1
|
Santoro MC, Ghanim BM, Kwapinski W, Leahy JJ, Freitas JCC. Solid-State NMR Study of Hydrochars Produced from Hydrothermal Carbonization of Poultry Litter. ACS OMEGA 2024; 9:45759-45773. [PMID: 39583697 PMCID: PMC11579733 DOI: 10.1021/acsomega.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Poultry litter (PL) hydrochars obtained at different temperatures and charring times were characterized by solid-state 1H, 13C and 31P nuclear magnetic resonance (NMR) spectroscopy. 13C NMR spectra obtained with cross polarization (CP) and magic-angle spinning evidenced the chemical and structural changes suffered by PL during its transformation into hydrochar; these changes were particularly dependent on the production temperature rather than the residence time. The hydrochars were essentially composed of aromatic and alkyl domains at the temperature of 250 °C. 31P NMR observations were conducted using single-pulse excitation (SPE) and CP sequences to distinguish between phosphorus far from protons and protonated phosphate species. Results showed that water-soluble phosphorus was the only form detected in hydrochars through the CP sequence. In contrast, the stable phosphorus species formed during hydrothermal carbonization (HTC) exhibited broad signals, detected exclusively using the SPE sequence. This indicates that unprotonated orthophosphates were the dominant form. These NMR results offer a deeper understanding of hydrochar formation from PL, shedding light on the chemical and structural changes caused by the HTC process at the atomic scale.
Collapse
Affiliation(s)
- Mariana C. Santoro
- Laboratory
of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Bashir M. Ghanim
- Department
of Chemistry, The Higher Institute of Medical
and Technical Sciences, Alzahra, 00000 Tripoli, Libya
| | - Witold Kwapinski
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - James J. Leahy
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jair C. C. Freitas
- Laboratory
of Carbon and Ceramic Materials, Department of Physics, Federal University of Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brazil
| |
Collapse
|
2
|
Khademi S, Masoumi AA, Sadeghi M, Riasi A, Moheb A. Modeling and optimization of laying hen manure drying process to reduce protein and ammonium-N losses by adding sodium bentonite and wheat straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119668. [PMID: 38056333 DOI: 10.1016/j.jenvman.2023.119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Laying hen manure (LHM) is a major source of pollution due to its high nitrogen (N) and moisture content (MC). Therefore, reducing the MC of LHM is necessary to retain its recyclable value and reduce environmental pollution. One effective way is by incorporating sodium bentonite (SB) and wheat straw (WS) as amendments in the LHM. This work aimed to optimize the drying conditions of LHM and investigate the effect of SB and WS utilization on the dehydration rate, reduction of crude protein (CP), and reduction of ammonium-N (N [Formula: see text] -N). The response surface methodology (RSM) was used to optimize these processes. For this purpose, two sets of experiments (drying of LHM with and without SB and Ws) were designed. The independent parameters were air temperature (70, 80, and 90 °C), air velocity (1, 1.5, and 2 m s-1), layer thickness (5, 10, and 15 mm), SB (2%, 4%, and 6%), and WS (3%, 7.5%, and 12%). The results indicated that temperature and WS had the most significant influence on all responses. To maximize the dehydration rate and minimize the reduction of CP and N [Formula: see text] -N, the optimal conditions were a temperature of 78 °C, air velocity of 1 m s-1, and layer thickness of 5 mm in the first set of experiments, and a temperature of 80 °C, air velocity of 1.5 m s-1, layer thickness of 11 mm, 6% SB, and 12% WS in the second set of experiments. Under the optimum conditions, LHM treated with 6% SB and 12% WS retained 10% more CP and 58% more N [Formula: see text] -N than untreated LHM. Therefore, according to the obtained results, SB and WS are recommended as additives to reduce the CP and N [Formula: see text] -N losses of LHM during the drying process.
Collapse
Affiliation(s)
- Sahar Khademi
- Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Amin Allah Masoumi
- Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Morteza Sadeghi
- Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ahmad Riasi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ahmad Moheb
- Department of Chemical Engineering, College of Chemistry Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
3
|
Rahman MS, Schefe C, Rajput S, Keizer D, Weatherley A. O-aryl and Carbonyl Carbon Contents of Food Waste and Biosolid Predict P Availability in an Acidic Soil. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.609788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organic waste streams, otherwise known as organic amendments (OA), contain potentially valuable nutrients which may additionally increase legacy nutrient availability in soil. This is particularly the case for phosphorus (P) where declining reserves of rock phosphate add an extra dimension to their utility. In acidic soils, OA have been reported to increase P availability through the action of O-aryl and carbonyl groups (represent organic acid compounds) by substituting previously fixed, legacy P and forming organometallic complexes to reduce P sorption. This study aimed to investigate if signature P (orthophosphate) and C (O-aryl and carbonyl) content of OA could be used to predict soil P availability, to replace traditional ways of testing OA and also for future prescriptive applications. Food waste and biosolid were the sources of OA in this study, with pyrolysis and composting processes used to create a range of functional groups. Nuclear magnetic resonance (NMR) spectroscopy was utilized to identify forms of C (solid-state 13C NMR) and P compounds (solution-state 31P NMR) in these OA. The O-aryl, carbonyl, and orthophosphate content were higher in pyrolysis and composted materials compared to their feedstock substrate. The effect of OA addition on soil P availability was monitored in a 110-day laboratory incubation study. Results showed an increase in soil P availability (Olsen P) and a decrease in soil P buffering capacity (PBC) after incubation. The increase in soil P availability was not predicted well by the NMR-derived orthophosphate content of OA, which may be due to the overestimation of plant-available orthophosphate content by the solution-state 31P NMR. Furthermore, an additional increase in soil ΔOlsen P (difference between observed and expected) was obtained above the Olsen P added from OA indicating substitution of previously fixed soil P. Both indices of P availability namely ΔOlsen P (r = 0.63–0.83) and ΔPBC (difference between treatment—control) (r = −0.50 to −0.80) showed strong (but opposite) correlations with the ratio of O-aryl to carbonyl C content of OA. It was concluded that the ratio of O-aryl and carbonyl C content of OA could be used to predict the P availability in acidic soil.
Collapse
|
4
|
Massey MS. X-Ray Spectroscopic Quantification of Struvite and Dittmarite Recovered from Wastewater. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:193-198. [PMID: 30640358 DOI: 10.2134/jeq2018.08.0287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phosphorus recovery from wastewater as struvite (MgNHPO⋅6HO) or dittmarite (MgNHPO⋅HO) can decrease water pollution risk, as well as produce a P-rich material suitable as fertilizer. However, most studies to date have focused on the removal of P from wastewater, rather than on characterization of the recovered P materials. The objective of this work was to apply microfocused X-ray fluorescence (XRF) spectroscopy, and both bulk and microfused X-ray absorption near edge structure (XANES) spectroscopy, to provide insight into the speciation of recovered P in various struvite-containing and struvite-like materials. Three materials were investigated: homogeneous crystalline struvite on apatite seed, homogeneous dittmarite, and heterogeneous struvite with sand contamination (referred to as the "sandy" material). The struvite materials were recovered from dairy wastewater, whereas the dittmarite was from a cheese processing plant. Phosphorus speciation in the crystalline struvite on apatite seed material was ∼17% apatite and 83% struvite; in the "sandy" material, P was ∼24% apatite and ∼76% struvite, with an uncertainty of approximately ±15%. The P -edge XANES spectra of recovered dittmarite appeared pure. These findings highlight the heterogeneity of recovered P materials and underscore the importance of P speciation to understand P release behavior and bioavailability from recovered phosphates.
Collapse
|
5
|
Sun K, Qiu M, Han L, Jin J, Wang Z, Pan Z, Xing B. Speciation of phosphorus in plant- and manure-derived biochars and its dissolution under various aqueous conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1300-1307. [PMID: 29710629 DOI: 10.1016/j.scitotenv.2018.04.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) in biochar serves as both a P source for plant growth and a contributor to water eutrophication, thus prioritizing the efficient management of P in biochar. This study employed solid- and solution- state 31P-nuclear magnetic resonance and X-ray diffraction analyses to explore the impact of feedstock and heating treatment temperature (HTT) on P species of biochars. The effects of ambient temperature, coexisting anions, pH and nutrient solution on P release were also investigated to study the effect of various environmental factors on P release from biochars. P species in both plant- and manure- derived biochars were dominated by inorganic orthophosphate and pyrophosphate (mainly calcium-bound-phosphates). The HTT of biochar showed a negative impact upon its pyrophosphate content. Compared with plant biochars, manure biochars contained higher P but had a lower release degree. Release of P from biochars was controlled by diffusion-dissolution process and was enhanced by higher ambient temperature, co-existing anions, and both acidic and alkaline conditions but inhibited by coexisting Hoagland nutrients. Anion-induced increase in P release was more significant for plant biochars than manure biochars. These findings help to adjust favorable environmental conditions for the full utilization of P in biochars.
Collapse
Affiliation(s)
- Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Mengyi Qiu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lanfang Han
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Jie Jin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ziying Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zezhen Pan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Li W, Feng X, Song W, Guo M. Transformation of Phosphorus in Speciation and Bioavailability During Converting Poultry Litter to Biochar. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Hashimoto Y, Takamoto A, Kikkawa R, Murakami K, Yamaguchi N. Formations of hydroxyapatite and inositol hexakisphosphate in poultry litter during the composting period: sequential fractionation, P K-edge XANES and solution (31)P NMR investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5486-5492. [PMID: 24735189 DOI: 10.1021/es404875j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Little is known about how the solubility and chemical speciation of phosphorus (P) in poultry litters are altered during the composting period. This study investigated the quantitative and qualitative changes in organic P (Po) and inorganic P (Pi) compositions in poultry litters during the seven-day composting period using sequential extraction in combination with P K-edge X-ray absorption near-edge structure (XANES) and solution (31)P nuclear magnetic resonance (NMR) spectroscopy. The result of sequential extraction illustrated that the significant decrease of H2O-P by 55% in poultry litters occurred concomitantly with the increase of HCl-Pi and HCl-Po during the composting period (p < 0.05). X-ray diffraction results for poultry litter samples showed three distinct peaks indicative of hydroxyapatite. Phosphorus K-edge XANES confirmed the increase of hydroxyapatite during the composting period, corresponding to the increase of HCl-Pi determined by the sequential extraction. The NaOH-EDTA extraction for solution (31)P NMR revealed that myo-inositol hexakisphosphate (IHP) constituted about 80% of phosphate monoesters and was increased from 16 to 28% in the poultry litter during the composting period. The combined applications of chemical extraction and molecular-spectroscopic techniques determined that water-soluble P in poultry litter was transformed into less soluble phases, primarily hydroxyapatite and IHP, during the composting period.
Collapse
Affiliation(s)
- Yohey Hashimoto
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology 2-24-16 Nakamachi, Koganei, Tokyo, 184-8588 Japan
| | | | | | | | | |
Collapse
|
8
|
Nanzer S, Oberson A, Huthwelker T, Eggenberger U, Frossard E. The molecular environment of phosphorus in sewage sludge ash: implications for bioavailability. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1050-60. [PMID: 25602834 DOI: 10.2134/jeq2013.05.0202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Producing a P fertilizer from sewage sludge ash (SSA) is a strategy to efficiently recycle P from a secondary raw material. The P speciation in four SSAs was characterized before and after the removal of heavy metals by a thermo-chemical treatment that involved CaCl addition. We chose complementary techniques to determine the direct P speciation, including X-ray powder diffraction, solid-state P direct-polarization magic-angle spinning nuclear magnetic resonance, and X-ray absorption near edge structure. Results from these techniques were compared with operational and functional speciation information obtained from a sequential P extraction and a plant biotest with Italian ryegrass grown on a soil-sand mixture with little available P. The speciation of P in untreated and thermo-chemically treated SSAs depended on their elemental composition. At a molar ratio of Ca:P ≤ 2, SSAs contained combinations of polymorphs of AlPO, β-tricalcium phosphate, and apatite-like P species. In SSAs with a molar ratio of Ca:P > 2, an apatite-like molecular environment was predominant. The thermo-chemical process induced an increase in crystalline phases and enhanced the crystallinity of the P species. The structural order of the bulk sample was the most decisive parameter in controlling the P availability of the studied SSAs to plants. We conclude that, to produce a high-quality fertilizer and despite of the successful heavy metal removal, the thermo-chemical process requires further development toward enhanced P bioavailability.
Collapse
|
9
|
Uchimiya M, Hiradate S. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1802-9. [PMID: 24495088 DOI: 10.1021/jf4053385] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pyrolysis of plant and animal wastes produces a complex mixture of phosphorus species in amorphous, semicrystalline, and crystalline inorganic phases, organic (char) components, and within organo-mineral complexes. To understand the solubility of different phosphorus species, plant (cottonseed hull) and manure (broiler litter) wastes were pyrolyzed at 350, 500, 650, and 800 °C and exposed to increasingly more rigorous extraction procedures: water (16 h), Mehlich 3 (1 mM EDTA at pH 2.5 for 5 min), oxalate (200 mM oxalate at pH 3.5 for 4 h), NaOH-EDTA (250 mM NaOH + 5 mM EDTA for 16 h), and total by microwave digestion (concentrated HNO3/HCl + 30% H2O2). Relative to the total (microwave digestible) P, the percentage of extractable P increased in the following order: M3 < oxalate ≈ water < NaOH-EDTA for plant biochars and water < M3 < NaOH-EDTA < oxalate for manure biochars. Solution phase (31)P NMR analysis of NaOH-EDTA extracts showed the conversion of phytate to inorganic P by pyrolysis of manure and plant wastes at 350 °C. Inorganic orthophosphate (PO4(3-)) became the sole species of ≥ 500 °C manure biochars, whereas pyrophosphate (P2O7(4-)) persisted in plant biochars up to 650 °C. These observations suggested the predominance of (i) amorphous (rather than crystalline) calcium phosphate in manure biochars, especially at ≥ 650 °C, and (ii) strongly complexed pyrophosphate in plant biochars (especially at 350-500 °C). Correlation (Pearson's) was observed (i) between electric conductivity and ash content of biochars with the amount of inorganic P species and (ii) between total organic carbon and volatile matter contents with the organic P species.
Collapse
Affiliation(s)
- Minori Uchimiya
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | | |
Collapse
|
10
|
Lin J, Chen N, Pan Y. Arsenic incorporation in synthetic struvite (NH4MgPO4·6H2O): a synchrotron XAS and single-crystal EPR study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12728-12735. [PMID: 24152131 DOI: 10.1021/es402710y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Struvite, a common biomineral and increasingly important fertilizer recovered from wastewater treatment plants, is capable of sequestering a wide range of heavy metals and metalloids, including arsenic. Inductively coupled plasma mass spectrometric (ICPMS) analyses and microbeam synchrotron X-ray fluororescence (μ-SXRF) mapping show that struvite formed under ambient conditions contains up to 547 ± 15 ppm As and that the uptake of As is controlled by pH. Synchrotron As K-edge XANES spectra measured at 20 K show that As(5+) is the predominant oxidation state in struvite, irrespective of Na2HAsO4·7H2O or NaAsO2 as the source for As. Modeling of As K-edge EXAFS data suggest that local structural distortion associated with the substitution of As(5+) for P(5+) in struvite reaches up to 3.75 Å. Single-crystal electron paramagnetic resonance (EPR) spectra of gamma-ray-irradiated struvite disclose five [AsO3](2-) radicals and one [AsO4](2-) radical. These arsenic-centered oxyradicals are all readily attributed to form from diamagnetic [AsO4](3-) precursors during irradiation, providing further support for exclusive incorporation and local structural expansion beyond the first shell of As(5+) at the P site in struvite.
Collapse
Affiliation(s)
- Jinru Lin
- Department of Geological Sciences, University of Saskatchewan , Saskatoon, SK S7N 5E2, Canada
| | | | | |
Collapse
|
11
|
Chen L, Xing L, Han L. Review of the application of near-infrared spectroscopy technology to determine the chemical composition of animal manure. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:1015-1028. [PMID: 24216353 DOI: 10.2134/jeq2013.01.0014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Animal manure contains a variety of chemical constituents that are highly valuable to agriculture, including nitrogen, phosphorus, potassium, and metal micronutrients. Although appropriately applied manure has numerous positive attributes, the excessive application of manure may lead to pollution of the atmosphere, water, or soil. To reconcile precision agriculture and the potential negative environmental influences of animal manure, it is necessary to develop rapid and robust methods to evaluate the chemical composition of animal manure. This paper summarizes recent advances in near-infrared reflectance spectroscopy (NIRS) in predicting moisture, dry matter, organic matter, nitrogen, phosphorus, carbon, and metal content in animal manure. The results indicate the high potential of NIRS as an efficient tool for monitoring the chemical composition of animal manure. Future prospects and needs related to increasing the feasibility of the industrial application of NIRS and improving NIRS prediction precision in determining the chemical composition of animal manure are discussed.
Collapse
|
12
|
Kizewski F, Liu YT, Morris A, Hesterberg D. Spectroscopic approaches for phosphorus speciation in soils and other environmental systems. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:751-66. [PMID: 21546661 DOI: 10.2134/jeq2010.0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the past decades, environmental scientists have become increasingly involved in developing novel approaches for applying emerging spectroscopic techniques to complex environmental matrices. The objective of this review is to convey the most common chemical species of phosphorus reported for soils, sediments, model systems, and waste materials based on analyses by four spectroscopic techniques: X-ray absorption near-edge structure, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and Raman spectroscopy. Unique information is provided by each technique at a level of specificity that depends in part on matrix complexity. The X-ray absorption near-edge structure and nuclear magnetic resonance techniques reveal inorganic and organic P species in intact environmental matrices or in chemical extracts, whereas the Fourier transform infrared and Raman techniques can provide more specific bonding information about mineral or adsorbed P species in model analogs of matrix components. The most common P species in soils and sediments as indicated by spectroscopy are hydroxyapatite and octacalcium phosphate minerals, phosphate adsorbed on Fe- and Al-oxides, pyrophosphates and polyphosphates, phosphate mono- and di-esters, and phosphonates. Continued advancements in spectroscopic methods should improve speciation-based models of P mobilization and transformations in the environment.
Collapse
Affiliation(s)
- Fiona Kizewski
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | | | | | | |
Collapse
|
13
|
Lombi E, Hettiarachchi GM, Scheckel KG. Advanced in situ spectroscopic techniques and their applications in environmental biogeochemistry: introduction to the special section. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:659-666. [PMID: 21546653 DOI: 10.2134/jeq2010.0542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Understanding the molecular-scale complexities and interplay of chemical and biological processes of contaminants at solid, liquid, and gas interfaces is a fundamental and crucial element to enhance our understanding of anthropogenic environmental impacts. The ability to describe the complexity of environmental biogeochemical reaction mechanisms relies on our analytical ability through the application and developmemnt of advanced spectroscopic techniques. Accompanying this introductory article are nine papers that either review advanced in situ spectroscopic methods or present original research utilizing these techniques. This collection of articles summarizes the challenges facing environmental biogeochemistry, highlights the recent advances and scientific gaps, and provides an outlook into future research that may benefit from the use of in situ spectroscopic approaches. The use of synchrotron-based techniques and other methods are discussed in detail, as is the importance to integrate multiple analytical approaches to confirm results of complementary procedures or to fill data gaps. We also argue that future direction in research will be driven, in addition to recent analytical developments, by emerging factors such as the need for risk assessment of new materials (i.e., nanotechnologies) and the realization that biogeochemical processes need to be investigated in situ under environmentally relevant conditions.
Collapse
Affiliation(s)
- Enzo Lombi
- Centre for Environmental Risk Assessment and Remediation, University of South Australia Building X, Mawson Lakes Campus, South Australia, Australia.
| | | | | |
Collapse
|
14
|
|