112-81 Stockholm, Sweden
| |
Collapse
|
25
|
Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther 2018; 186:1-24. [DOI: 10.1016/j.pharmthera.2017.12.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Abstract
More than one-third of adults in the USA have obesity, which causes, exacerbates or adversely impacts numerous medical comorbidities, including diabetes mellitus and cardiovascular disease. Despite intensive lifestyle modifications, the disease severity warrants further aggressive intervention, including pharmacotherapy, medical devices and bariatric surgery. Noninvasive anti-obesity drugs have thus now resurfaced as targeted adjunctive therapeutic approaches to intensive lifestyle intervention, bridging the gap between lifestyle and bariatric surgery. In this Review, we discuss FDA-approved anti-obesity drugs in terms of safety and efficacy. As most of these drugs have a mean percentage weight loss reported in clinical trials but individual variations in response rates, a future direction of obesity pharmacotherapy research might include the potential for personalized medicine to target early responders to these anti-obesity drugs.
Collapse
Affiliation(s)
- Gitanjali Srivastava
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 720 Harrison Avenue, 8 th Floor, Suite 801, Boston, Massachusetts 02118, USA
| | - Caroline M Apovian
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 720 Harrison Avenue, 8 th Floor, Suite 801, Boston, Massachusetts 02118, USA
| |
Collapse
|
27
|
Pharmacogenomics Guided-Personalization of Warfarin and Tamoxifen. J Pers Med 2017; 7:jpm7040020. [PMID: 29236081 PMCID: PMC5748632 DOI: 10.3390/jpm7040020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The use of pharmacogenomics to personalize drug therapy has been a long-sought goal for warfarin and tamoxifen. However, conflicting evidence has created reason for hesitation in recommending pharmacogenomics-guided care for both drugs. This review will provide a summary of the evidence to date on the association between cytochrome P450 enzymes and the clinical end points of warfarin and tamoxifen therapy. Further, highlighting the clinical experiences that we have gained over the past ten years of running a personalized medicine program, we will offer our perspectives on the utility and the limitations of pharmacogenomics-guided care for warfarin and tamoxifen therapy.
Collapse
|
28
|
Helland T, Henne N, Bifulco E, Naume B, Borgen E, Kristensen VN, Kvaløy JT, Lash TL, Alnæs GIG, van Schaik RH, Janssen EAM, Hustad S, Lien EA, Mellgren G, Søiland H. Serum concentrations of active tamoxifen metabolites predict long-term survival in adjuvantly treated breast cancer patients. Breast Cancer Res 2017; 19:125. [PMID: 29183390 PMCID: PMC5706168 DOI: 10.1186/s13058-017-0916-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background Controversies exist as to whether the genetic polymorphisms of the enzymes responsible for the metabolism of tamoxifen can predict breast cancer outcome in patients using adjuvant tamoxifen. Direct measurement of concentrations of active tamoxifen metabolites in serum may be a more biological plausible and robust approach. We have investigated the association between CYP2D6 genotypes, serum concentrations of active tamoxifen metabolites, and long-term outcome in tamoxifen treated breast cancer patients. Methods From an original observational study comprising 817 breast cancer patients, 99 women with operable breast cancer were retrospectively included in the present study. This cohort of patients were adjuvantly treated with tamoxifen, had provided serum samples suitable for measuring tamoxifen metabolites, and were relapse-free at 3 years after the primary treatment commenced. The median follow-up time from this entry point to breast cancer death was 13.9 years. Patients were CYP2D6 genotyped and grouped into four CYP2D6 phenotype groups (Ultra rapid, extensive, intermediate, and poor metabolizers). Tamoxifen and nine metabolites were quantified in serum (n = 86) and compared with CYP2D6 phenotype groups and outcome. Results Breast cancer patients with low concentrations of Z-4-hydroxy-tamoxifen (Z-4OHtam; ≤ 3.26 nM) had a breast cancer-specific survival (BCSS) of 60% compared to 84% in patients with Z-4OHtam concentrations > 3.26 nM (p = 0.020, log-rank hazard ratio (HR) = 3.56, 95% confidence interval (CI) = 1.14–11.07). For patients with Z-4-hydroxy-N-desmethyl-tamoxifen (Z-endoxifen) levels ≤ 9.00 nM BCSS was 57% compared to 84% for patients with concentrations > 9.00 nM (p = 0.029, HR = 3.73, 95% CI = 1.05–13.22). Low concentrations of Z-4OHtam and Z-endoxifen were associated with poorer survival also after adjusting for clinically relevant variables (HR = 4.27, 95% CI = 1.35–13.58, and HR = 3.70, 95% CI = 1.03–13.25, respectively). Overall survival analysis showed similar survival differences for both active metabolites. The Antiestrogen Activity Score showed comparable effects, but did not improve the prognostic information. Conclusions Patients with Z-4OHtam and Z-endoxifen concentrations lower than 3.26 nM or 9.00 nM, respectively, showed an adverse outcome. Our results suggest that direct measurement of active tamoxifen metabolite concentrations could be of clinical value. Validation in larger study cohorts is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0916-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Helland
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Henne
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Ersilia Bifulco
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Bjørn Naume
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elin Borgen
- Pathology Department, Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Jan T Kvaløy
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway.,Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Grethe I G Alnæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Ron H van Schaik
- Expert Center Pharmacogenetics, Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Emiel A M Janssen
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway.,Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Steinar Hustad
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Ernst A Lien
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Surgery, Section of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
29
|
Sanchez Spitman AB, Moes DJAR, Gelderblom H, Dezentje VO, Swen JJ, Guchelaar HJ. Effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on tamoxifen metabolism. Eur J Clin Pharmacol 2017; 73:1589-1598. [PMID: 28849250 PMCID: PMC5684327 DOI: 10.1007/s00228-017-2323-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/14/2017] [Indexed: 12/14/2022]
Abstract
Background Tamoxifen is one of the cornerstones of endocrine therapy for breast cancer. Recently, the decreased activity CYP3A4*22 allele and the loss of function CYP3A5*3 allele have been described as potential factors that could help to explain the inter-patient variability in tamoxifen metabolism. The aim of this study is to investigate the effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on tamoxifen metabolism. Methods DNA from 667 women enrolled in the CYPTAM study (NTR1509) was genotyped (CYP2D6, CYP3A4*22, and CYP3A5*3). Tamoxifen and metabolite concentrations were measured in serum, and metabolic ratios were calculated. The effect of the CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes in addition to the CYP2D6 genotypes was examined by multiple linear regression analysis. Results CYP3A4*22 carriers reached significant higher concentrations of tamoxifen, N-desmethyl-tamoxifen, and 4-hydroxy-tamoxifen compared to non-carriers, whereas a tendency toward increased endoxifen levels was observed (p = 0.088). The metabolic ratio tamoxifen/N-desmethyl-tamoxifen was significantly higher in CYP3A4*22 individuals (0.59 vs. 0.52, p < 0.001). At the same time, CYP3A4*22 genotype contributed to improving the inter-variability [R2 of the (log-transformed) metabolic ratio tamoxifen/N-desmethyl-tamoxifen improved from 21.8 to 23.9%, p < 0.001]. CYP3A5*3 marginally improved the explained variability of the (log transformed) metabolic ratio 4-hydroxy-tamoxifen/endoxifen (from 44.9 to 46.2%, p < 0.038). Conclusion Our data demonstrate that CYP3A genotype has a minor effect to explaining the variability between patients in tamoxifen metabolism and has no added value in addition to CYP2D6 genotype. Electronic supplementary material The online version of this article (10.1007/s00228-017-2323-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A B Sanchez Spitman
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300, RC, The Netherlands
| | - D J A R Moes
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300, RC, The Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - V O Dezentje
- Department of Medical Oncology, Reinier de Graaf, Delft, The Netherlands
| | - J J Swen
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300, RC, The Netherlands
| | - H J Guchelaar
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300, RC, The Netherlands.
| |
Collapse
|
30
|
Damkier P, Kjærsgaard A, Barker KA, Cronin-Fenton D, Crawford A, Hellberg Y, Janssen EAM, Langefeld C, Ahern TP, Lash TL. CYP2C19*2 and CYP2C19*17 variants and effect of tamoxifen on breast cancer recurrence: Analysis of the International Tamoxifen Pharmacogenomics Consortium dataset. Sci Rep 2017; 7:7727. [PMID: 28798474 PMCID: PMC5552748 DOI: 10.1038/s41598-017-08091-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
The role of cytochrome P450 drug metabolizing enzymes in the efficacy of tamoxifen treatment of breast cancer is subject to substantial interest and controversy. CYP2D6 have been intensively studied, but the role of CYP2C19 is less elucidated, and we studied the association of CYPC19 genotype and recurrence of breast cancer. We used outcome and genotyping data from the large publicly available International Tamoxifen Pharmacogenomics Consortium (ITPC) dataset. Cox regression was used to compute the hazard ratios (HRs) for recurrence. CYP2C19 genotype data was available for 2 423 patients and the final sample cohort comprised 2 102 patients. CYP2C19*2 or *19 alleles did not influence DFS. For the CYP2C19*2 allele, the HR was 1.05 (CI 0.78–1.42) and 0.79 (CI 0.32–1.94) for hetero- and homozygote carriers, respectively. The corresponding HR for hetero- and homozygote carriers of the CYP2C19*17 allele were 1.02 (CI 0.71–1.46) and 0.57 (CI 0.26–1.24), respectively. Accounting for CYP2D6 genotype status did not change these estimates. We found no evidence to support a clinically meaningful role of CYP2C19 polymorphisms and response to tamoxifen in breast cancer patients and, consequently, CYP2C19 genotype status should not be included in clinical decisions on tamoxifen treatment.
Collapse
Affiliation(s)
- Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Anders Kjærsgaard
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Kimberly A Barker
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Anatasha Crawford
- Department of Epidemiology, Rollins School of Public Health and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Ylva Hellberg
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Carl Langefeld
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas P Ahern
- Departments of Surgery and Biochemistry, The Robert Larner, M.D. College of Medicine at The University of Vermont, Burlington, Vermont, USA
| | - Timothy L Lash
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark.,Department of Epidemiology, Rollins School of Public Health and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
31
|
Sanchez-Spitman AB, Moes DJAR, Gelderblom H, Dezentjé VO, Swen JJ, Guchelaar HJ. The effect of rs5758550 on CYP2D6*2 phenotype and formation of endoxifen in breast cancer patients using tamoxifen. Pharmacogenomics 2017; 18:1125-1132. [DOI: 10.2217/pgs-2017-0080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: CYP2D6*2 is considered fully active, but it has been suggested that it only happens in the presence of rs5758550. This study aims to elucidate the impact of this enhancer. Materials & methods: DNA and blood samples from women enrolled in the CYPTAM study (NTR1509) were analyzed. Fourteen CYP2D6*2 carriers without the enhancer were reclassified. The relationship of CYP2D6 phenotypes and drug levels was studied. Results: After correction for the absence of the enhancer, the correlation between CYP2D6 phenotypes and endoxifen did not improve (R2: 0.290 vs 0.279). No difference was observed in mean concentrations between CYP2D6*2 individuals with and without the enhancer. Conclusion: The rs5758550 enhancer does not lead to improved prediction of endoxifen levels in breast cancer patients.
Collapse
Affiliation(s)
- Anabel B Sanchez-Spitman
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk-Jan AR Moes
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent O Dezentjé
- Department of Medical Oncology, Reinier de Graaf, Delft, The Netherlands
| | - Jesse J Swen
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Xiong W, Zhao J, Wang L, Jiang X. UPLC-MS/MS method for the determination of tobacco-specific biomarker NNAL, tamoxifen and its main metabolites in rat plasma. Biomed Chromatogr 2017; 31. [PMID: 27862094 DOI: 10.1002/bmc.3890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/20/2016] [Accepted: 11/03/2016] [Indexed: 12/27/2022]
Abstract
Cigarette smoke is known to interact with tamoxifen-metabolizing enzymes and transporters and potentially affect its treatment outcome. 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanol (NNAL) is an important metabolite of 4-(methylnitro-samino)-1-(3-pyridyl)-1-butanone (NNK) because it is frequently used as a biomarker to assess human smoke exposure. In order to study the potential pharmacokinetic interaction between cigarette smoke and tamoxifen in rats a UPLC-MS/MS method for the simultaneous determination of NNAL and tamoxifen along with its metabolites in rat plasma has been developed and validated. Analytes were extracted with methanol and separated on a HSS T3 column by a gradient elution with the mobile phase consisting of acetonitrile and water. The lower limits of quantitation ranged from 0.05 to 0.62 ng/mL. Precisions showed RSD <15.8% and accuracy in the range 80.6-116.0%. Mean analyte recoveries ranged from 76.9 to 108.4%. The method was successfully applied to study the effects of cigarette smoke condensate (CSC), NNK and benzo(a)pyrene pre-treatment on the pharmacokinetics of tamoxifen and its metabolites in rats. Significant effects of CSC, NNK, benzo(a)pyrene were observed on pharmacokinetics of tamoxifen and its metabolites. We also found that plasma NNAL levels are statistically significant correlated with plasma 4-hydroxy-tamoxifen and endoxifen.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Clinical Pharmacy, Pharmacy School of Sichuan University, Chengdu, Sichuan, China
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, People's Republic of China
| | - Jiajia Zhao
- Department of Clinical Pharmacy, Pharmacy School of Sichuan University, Chengdu, Sichuan, China
| | - Ling Wang
- Department of Clinical Pharmacy, Pharmacy School of Sichuan University, Chengdu, Sichuan, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy, Pharmacy School of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Genetic and epigenetic changes in host ABCB1 influences malaria susceptibility to Plasmodium falciparum. PLoS One 2017; 12:e0175702. [PMID: 28422980 PMCID: PMC5397027 DOI: 10.1371/journal.pone.0175702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/30/2017] [Indexed: 01/20/2023] Open
Abstract
Multiple mechanisms such as genetic and epigenetic variations within a key gene may play a role in malarial susceptibility and response to anti-malarial drugs in the population. ABCB1 is one of the well-studied membrane transporter genes that code for the P-glycoprotein (an efflux protein) and whose effect on malaria disease predisposition and susceptibility to drugs remains to be understood. We studied the association of single nucleotide variations in human ABCB1 that influences its function in subjects with uncomplicated and complicated malaria caused by Plasmodium falciparum (Pf). Global DNA methylation and ABCB1 DNA promoter methylation levels were performed along with transcriptional response and protein expression in subjects with malaria and healthy controls. The rs2032582 locus was significantly associated with complicated and combined malaria groups when compared to controls (p < 0.05). Significant DNA methylation difference was noticed between case and control (p < 0.05). In addition, global DNA methylation levels of the host DNA were inversely proportional to parasitemia in individuals with Pf infection. Our study also revealed the correlation between ABCB1 DNA promoter methylation with rs1128503 and rs2032582 polymorphisms in malaria and was related to increased expression of ABCB1 protein levels in complicated malaria group (p < 0.05) when compared to uncomplicated malaria and control groups. The study provides evidence for multiple mechanisms that may regulate the role of host ABCB1 function to mediate aetiology of malaria susceptibility, prognosis and drug response. These may have clinical implications and therapeutic application for various malarial conditions.
Collapse
|
34
|
Charoenchokthavee W, Areepium N, Panomvana D, Sriuranpong V. Effects of CYP2D6 and CYP3A5 polymorphisms on tamoxifen and its metabolites in Thai breast cancer patients. BREAST CANCER-TARGETS AND THERAPY 2017; 9:249-256. [PMID: 28450788 PMCID: PMC5399972 DOI: 10.2147/bctt.s125745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose This study aimed to determine the effects of CYP2D6 and CYP3A5 polymorphisms on the levels of tamoxifen (TAM) and its metabolites in the plasma of breast cancer patients. The protocol was designed to test the associations between CYP2D6, CYP3A5 genotypes and phenotypes (extensive metabolizer [EM], intermediate metabolizer [IM] and poor metabolizer [PM]) and TAM, N-desmethyl tamoxifen (NDMT), endoxifen (END) and 4-hydroxytamoxifen (4OHT) concentrations. Patients and methods One hundred and thirty-four Thai breast cancer patients from the Thai Tamoxifen Project undergoing TAM treatment who met the inclusion/exclusion criteria were recruited. Plasma samples were assessed for the concentrations of TAM and its metabolites using high-performance liquid chromatography. The data are presented as actual values and metabolic ratios (MR). The hypotheses were tested using Kruskal–Wallis or Mann–Whitney U test, including the simple main effects analysis. Results The patients had stage 0–IV breast cancer. The mean age and body mass index were 51.6±11.6 years and 24.0±4.3, respectively. Also, 53.0% of them were premenopausal, 10.4% were perimenopausal and 36.6% were postmenopausal, while 23.1% were CYP2D6-EM/CYP3A5-EM and 20.9% carried only CYP2D6 and CYP3A5 incomplete alleles. The median concentrations of TAM, NDMT, END and 4OHT were 374.7 (interquartile range [IQR] 230.2) ng/mL, 1,064.9 (IQR 599.6) ng/mL, 54.5 (IQR 52.5) ng/mL and 5.0 (IQR 3.1) ng/mL, respectively. MR (TAM-NDMT) and MR (NDMT-END) were statistically different (p=0.013 and p=0.014, respectively), while MR (4OHT-END) was not statistically different within the CYP2D6 phenotype (p=0.594). MR (TAM-4OHT) was not statistically different within the CYP2D6 phenotype (p=0.079), but it was potentially different from CYP3A5-PM (p=0.056). None of the MR was statistically different within the CYP3A5 phenotype. Conclusion CYP2D6 polymorphisms appear to affect END concentration through an NDMT subpathway and potentially affect 4OHT concentrations through a 4OHT subpathway in CYP3A5-PM group.
Collapse
Affiliation(s)
| | - Nutthada Areepium
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Duangchit Panomvana
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Virote Sriuranpong
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
35
|
Morgan MM, Johnson BP, Livingston MK, Schuler LA, Alarid ET, Sung KE, Beebe DJ. Personalized in vitro cancer models to predict therapeutic response: Challenges and a framework for improvement. Pharmacol Ther 2016; 165:79-92. [PMID: 27218886 PMCID: PMC5439438 DOI: 10.1016/j.pharmthera.2016.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Personalized cancer therapy focuses on characterizing the relevant phenotypes of the patient, as well as the patient's tumor, to predict the most effective cancer therapy. Historically, these methods have not proven predictive in regards to predicting therapeutic response. Emerging culture platforms are designed to better recapitulate the in vivo environment, thus, there is renewed interest in integrating patient samples into in vitro cancer models to assess therapeutic response. Successful examples of translating in vitro response to clinical relevance are limited due to issues with patient sample acquisition, variability and culture. We will review traditional and emerging in vitro models for personalized medicine, focusing on the technologies, microenvironmental components, and readouts utilized. We will then offer our perspective on how to apply a framework derived from toxicology and ecology towards designing improved personalized in vitro models of cancer. The framework serves as a tool for identifying optimal readouts and culture conditions, thus maximizing the information gained from each patient sample.
Collapse
Affiliation(s)
- Molly M Morgan
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian P Johnson
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Megan K Livingston
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kyung E Sung
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.
| | - David J Beebe
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; Department of Oncology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
36
|
Tamoxifen metabolite endoxifen interferes with the polyamine pathway in breast cancer. Amino Acids 2016; 48:2293-302. [PMID: 27438264 DOI: 10.1007/s00726-016-2300-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
Abstract
Tamoxifen is the most widely used drug to treat women with estrogen receptor α (ERα)-positive breast cancer. Endoxifen is recognized as the active metabolite of tamoxifen in humans. We studied endoxifen effects on ERα-positive MCF-7 breast cancer cells. Estradiol increased the proliferation of MCF-7 cells by two- to threefold and endoxifen suppressed its effects. Endoxifen suppressed c-myc, c-fos and Tff1 oncogene expression, as revealed by RT-PCR. Estradiol increased the activity of ornithine decarboxylase (ODC) and adenosyl methioninedecarboxylase (AdoMetDC), whereas endoxifen suppressed these enzyme activities. Endoxifen increased activities of spermine oxidase (SMO) and acetyl polyamine oxidase (APAO) significantly, and reduced the levels of putrescine and spermidine. These data suggest a possible mechanism for the antiestrogenic effects of tamoxifen/endoxifen, involving the stimulation of polyamine oxidase enzymes. Therefore, SMO and APAO stimulation might be useful biomarkers for the efficacy of endoxifen treatment of breast cancer.
Collapse
|
37
|
Powers JL, Buys SS, Fletcher D, Melis R, Johnson-Davis KL, Lyon E, Malmberg EM, McMillin GA. Multigene and Drug Interaction Approach for Tamoxifen Metabolite Patterns Reveals Possible Involvement of CYP2C9, CYP2C19, and ABCB1. J Clin Pharmacol 2016; 56:1570-1581. [PMID: 27198207 DOI: 10.1002/jcph.771] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/11/2022]
Abstract
Tamoxifen is metabolically activated to 4-hydroxytamoxifen and endoxifen by cytochrome P450 (CYP). CYP phenotypes have been correlated to tamoxifen outcomes, but few have considered drug interactions or combinations of genes. Fewer still have considered ABCB1, which encodes P-glycoprotein and transports active tamoxifen metabolites. We compared the concentrations of tamoxifen and metabolites in 116 breast cancer patients with predicted phenotypes for CYP2D6, CYP3A4, CYP3A5, CYP2C9, CYP2C19, and ABCB1 genotypes. A significant correlation between CYP2D6 phenotypes and tamoxifen metabolites was seen, strongest for endoxifen (P < .0001). Statistical fit of the data improved when using gene activity scores adjusted for known drug interactions. Concentration of tamoxifen was significantly higher (P = .02) for patients taking a CYP2C19 inhibitor. No significant relationships were found for other genes unless patients were subgrouped according to CYP2D6 phenotypes or ABCB1 genotypes. Lower concentrations of endoxifen and endoxifen/4-hydroxytamoxifen ratios were seen with impaired CYP2C9 (P = .05 and P = .03, respectively) if patients had the same CYP2D6 phenotype and were not taking a CYP2D6 or CYP2C19 inhibitor. Lower concentrations of 4-hydroxytamoxifen were seen for impaired CYP2C19 when ABCB1 SNP3435 was nonvariant (P = .04). With 3 impaired CYP phenotypes, endoxifen concentrations were lower than if only CYP2D6 was impaired (P = .05). When CYP2D6 was impaired, ABCB1 3435 CC (rs1045642) was associated with significantly higher endoxifen (P = .03). Thus, impairment in CYP2C9, CYP2C19, or ABCB1 contributes to a lower steady-state endoxifen concentration at the dose studied. These studies represent an improved way of examining relationships between pharmacogenetics, drug concentrations, and clinical outcomes and warrants study in larger populations.
Collapse
Affiliation(s)
- Jennifer L Powers
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Deborah Fletcher
- Department of Pharmacy, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Roberta Melis
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Elaine Lyon
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | | | - Gwendolyn A McMillin
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| |
Collapse
|
38
|
No effect on pharmacokinetics of tamoxifen and 4-hydroxytamoxifen by multiple doses of red clover capsule in rats. Sci Rep 2015; 5:16126. [PMID: 26530625 PMCID: PMC4632083 DOI: 10.1038/srep16126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/02/2015] [Indexed: 11/08/2022] Open
Abstract
Tamoxifen is used in clinical practice for breast cancer patients and to prevent osteoporosis. Red clover (Trifolium pratense) preparations are consumed worldwide as dietary supplements for relieving postmenopausal symptoms. In the present study we investigated the possible herb-drug interaction between red clover and tamoxifen in rats. 15 days pre-treatment with red clover did not alter the tamoxifen and its active metabolite 4-hydroxytamoxifen pharmacokinetics significantly (p > 0.05). Therefore the therapeutic efficacy of the tamoxifen may not be compromised by the co-administration with red clover. Tamoxifen metabolism is primarily mediated by CYP2D6, CYP3A4 with minor contribution from CYP2C9, CYP2E1 and CYP1A2 isoforms. Although, red clover pre-treatment significantly (p < 0.05) decreased the mRNA expression and activity of CYP3a2, no effect on CYP2d4 and increased expression and activity of CYP2c11 could be the plausible reasons for lack of effect on tamoxifen and its metabolite pharmacokinetics in rats. CYP1a1 and CYP2b2 mRNA expression and activity were also significantly reduced by red clover. To extend the clinical utility of the present study, effect of red clover extract on major CYPs using human liver microsomes and HepG2 cell lines were also determined. Similar finding were observed in the human liver preparations as in rats.
Collapse
|
39
|
Ribeiro MPC, Santos AE, Custódio JBA. Rethinking tamoxifen in the management of melanoma: New answers for an old question. Eur J Pharmacol 2015; 764:372-378. [PMID: 26165763 DOI: 10.1016/j.ejphar.2015.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022]
Abstract
The use of the antiestrogen tamoxifen in melanoma therapy is controversial due to the unsuccessful outcomes and a still rather unclarified mechanism of action. It seemed that the days of tamoxifen in malignant melanoma therapy were close to an end, but new evidence may challenge this fate. On one hand, it is now believed that metabolism is a major determinant of tamoxifen clinical outcomes in breast cancer patients, which is a variable that has yet to be tested in melanoma patients, since the tamoxifen active metabolite endoxifen demonstrated superior cytostatic activity over the parent drug in melanoma cells; on the other hand, new evidence has emerged regarding estrogen-mediated signaling in melanoma cells, including the methylation of the estrogen receptor-α gene promoter and the expression of the G protein coupled estrogen receptor. The expression of estrogen receptor-α and G protein coupled estrogen receptor, as well as the cytochrome P450 (CYP) 2D6 genotype, may be used as predictive biomarkers to select the patients that may respond to antiestrogens based on specific traits of their tumors. This review focused on these new evidences and how they may contribute to shed new light on this long-lasting controversy, as well as their possible implications for future investigations.
Collapse
Affiliation(s)
- Mariana P C Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - José B A Custódio
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
40
|
Abstract
Oestrogen receptor-positive (ER(+)) breast cancer is a major cause of cancer death in women. Although aromatase inhibitors suppress the function of ER and reduce the risk of recurrence, therapeutic resistance is common and essentially inevitable in advanced disease. This Review considers both genomic and cell biological explanations as to why ER(+) breast cancer cells persist, progress and cause an incurable, lethal, systemic disease. The design and outcomes of clinical trials are considered with the perspective that resistance mechanisms are heterogeneous, and therefore biomarker and somatic mutation-based stratification and eligibility will be essential for improvements in patient outcomes.
Collapse
Affiliation(s)
- Cynthia X Ma
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Tomás Reinert
- Department of Medical Oncology, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 20230-130, Rio de Janeiro, Brazil
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8 St., 20-954, Lublin, Poland
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston 77030, Texas, USA
| |
Collapse
|
41
|
Zhang X, Pu Z, Ge J, Shen J, Yuan X, Xie H. Association of CYP2D6*10, OATP1B1 A388G, and OATP1B1 T521C polymorphisms and overall survival of breast cancer patients after tamoxifen therapy. Med Sci Monit 2015; 21:563-9. [PMID: 25701109 PMCID: PMC4345853 DOI: 10.12659/msm.893473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The global incidence of breast cancer is increasing, mainly due to the sharp rise in breast cancer incidence in Asia. The aim of this study was to evaluate the association of CYP2D6*10 (c.100C>T and c.1039C>T), OATP1B1 A388G, and OATP1B1 T521C polymorphisms with overall survival (OS) for hormone receptor (estrogen receptor or progesterone receptor)-positive tumors (ER+/PR+) breast cancer patients after adjuvant tamoxifen (TAM) therapy. Material/Method We included 296 invasive breast cancer patients with hormone receptor-positive tumors during the period 2002–2009. We collected patient data, including clinical features, TAM therapy, and survival status. Archived paraffin blocks from surgery were the source of tissue for genotyping. CYP2D6*10, OATP1B1 A388G, and T521C polymorphisms were detected by direct sequencing of genomic DNA. OS was assessed with Kaplan-Meier analysis, while the Cox proportional hazards model was used to implement multivariate tests for the prognostic significance. Results There was a significant difference in OS between OATP1B1 T521C wild-type and the mutant genotype C carrier (P=0.034). However, there was no difference in overall survival between wild-type and carrier groups for CYP2D6*10 (P=0.096) and OATP1B1 A388G (P=0.388), respectively. Conclusions These results suggest that the OATP1B1 T521C mutation may be an independent prognostic marker for breast cancer patients using TAM therapy.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Zhichen Pu
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Jun Ge
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Jie Shen
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Xiaolong Yuan
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Haitang Xie
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| |
Collapse
|
42
|
Pharmacogenomic diversity of tamoxifen metabolites and estrogen receptor genes in Hispanics and non-Hispanic whites with breast cancer. Breast Cancer Res Treat 2014; 148:571-80. [PMID: 25395315 DOI: 10.1007/s10549-014-3191-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
Ethnic differences in patient genetics and breast cancer (BC) biology contribute to ethnic disparities in cancer presentation and patient outcome. We prospectively evaluated SNPs within phase I and phase II tamoxifen (TAM) metabolizing enzymes, and the estrogen receptor gene (ESR1), aiming to identify potential pharmacogenomic ethnicity patterns in an ER-positive BC cohort constituted of Hispanic and Non-Hispanic White (NHW) women in South Texas. Plasma concentrations of TAM/metabolites were measured using HPLC. CYP2C9, CYP2D6 and SULT1A1 genotypes were determined by DNA sequencing/Pyrosequencing technology. ESR1 PvuII and XbaI SNPs were genotyped using Applied Biosystems Taqman Allelic Discrimination Assay. Hispanics had higher levels of TAM, 4-hydroxytamoxifen, and endoxifen than NHWs. There was a higher prevalence of CYP2D6 EM within Hispanics than NHWs, which corresponded to higher endoxifen levels, but no differences were verified with regard to CYP2C9 and SULT1A1. We found a higher incidence of the wild type forms of the ESR1 in Hispanics than NHWs. The performance status, the disease stage at diagnosis, and the use of aromatase inhibitors might have overcome the overall favorable pharmacogenomics profile of Hispanics when compared to NHWs in relation to TAM therapy responsiveness. Our data strongly point to ethnical peculiarities related to pharmacogenomics and demographic features of TAM treated Hispanics and NHWs. In the era of pharmacogenomics and its ultimate goal of individualized, efficacious and safe therapy, cancer studies focused on the Hispanic population are warranted because this is the fastest growing major demographic group, and an understudied segment in the U.S.
Collapse
|
43
|
An UPLC–MS/MS method for separation and accurate quantification of tamoxifen and its metabolites isomers. J Pharm Biomed Anal 2014; 100:254-261. [DOI: 10.1016/j.jpba.2014.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 11/22/2022]
|
44
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|
45
|
Martins DMF, Vidal FCB, Souza RDM, Brusaca SA, Brito LMO. Determination of CYP2D6 *3, *4, and *10 frequency in women with breast cancer in São Luís, Brazil, and its association with prognostic factors and disease-free survival. ACTA ACUST UNITED AC 2014. [PMID: 25296365 PMCID: PMC4230293 DOI: 10.1590/1414-431x20143761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP2D6 enzyme is crucial for the metabolism of tamoxifen. The CYP2D6 gene is highly polymorphic, and individuals can be extensive, intermediate, or poor tamoxifen metabolizers. The aim of this study was to determine the frequencies of the CYP2D6 *3, *4, and *10 alleles in women with breast cancer who were treated with tamoxifen and analyze the association of enzyme activity with prognostic factors and disease-free survival. We observed a high frequency of CYP2D6 *10, with an allelic frequency of 0.14 (14.4%). The *3 allele was not present in the studied population, and *4 had an allelic frequency of 0.13 (13.8%). We conclude that patients with reduced CYP2D6 activity did not present worse tumor characteristics or decreased disease-free survival than women with normal enzyme activity, as the difference was not statistically significant. We also observed a high frequency of CYP2D6 *10, which had not been previously described in this specific population. This study is the first in north-northeastern Brazil that aimed to contribute to the knowledge of the Brazilian regional profile for CYP2D6 polymorphisms and their phenotypes. These findings add to the knowledge of the distribution of different polymorphic CYP2D6 alleles and the potential role of CYP2D6 genotyping in clinical practice prior to choosing therapeutic protocols.
Collapse
Affiliation(s)
- D M F Martins
- Instituto Maranhense de Oncologia Aldenora Bello, São Luís, MA, Brasil
| | - F C B Vidal
- Banco de Tumores e DNA do Maranhão, Universidade Federal do Maranhão, São Luís, MA, Brasil
| | - R D M Souza
- Escola de Medicina, Universidade Federal do Maranhão, São Luís, MA, Brasil
| | - S A Brusaca
- Escola de Medicina, Universidade Federal do Maranhão, São Luís, MA, Brasil
| | - L M O Brito
- Banco de Tumores e DNA do Maranhão, Universidade Federal do Maranhão, São Luís, MA, Brasil
| |
Collapse
|
46
|
Ribeiro MPC, Santos AE, Custódio JBA. Mitochondria: the gateway for tamoxifen-induced liver injury. Toxicology 2014; 323:10-8. [PMID: 24881593 DOI: 10.1016/j.tox.2014.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/14/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
Tamoxifen (TAM) is routinely used in the treatment of breast carcinoma. TAM-induced liver injury remains a major concern, as TAM causes hepatic steatosis in a significant number of patients, which can progress toward steatohepatitis. Liver toxicity is generally believed to involve mitochondrial dysfunction and TAM exerts multiple deleterious effects on mitochondria, which may account for the hepatotoxicity observed in patients treated with TAM. Endoxifen (EDX), a key active metabolite of TAM that is being investigated as an alternative to TAM in breast cancer therapy, slightly affects mitochondria in comparison with TAM and this demonstration well correlates with the absence of alterations in the clinical parameters of individuals taking EDX. The steady-state plasma concentrations of TAM and its active metabolites EDX and 4-hydroxytamoxifen (OHTAM) in patients taking TAM are highly variable, reflecting genetic variants of CYP2D6 involved in TAM metabolism. Besides de genetic polymorphisms, the intake of drugs that influence the enzymatic activity of CYP2D6 compromises the therapeutic efficiency of TAM. The knowledge of the impact of the variability of TAM metabolism in the breast cancer treatment explains the discrepant outcomes observed in patients taking TAM, as well as the individual variability of idiosyncratic liver injury and other sides effects observed. Therefore, and contrarily to the clinical use of EDX, the need of therapeutic drug monitoring and a regular assessment of liver function biomarkers should be considered in patients under therapies with TAM. In this review we focus on the mitochondrial effects of TAM and its metabolites and on the role played by mitochondria in the initiating events leading to TAM-induced hepatotoxicity, as well as the clinical implications.
Collapse
Affiliation(s)
- Mariana P C Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - José B A Custódio
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
47
|
|
48
|
Martinkovich S, Shah D, Planey SL, Arnott JA. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging 2014; 9:1437-52. [PMID: 25210448 PMCID: PMC4154886 DOI: 10.2147/cia.s66690] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) are a diverse group of nonsteroidal compounds that function as agonists or antagonists for estrogen receptors (ERs) in a target gene-specific and tissue-specific fashion. SERM specificity involves tissue-specific expression of ER subtypes, differential expression of co-regulatory proteins in various tissues, and varying ER conformational changes induced by ligand binding. To date, the major clinical applications of SERMs are their use in the prevention and treatment of breast cancer, the prevention of osteoporosis, and the maintenance of beneficial serum lipid profiles in postmenopausal women. However, SERMs have also been found to promote adverse effects, including thromboembolic events and, in some cases, carcinogenesis, that have proven to be obstacles in their clinical utility. In this review, we discuss the mechanisms of SERM tissue specificity and highlight the therapeutic application of well-known and emergent SERMs.
Collapse
Affiliation(s)
- Stephen Martinkovich
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - Darshan Shah
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - Sonia Lobo Planey
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - John A Arnott
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
49
|
Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver. Toxicology 2014; 325:12-20. [PMID: 25123088 DOI: 10.1016/j.tox.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/16/2014] [Accepted: 08/10/2014] [Indexed: 11/21/2022]
Abstract
Tamoxifen is a non-steroidal anti-estrogenic drug widely used for the treatment and prevention of breast cancer in women; however, there is evidence that tamoxifen is hepatocarcinogenic in rats, but not in mice. Additionally, it has been reported that tamoxifen may cause non-alcoholic fatty liver disease (NAFLD) in humans and experimental animals. The goals of the present study were to (i) investigate the mechanisms of the resistance of mice to tamoxifen-induced hepatocarcinogenesis, and (ii) clarify effects of tamoxifen on NAFLD-associated liver injury. Feeding female WSB/EiJ mice a 420 p.p.m. tamoxifen-containing diet for 12 weeks resulted in an accumulation of tamoxifen-DNA adducts, (E)-α-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-TAM) and (E)-α-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-DesMeTAM), in the livers. The levels of hepatic dG-TAM and dG-DesMeTAM DNA adducts in tamoxifen-treated mice were 578 and 340 adducts/108 nucleotides, respectively, while the extent of global DNA and repetitive elements methylation and histone modifications did not differ from the values in control mice. Additionally, there was no biochemical or histopathological evidence of NAFLD-associated liver injury in mice treated with tamoxifen. A transcriptomic analysis of differentially expressed genes demonstrated that tamoxifen caused predominantly down-regulation of hepatic lipid metabolism genes accompanied by a distinct over-expression of the lipocalin 13 (Lcn13) and peroxisome proliferator receptor gamma (Pparγ), which may prevent the development of NAFLD. The results of the present study demonstrate that the resistance of mice to tamoxifen-induced liver carcinogenesis may be associated with its ability to induce genotoxic alterations only without affecting the cellular epigenome and an inability of tamoxifen to induce the development of NAFLD.
Collapse
|
50
|
Kunická T, Václavíková R, Hlaváč V, Vrána D, Pecha V, Rauš K, Trnková M, Kubáčková K, Ambruš M, Vodičková L, Vodička P, Souček P. Non-coding polymorphisms in nucleotide binding domain 1 in ABCC1 gene associate with transcript level and survival of patients with breast cancer. PLoS One 2014; 9:e101740. [PMID: 25078270 PMCID: PMC4117604 DOI: 10.1371/journal.pone.0101740] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES ATP-Binding Cassette (ABC) transporters may cause treatment failure by transporting of anticancer drugs outside of the tumor cells. Multidrug resistance-associated protein 1 coded by the ABCC1 gene has recently been suggested as a potential prognostic marker in breast cancer patients. This study aimed to explore tagged haplotype covering nucleotide binding domain 1 of ABCC1 in relation with corresponding transcript levels in tissues and clinical phenotype of breast cancer patients. METHODS The distribution of twelve ABCC1 polymorphisms was assessed by direct sequencing in peripheral blood DNA (n = 540). RESULTS Tumors from carriers of the wild type genotype in rs35623 or rs35628 exhibited significantly lower levels of ABCC1 transcript than those from carriers of the minor allele (p = 0.003 and p = 0.004, respectively). The ABCC1 transcript levels significantly increased in the order CT-GT>CC-GT>CC-GG for the predicted rs35626-rs4148351 diplotype. Chemotherapy-treated patients carrying the T allele in rs4148353 had longer disease-free survival than those with the GG genotype (p = 0.043). On the other hand, hormonal therapy-treated patients with the AA genotype in rs35628 had significantly longer disease-free survival than carriers of the G allele (p = 0.012). CONCLUSIONS Taken together, our study shows that genetic variability in the nucleotide binding domain 1 has a significant impact on the ABCC1 transcript level in the target tissue and may modify survival of breast cancer patients.
Collapse
Affiliation(s)
- Tereza Kunická
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radka Václavíková
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
| | - Viktor Hlaváč
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Vrána
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Department of Oncology, Palacky University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - Václav Pecha
- Institute for the Care for Mother and Child, Prague, Czech Republic
| | - Karel Rauš
- Institute for the Care for Mother and Child, Prague, Czech Republic
| | | | - Kateřina Kubáčková
- Department of Oncology, Motol University Hospital, Prague, Czech Republic
| | - Miloslav Ambruš
- Department of Radiotherapy and Oncology, Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ludmila Vodičková
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Vodička
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Souček
- Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- * E-mail:
| |
Collapse
|